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A B S T R A C T   

The prevalence of prediabetes is rapidly increasing in general population and in people living with HIV (PLWH). 
Gut microbiota play an important role in human health, and dysbiosis is associated with metabolic disorders and 
HIV infection. Here, we aimed to evaluate the association between gut microbiota and prediabetes in PLWH. A 
cross-sectional study enrolled 40 PLWH who were receiving antiretroviral therapy and had an undetectable 
plasma viral load. Twenty participants had prediabetes, and 20 were normoglycemic. Fecal samples were 
collected from all participants. The gut microbiome profiles were analyzed using 16S rRNA sequencing. Alpha- 
diversity was significantly lower in PLWH with prediabetes than in those with normoglycemia (p<0.05). A 
significant difference in beta-diversity was observed between PLWH with prediabetes and PLWH with normo-
glycemia (p<0.05). Relative abundances of two genera in Firmicutes (Streptococcus and Anaerostignum) were 
significantly higher in the prediabetes group. In contrast, relative abundances of 13 genera (e.g., Akkermansia 
spp., Christensenellaceae R7 group) were significantly higher in the normoglycemic group. In conclusion, the 
diversity of gut microbiota composition decreased in PLWH with prediabetes. The abundances of 15 bacterial 
taxa in the genus level differed between PLWH with prediabetes and those with normoglycemia. Further studies 
on the effect of these taxa on glucose metabolism are warranted.   

1. Introduction 

Type 2 diabetes mellitus (T2DM) prevalence is increasing and has led 
to higher rates of diabetes-related morbidity and mortality in adults 
worldwide. In Thailand, T2DM prevalence was 8.3% in 2020, increasing 
from 7.5% in 2009 (Aekplakorn et al., 2011). Prediabetes, a state of 
abnormal glucose homeostasis with blood glucose levels not yet reach-
ing the diabetes diagnosis criteria, is associated with diabetes compli-
cations, including early nephropathy, sensory neuropathy, retinopathy, 
and cardiovascular diseases (Brunner et al., 2006; Nathan et al., 2007; 
Plantinga et al., 2010; Sumner et al., 2003; Xu et al., 2009). Prediabetes 
prevalence is also rapidly increasing worldwide, and up to 10% of 
people with prediabetes progress to T2DM yearly (Tabák et al., 2012). 

Because of the increased access to antiretroviral therapies (ART) for 
people living with HIV (PLWH), a significant reduction in acquired 

immunodeficiency syndrome (AIDS)-associated morbidity and exten-
sion of the predicted lifespan have been observed (Palella et al., 1998). 
Nonetheless, the non-AIDS events have become an increasing burden. 
ART, HIV itself, and the aging process increase the risk of non-
communicable diseases, including insulin resistance, hypertension, 
metabolic disorders, and cardiovascular diseases (Aekplakorn et al., 
2011; Chantrathamachart et al., 2006; Prioreschi et al., 2017). 
Compared to the general population, prediabetes and T2DM in PLWH 
are more prevalent (Brown et al., 2005; Phuphuakrat et al., 2020; Sri-
vanich et al., 2010). 

Gut microbiota, as intestinal microorganisms (bacteria, archaea, vi-
ruses, and eukaryotic microbes), play an essential role in human health 
by influencing cellular metabolism, immune regulation, and the in-
flammatory process (Feng et al., 2018; Valdes et al., 2018). Gut dysbiosis 
or adverse change in microbiome contributes to insulin resistance, 
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T2DM, obesity, inflammatory bowel diseases, autoimmunity, and 
carcinogenesis (Sommer et al., 2017). The composition of the gut 
microbiota differs between people with and without T2DM (Sedighi 
et al., 2017). Changes in the composition of the gut microbiota play a 
role in glucose metabolism by alterations in systemic lipopolysaccharide 
concentrations, bile acid metabolism, short-chain fatty acid production, 
gut hormone secretion, and circulating branched-chain amino acids 
(Utzschneider et al., 2016). Likewise, the composition of the gut 
microbiota and metabolites is altered in PLWH with T2DM as compared 
to those without T2DM (Moon et al., 2018). Moreover, dietary inter-
vention and physical exercise as well as HIV infection can change the 
composition of gut microbiota and their metabolism (Chen et al., 2018; 
Zhao et al., 2018). 

