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Background:MRSA is one of themost common causes of hospital- and community-acquired infections. MRSA is
resistant tomany antibiotics, including β-lactamantibiotics, fluoroquinolones, lincosamides,macrolides, amino-
glycosides, tetracyclines and chloramphenicol.

Objectives: To identify patient-level characteristics that may be associated with phenotype variations and that
may help improve prescribing practice and antimicrobial stewardship.

Methods: Chain graphs for resistance phenotypes were learned from invasive MRSA surveillance data collected
by the CDC as part of the Emerging Infections Program to identify patient level risk factors for individual resist-
ance outcomes reported as MIC while accounting for the correlations among the resistance traits. These chain
graphs are multilevel probabilistic graphical models (PGMs) that can be used to quantify and visualize the com-
plex associations among multiple resistance outcomes and their explanatory variables.

Results: Some phenotypic resistances had low connectivity to other outcomes or predictors (e.g.
tetracycline, vancomycin, doxycycline and rifampicin). Only levofloxacin susceptibility was associated with
healthcare-associated infections. Blood culture was the most common predictor of MIC. Patients with positive
blood culture had significantly increased MIC of chloramphenicol, erythromycin, gentamicin, lincomycin and
mupirocin, and decreased daptomycin and rifampicin MICs. Some regional variations were also observed.

Conclusions: The differences in resistance phenotypes between patients with previous healthcare use or positive
blood cultures, or from different states, may be useful to inform first-choice antibiotics to treat clinical MRSA
cases. Additionally, we demonstrated multilevel PGMs are useful to quantify and visualize interactions among
multiple resistance outcomes and their explanatory variables.

Introduction
Antimicrobial resistance (AMR) poses a significant threat to mod-
ern medicine by decreasing the efficacy of antimicrobial treat-
ment and increasing patient adverse outcomes and healthcare
costs.1,2 Many of the bacterial pathogens of most clinical concern
are resistant to multiple classes of antimicrobials and classified
as MDR pathogens, among which MRSA is one of the most com-
mon causes of hospital-acquired and community-acquired infec-
tions. In 2019, the CDC classified MRSA as a serious threat.3 MRSA
has become resistant to many antibiotics used for its treatment
besides methicillin and most other β-lactam antibiotics, and is
frequently resistant to fluoroquinolones, lincosamides,macrolides,

aminoglycosides, tetracyclines and chloramphenicol.4 MDRpheno-
types often result from accumulating multiple genes encoding for
resistance to different single drugs on mobile genetic elements,
e.g. plasmids and integrons, and individual genes encoding multi-
drug efflux pumps.5,6 These genetic elements cause MDR pheno-
types to be more common than would be expected and allow
for co-selection, which can drive changes in the prevalence of re-
sistance.7 For instance, increased prescription of tetracyclines
and gentamicin in Europe during the 1980s was associated with
an increased prevalence of MRSA.8

Clinical infectionwithMDR pathogens results in reduced thera-
peutic efficacy of antibiotics and worse patient outcomes.9
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Accounting for the MDR nature of pathogens is crucial to appropri-
ately identifying risk factors for such infections, and thus improving
clinical management. The complex correlation structure among
the antimicrobial susceptibility testing (AST) results requires multi-
variate analysis methods that account for multiple outcomes sim-
ultaneously. Standard statistical methods treat each outcome as
independent, and most multivariate methods require a priori as-
sumptions about outcome correlation structure. Alternativemeth-
ods that allow for the simultaneous estimation of outcome
correlations and causal effect measures are more efficient and
promising for MDR outcomes.10

Probabilistic graphical models (PGMs) are methods for repre-
senting complex joint distributions without a priori designation
of outcome correlation structures.11 In PGMs, nodes represent
variables of interest and edges connecting nodes represent an
association between those two variables. Bayesian networks
are a type of PGM that decompose the joint distribution into a di-
rected acyclic graph (DAG) with directed edges representing con-
ditional associations. In a DAG, each child node is conditionally
independent of its non-descendants given its parents (nodes dir-
ectly connected to the node of interest) (Figure 1a). DAGs are ex-
tensively used in epidemiology to represent causal diagrams and
identify statistical models most likely to yield unbiased effect es-
timates.12 Bayesian networks have been previously applied to
evaluate cross-resistance using resistance data from clinical bac-
terial cultures,13 but associations among resistance outcomes
are more appropriately represented by undirected edges.14

Therefore, correlated resistance outcomes are better repre-
sented with PGMs by undirected edges, also called Markov net-
works (Figure 1b). The structure of a Markov network of
resistance outcomes can be learned by using partial correlations
coefficients followed by a penalization approach to remove the
weakest edges.14,15