A few studies (Hoel et al., 2018; Moon et al., 2018) have investigated 
the association between gut microbiota and T2DM in PLWH. The data on 
gut microbiota in PLWH with prediabetes are markedly limited, and the 
differences of gut microbiota in PLWH with normoglycemia and those 
with prediabetes are not well understood. The purpose of this study was 
to evaluate the association between gut microbiota and the prediabetes 
status in PLWH. 

2. Materials and methods 

2.1. Study participants and design 

This cross-sectional study was conducted at an infectious disease 
clinic in Ramathibodi Hospital, Mahidol University, Bangkok, Thailand. 
We included PLWH from a previous cross-sectional study for the prev-
alence of prediabetes among PLWH (Phuphuakrat et al., 2020), aged 20 
years or older, and willing to participate in the study. PLWH using 
glucose-lowering medications, having a history of diabetes, and those 
who were pregnant were excluded. Patients were screened for predia-
betes and consecutively enrolled with a goal of 20 participants with 
prediabetes (prediabetes group) and 20 participants with normoglyce-
mia (normoglycemia group). All participants had received ART for more 
than 6 months, had HIV viral loads less than 50 copies/mL, and had CD4 
counts more than 200 cells/mm3. Their medical histories were retrieved. 
Anthropometric parameters were measured by physicians, and all clin-
ical samples, including feces and blood, were collected under standard 
techniques. The protocol was approved by the Institutional Review 
Board, Faculty of Medicine, Ramathibodi Hospital, Mahidol University 
(COA. MURA2020/1203). Written informed consent was obtained from 
each participant. All methods were performed in accordance with the 
relevant guidelines and regulations. 

2.2. Measurement and laboratory determinations 

2.2.1. Prediabetes 
According to the American Diabetes Association (ADA) Standards of 

Medical Care in Diabetes-2019, prediabetes was defined as fasting 
plasma glucose (FPG) levels of 100-125 mg/dL or 2-h plasma glucose 
(2h PG) levels 140-199 mg/dL during a 75-g oral glucose tolerance test 
(OGTT) or hemoglobin A1c (HbA1c) 5.7- <6.5% (American Diabetes 
Association, 2019). All participants had fasted at least 12 h before the 
test. At baseline, blood samples were collected for FPG and HbA1c. After 
a 75-g glucose solution was taken, blood samples were collected at 120 
min for 2h PG. 

2.2.2. Fecal sample collection 
Fecal samples were self-collected by participants using a clean 

disposable spatula and a plastic container over the toilet seat. Partici-
pants washed their hands and cleaned the perianal area before sample 
collection. Fecal samples were immediately refrigerated at -80◦C. 

2.2.3. RNA extraction and high-throughput sequencing 
Genome DNA was extracted with the QIAamp® Fast DNA Stool Mini 

Kit (QIAGEN, Hilden, Germany) following the manufacturers’ in-
structions. Polymerase chain reaction (PCR) amplification was per-
formed on the 16S rRNA gene using 341F 
(TCGTCGGCAGCGTCAGATGTGTATAAGAGA-
CAGCCTACGGGNGGCWGCAG) and 805R (GTCTCGTGGGCTCGGA-
GATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC) primers, 
targeting the V3-V4 variable regions and sparQ HiFi PCR master mix 
(Quanta bio, Beverly, MA, USA). The amplification condition consisted 
of an initial denaturation step at 94◦C for 3 min, followed by 25 cycles of 
98◦C for 20 s, 55◦C for 30 s, 72◦C for 30 s, and a single final extension 
step at 72◦C for 5 min. Additionally, an internal transcribed spacer of 
nuclear ribosomal DNA amplification was performed using the primers 
ITS-1F and ITS-2R (Gardes and Bruns, 1993) with PCR conditions as 
follows: an initial denaturation step at 94◦C for 3 min, followed by 25 
cycles of 98◦C for 20 s, 60◦C for 30 s, 72◦C for 30 s, and a single final 
extension step at 72◦C for 5 min. Subsequently, both metagenomic 
marker amplicons were purified using AMPure XP beads and indexed 
using 5 µl of each Nextera XT index primer (Illumina, San Diego, CA, 
USA) in a 50-µl PCR reaction, followed by 8-10 cycles of PCR conditions, 
as above. The final PCR products were cleaned, pooled, and diluted to 
the final loading concentration at 6 pM. Cluster generation and 250-bp 

Table 1 
Characteristics of participants with normoglycemia and prediabetes  

Characteristics Normoglycemia 
(N=20) 

Prediabetes 
(N=20) 

P-value 

Demographic and anthropometric parameters   
Age (years) 51.8±6.6 50.9±5.6 0.625 
Male, N (%) 13 (65.0) 13 (65.0) >0.999 
History of smoking, N (%) 10 (50.0) 7 (35.0) 0.337 
History of alcohol 

drinking, N (%) 
16 (80.0) 12 (60.0) 0.168 

Underlying diseases, N (%)    
Hypertension 4 (20.0) 3 (15.0) 0.677 
Dyslipidemia 9 (45.0) 7 (35.0) 0.519 
NAFLD 0 (0.0) 1 (5.0) 0.311 
Body weight (kg) 62.7±12.8 63.7±12.4 0.814 
Body mass index (kg/m2) 23.1±4.6 24.1±4.0 0.501 
SBP (mmHg) 130.5±15.5 129.5±14.5 0.842 
DBP (mmHg) 81.3±8.1 82.1±10.6 0.790 
Waist circumference (cm) 84.8±10.8 85.4±10.7 0.878 
Waist hip circumference 

ratio 
0.91±0.07 0.91±0.06 0.825 

HIV-related parameters    
Duration of HIV infection 

(years) 
15.2±6.1 14.4±5.4 0.682 

Type of ART regimen, N 
(%)    

NNRTI-based 13 (65.0) 13 (65.0) >0.999 
PI-based 7 (35.0) 7 (35.0) >0.999 
Duration of ART (years) 11.5±6.1 11.9±5.1 0.834 
CD4 cell counts (cells/ 

mm3) 
559.8±264.0 475.0±204.5 0.263 

Biochemical parameters   
FPG (mg/dL) 91.8 ±7.9 101.4±13.6 0.009 
2h PG (mg/dL) 113.5±37.0 138.7±37.3 0.041 
HbA1c (%) 5.32±0.21 5.99±0.22 <0.001 
Triglycerides (mg/dL) 130.5 (81.8 – 185.3) 134.0 (99.5 – 

198.5) 
0.379 

HDL cholesterol (mg/dL) 51.2±11.6 46.2±11.4 0.181 
LDL cholesterol (mg/dL) 141.3±36.0 130.0±33.4 0.308 
Total cholesterol (mg/dL) 219.0±42.0 203.4±36.3 0.215 

Data were presented as mean±SD or median (interquartile range). 
2h PG = 2-h plasma glucose; ART = antiretroviral therapy; DBP = diastolic 
blood pressure; FPG = fasting plasma glucose; HbA1c = hemoglobin A1c; HDL 
= high-density lipoprotein; LDL= low-density lipoprotein; NAFLD = non-alco-
holic fatty liver disease; NNRTI = non-nucleoside reverse transcriptase inhibitor; 
PI = protease inhibitor; SBP = systolic blood pressure 
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paired-end read sequencing were performed on an Illumina MiSeq 
(Illumina). 

2.2.4. Bioinformatics analysis 
Microbiome bioinformatics was performed with QIIME 2 2019.10 

(Bolyen and Rideout, 2019). Raw sequence data were demultiplexed and 
quality filtered using the q2-demux plugin followed by denoising with 
DADA2 (via q2-dada2) (Callahan et al., 2016). A phylogeny tree was 
constructed using the SEPP q2-plugin, placing short sequences into a 
sepp-refs-gg-13-8.qza phylogenetic reference tree for the 16S marker 
gene (Janssen et al., 2018). Alpha-diversity metrics [Shannon diversity, 
Faith’s Phylogenetic Diversity (Faith, 1992), and observed operational 
taxonomic units (OTUs)], beta-diversity metrics (weighted UniFrac, 
unweighted UniFrac, Jaccard distance, and Bray-Curtis dissimilarity) 
(Lozupone and Knight, 2005; Lozupone et al., 2007), and Principle Co-
ordinate Analysis (PCoA) were performed using q2-diversity after sam-
ples were rarefied (subsampled without replacement) to the minimum 
number of sequences. Taxonomy was assigned to ASVs using the 
q2-feature-classifier (Bokulich et al., 2018) to classify sklearn naïve 
Bayes taxonomy classifier against the SILVA database (Quast et al., 
2013). 

2.3. Statistical methods 

Baseline demographics of the participants are presented as mean ±
standard deviation (SD) or median [interquartile range (IQR)] for 
continuous variables and as frequency (%) for binary or categorical 
variables. Chi-square tests were used to analyze categorical variables. 
Student’s t-test was used to compare means, and the Mann–Whitney U 
test was used to compare medians between the prediabetes and nor-
moglycemic groups, depending on the data distribution. The alpha- 
diversity of microbiota in OTU levels between the prediabetes and 
normoglycemic groups was determined using four measures: Shannon 
diversity, Faith’s phylogenetic diversity, observed OTUs richness, and 
Evenness and presented in box-and-whisker plots. The dissimilarity of 
microbial community compositions (beta-diversity) between partici-
pants in the prediabetes and normoglycemic groups were estimated 
using weighted UniFrac, unweighted UniFrac, Jaccard distance, and 
Bray-Curtis dissimilarity. Alpha and beta diversity were analyzed using 
Kruskal-Wallis and PerMANNOVA (number of permutations=999), 
respectively. Significantly differential taxa abundances between condi-
tion groups were tested using linear discriminant analysis (LDA) effect 
size (LEfSe). Statistical significance was considered as p-value <0.05, 
and all reported probability tests were two-sided. Statistical analysis was 

Fig. 1. Taxonomic profile at the phylum level between participants with prediabetes and normoglycemia  
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conducted using SPSS statistical software package, version 18.0 (SPSS, 
Chicago, IL, USA). 

3. Results 

Of the 40 PLWH, 20 participants were in the prediabetes group and 
20 participants were in the normoglycemia group. The mean age was 
51.3 ± 6.0 years, and 65% of the participants were male. The duration of 
HIV infection and ART was 14.8 ± 5.7 and 11.7 ± 5.5 years, respec-
tively. As expected, FPG, 2h PG, and HbA1c levels were significantly 
higher in the prediabetes group than in the normoglycemia group. De-
mographic, anthropometric, HIV-related, and other biochemical pa-
rameters did not significantly differ between the two groups (Table 1). 

Mean relative abundance of fecal samples showed that Bacteroidota 
was the most abundant at the phylum level in both groups. This was 
followed by Firmicutes, Proteobacteria, and Fusobacteriota in both groups. 
However, Elusimicrobiota, Synergistota, and Spirochaetota were not found 
in the prediabetes group (Fig. 1 and Supplementary Table 1). 

Alpha-diversity (within-sample microbial diversity for each mea-
surement) was significantly lower in the prediabetes group than in the 
normoglycemia group: Shannon index (p=0.020), Faith’s phylogenetic 

diversity (p=0.016), observed OTUs richness (p=0.016), and Evenness 
(p=0.042) (Fig. 2). Beta-diversity (similarity or dissimilarity between 
the two groups) in the fecal microbiome was evaluated by unweighted 
UniFrac at OTU levels. Principal coordinates analysis illustrated the 
clustering of fecal samples between gut microbiomes of the prediabetes 
group and the normoglycemia group (Fig. 3a). PerMANOVA showed a 
significant difference between samples obtained from the prediabetic 
group and the normoglycemia group by unweighted UniFrac (p=0.001) 
(Fig. 3b), but no significant difference between the two groups by Bray- 
Curtis (p=0.315), Jaccard (p=0.065), and weighted UniFrac (p=0.584) 
(Supplementary Fig. 1). 

Differential analysis in taxa between fecal microbiome between the 
prediabetes and normoglycemia groups was conducted by LDA effect 
size (LEfSe) (Fig. 4). At the genus level, the differential abundance 
analysis demonstrated 15 genera were associated with prediabetes in the 
PLWH (Supplementary Table 2). Two genera in Firmicutes (Streptococcus 
and Anaerostignum) became significantly more abundant in the predia-
betes group than in the normoglycemia group. Interestingly, Firmicutes, 
together with Bacteroidota, Cyanobacteria, Desulfobacerota, and Verru-
comicrobiota were significantly more abundant in the normoglycemia 
group than in the prediabetes group. Akkermansia, Gastranaerophilales, 

Fig. 2. Alpha diversity of microbial composition in participants with normoglycemia and prediabetes measured by (a) Shannon index, (b) Faith’s phylogenetic 
diversity, (c) observed OTUs, and (d) Evenness Box-and-whisker plots represented median and IQR. 
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Desulfovibrio, Butyricimonas, Colidextribacter, Christensenellaceae R 7 
group, Victivallis, Uncultured Bacteroidota, Uncultured phylum Firmi-
cutes, Holdemanella, UCG-005, Eubacterium ruminantium group, and 
family Oscillospiraceae-associated group were more abundant in the 
normoglycemia group. 

4. Discussion 

Gut microbiota has been known to be associated with various 
metabolic syndromes, especially T2DM (Wu et al., 2020). Nonetheless, 
this association has not been well established in prediabetes, particu-
larly among PLWH. This cross-sectional study evaluated the association 
between gut microbiota and prediabetes in PLWH. We found that both 
the diversity and composition of microbiomes between PLWH with 
prediabetes and those with normoglycemia were significantly dissimi-
lar. Compared to PLWH with normoglycemia, those with prediabetes 
had less genus and diversity of gut microbiomes. Additionally, the 

percentages of abundance were higher in two particular genera and 
lower in 13 other genera among PLWH with prediabetes. 

We have demonstrated that alpha diversity and beta diversity were 
significantly different between PLWH with prediabetes and those with 
normoglycemia. The alpha diversity was significantly lower in PLWH 
with prediabetes. In the general population, the diversity of gut micro-
biota composition was changed in individuals with hyperglycemia 
(Larsen et al., 2010). Previous works reported that the alpha diversity of 
gut microbiota was lower in patients with T2DM and prediabetes 
(Lambeth et al., 2015; Li et al., 2020). However, alpha diversity was not 
significantly different in patients with T2DM and without diabetes in a 
study conducted in Mexican Americans (Kitten et al., 2021). Another 
study showed a decreased alpha diversity in patients with newly diag-
nosed diabetes, but not in those with prediabetes, when compared with 
those without diabetes (Gaike et al., 2020). The diversity of gut micro-
biota composition could be affected by multiple factors (Lozupone et al., 
2012), including the types of diet and health status (Senghor et al., 

Figure 3. Beta-diversity of microbial composition in participants with normoglycemia and prediabetes by (a) principal coordinates analysis (PCoA) of unweighted 
UniFrac and (b) perMANOVA-observed differences of unweighted UniFrac. 
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2018). Regarding the diversity of microbiota composition in PLWH, a 
previous study in women with or at high risk for HIV infection showed 
no significant differences in the diversity of microbial communities be-
tween those with and without diabetes; nonetheless, relative abun-
dances of genus Finegoldia, Anaerococcus, Sneathia, and Adlercreutzia 
were decreased in those with diabetes (Moon et al., 2018). 

Our study revealed that Akkermansia spp. was significantly reduced 
in PLWH with prediabetes. This finding is consistent with several pre-
vious studies showing that Akkermansia spp. could mainly contribute to 
reducing the risk of diabetes and other metabolic syndromes (Ouyang 
et al., 2020b; Xu et al., 2020; Zhou et al., 2021). A purified membrane 
protein of Akkermansia muciniphila has been shown to reduce the 
expression of hepatic flavin monooxygenase 3 (Fmo3) (Plovier et al., 
2017). A knockout of this gene prevented the development of hyper-
glycemia in the mouse model (Miao et al., 2015). Regarding glucose 
metabolism, Akkermansia muciniphila increases thermogenesis by in-
duction of uncoupling protein 1 in brown adipose tissue and regulates 
appetite by stimulating L-cells (enteroendocrine cells) to release 
glucagon-like peptide-1 (GLP-1). However, the data of bioactive mole-
cules involving GLP-1 secretion are lacking (Derrien et al., 2017; Yoon 
et al., 2021). Akkermansia muciniphila also played a role in maintaining a 
healthy gut barrier and reducing inflammation in mice (Schneeberger 
et al., 2015). The increased gut permeability increased gram-negative 
bacteria-derived lipopolysaccharide leakage into the systemic circula-
tion with subsequent inflammation and metabolic dysfunction, 
including insulin resistance (Utzschneider et al., 2016). This may 
emphasize that Akkermansia spp. can be a potential probiotic for T2DM. 
Metformin was also shown to increase the abundance of Akkermansia 
muciniphila in PLWH (Isnard et al., 2020; Ouyang et al., 2020a), thus 
metformin might be a potential treatment for modifying the progression 
to diabetes in PLWH. 

In addition to Akkermansia, our findings revealed the significantly 
reduced abundance of Christensenellaceae in PLWH with prediabetes 
compared to those with normoglycemia. It has been assumed that the 
appropriate abundance of Christensenellaceae can improve metabolic 
syndrome. The reduction in Christensenellaceae abundance was observed 

in prediabetes individuals (He et al., 2018), while the normal abundance 
of Christensenellaceae was associated with healthy glucose metabolism 
(Lippert et al., 2017). Furthermore, Christensenellaceae was enriched 
following healthy lifestyle behavior, including regular consumption of 
fruits and vegetables (Bowyer et al., 2018; Klimenko et al., 2018). This 
change could also be observed when feeding rodents with dietary fiber 
(Ferrario et al., 2017). Interestingly, Christensenellaceae significantly 
increased in normal body mass index (BMI) (18.5-24.9 kg/m2) in-
dividuals as compared to people with obesity (BMI >30 kg/m2) 
(Goodrich et al., 2014; Waters and Ley, 2019). A clinical trial to improve 
metabolic syndrome using Christensenellaceae has been conducted 
(clinical trial.gov: NCT04663139). However, our findings did not show a 
difference in BMI and other body component analysis between the 
prediabetes and normoglycemia groups. It remains unclear how Chris-
tensenellaceae is involved in the hyperglycemic status. One possible 
mechanism is that Christensenellaceae can produce short-chain fatty 
acids, which are known to reduce the risk of diabetes by various 
mechanisms, for example, increased insulin sensitivity and suppression 
of appetite (Lau and Vaziri, 2019; Waters and Ley, 2019; Zhou et al., 
2021). Additionally, inflammation has been considered one of the cau-
ses of both type 1 and type 2 diabetes (Tsalamandris et al., 2019). An in 
vitro study showed that the supernatant obtained from Christensenella-
ceae culture can maintain the integrity of intestinal epithelia and sup-
press inflammatory response (Kropp et al., 2021). Taken together, this 
suggests that a decreased abundance of Christensenellaceae may lead to a 
hyperglycemic/prediabetic status. 

Our study in PLWH revealed a decrease in the abundance of Akker-
mansia and an increase in the abundance of Streptococcus in those with 
prediabetes. A recent systematic review on bacteria involved in T2DM 
reported that the genera of Ruminococcus, Fusobacterium, and Blautia 
were positively associated with T2DM, while the genera of Bifidobacte-
rium, Bacteroides, Faecalibacterium, Akkermansia, and Roseburia were 
negatively associated with T2DM (M et al., 2020). Another case-control 
study showed a decreased abundance of the genus Clostridium, but an 
increased abundance of Dorea (Ruminococcus), Suterella, and Strepto-
coccus in prediabetics as compared to age- and sex-matched 

Fig. 4. Differentially abundant bacterial taxa of participants with prediabetes and normoglycemia illustrated by linear discriminant analysis (LDA) effect size (LEfSe) 
plot c = class; d = domain; f = family; g = genus; o = order; p = phylum 
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normoglycemic persons (Allin et al., 2018). A damage of gut epithelial 
barrier in PLWH is a potential factor of microbial translocation and 
inflammation in PLWH (Ellis et al., 2021). This might contribute to the 
different abundance of bacterial taxa between PLWH and the general 
population. 

To the best of our knowledge, the present study is the first to reveal 
the association between gut dysbiosis and prediabetes in PLWH. None of 
the participants were receiving diabetic treatment that could have 
affected the results. The study was conducted under a well-designed 
protocol and standard technique. Nevertheless, our study has some 
limitations that should be considered when interpreting these results: 
(1) the sample size is relatively modest; (2) since the study design is a 
cross-sectional study, the causal relationship between gut microbiota 
and prediabetes in PLWH cannot be evaluated directly; (3) as the par-
ticipants are only PLWH who received ART with an undetectable plasma 
viral load, we might not be able to apply the results to the ART-naïve 
PLWH or those without successful ART; and (4) some potential factors 
such as route of HIV infection, sex preferences, other sexually trans-
mitted infections, history of antibiotics and antacid usage, and dietary 
intakes can affect gut microbiota change; nonetheless, we did not 
include these factors as covariates in our study data. 

In conclusion, our study demonstrated the association between gut 
microbiota and prediabetes in PLWH receiving ART with an undetect-
able plasma viral load. Diversity of gut microbiota composition 
decreased in PLWH with prediabetes. The abundances of Akkermansia 
spp. and Christensenellaceae R 7 group were also decreased in PLWH with 
prediabetes. We also found that PLWH with prediabetes had increased 
abundances of two genera in Firmicutes (Streptococcus and Anaeros-
tignum). Further studies on the mechanism that contributed to the 
development of dysglycemia by these two genera in PLWH are 
warranted. 
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