For evaluating potential risk factors for multiple resistance
outcomes, a third type of PGM called chain graphs shows prom-
ise. Chain graphs are a hybrid between Bayesian and Markov net-
works (Figure 1c) and contain both directed and undirected
edges. This enables the identification of effect estimates be-
tween risk factors and resistances, represented by directed
edges, while simultaneously accounting for joint distributions of
resistance outcomes, represented by undirected edges. In this
study, we used chain graphs to analyse MRSA surveillance data
collected by the CDC Emerging Infections Program (CDC-EIP),16

an active, population-based and laboratory-based surveillance
system. The objective of this study was to identify risk factors
for individual resistance outcomes while considering the correla-
tions among phenotypic resistant outcomes.

Methods
Data description
The CDC-EIP invasive MRSA dataset contained 12066 AST records and as-
sociated variables from MRSA-infected patients collected from 2005 to
2016. The dataset consisted of AST results for 13 antibiotics (Table 1),
and 15 potential predictors describing patients’ risk factors (Table 2) for
each record. Invasive MRSA cases were collected from eightmetropolitan
areas in different states and the whole state of Connecticut (Table 3). The
MIC values were log2 transformed so that a unit change corresponded to
a single 2-fold dilution.14,17

No AST results were available for 527 records (4.3%), 2547 additional
records (21.1%) were missing chloramphenicol susceptibility results, and
an additional 10 records (,0.1%) were missing at least one other AST re-
sult. No chloramphenicol susceptibility results were reported for the 1985
isolates collected in 2013 and later. Records missing at least one AST re-
sult were omitted from the study, leaving 8982 isolates of MRSA collected
between 2005 and 2012. None of themean log2MICvalues in the omitted
data significantly differed from the data included by more than one dilu-
tion. Supplementarymaterials are included tomore completely summar-
ize data missingness (Table S1, available as Supplementary data at
JAC-AMROnline) and distribution of AST results over timewith tests for lin-
ear trend (Figure S1a–m). Both hospital-onset (HO; n=1927) and
hospital-acquired community-onset (HACO; n=5201) isolates were clas-
sified as healthcare-associated (HA) isolates; community-associated (CA;
n=1854) isolates were the least frequent class.

Chain graph models
The chain graph consists of two types of nodes: the set of outcome vari-
ables (Y), and the set of predictor variables (X) (Figure 2). Here, X and Y
consisted of the 15 patient-level predictors and the 13 log2 MIC variables,
respectively. The undirected edges among the log2 MIC variables are
defined by partial correlations (Ω) and the directed edges from the
patient-level risk factors to the log2 MICs are defined by estimated effects
of predictors on the outcomes (β).

Learning chain graphs from data
Analysing large datasets with multiple correlated outcomes presents a
particular set of challenges. Large datasets can create challenges for
model selection because small effectswill appear to be significant. For ex-
ample, a sample size of 10000 samples with a standard deviation of log2
MIC 3 dilutions used to make 100 comparisons will have over 95% power
to identify a log2 MIC change of 0.16 dilutions but this change is smaller
than would be considered biologically important. Penalization methods
have been used in machine learning applications to avoid overfitting.18

Weak effect estimates are reduced to zero while stronger effects are
biased towards zero. Higher penalty values induce in sparser models.
Adjusting the penalty allows researchers to tune analysis in an objective
manner analogous to adjusting the significance level α. The least absolute
shrinkage and selection operator (lasso) and the graphical lasso are com-
monly used penalization methods.18,19

The data were fitted to chain graph models using the penalized max-
imum likelihood estimation method.20 The directed edges that compose
β are estimated using the debiased lasso with the penalty λ (Figure 2). The
undirected edges that composeΩ are estimated using the graphical lasso
estimated with the penalty ρ.

This algorithm has the following steps: first, all terms in β representing
possible conditional relationships are screened by regressing each out-
come on the full set of predictors using the debiased lasso.21 Second,
the algorithm finds initial estimates for the β terms, then applies the
graphical lasso to the residuals to estimate the partial correlations that
comprise Ω. Third, the algorithm returns to estimate β conditioned on
the newly estimated Ω, and then again estimates Ω from the residuals.
The algorithm iterates through the second and third steps, estimating β
conditioned on Ω then Ω from the residuals, until convergence.

The stability approach to regularization selection (StARS) was used to
identify penalty values λ and ρ that produced the most stable set of
edges.22 Penalties between 0.10 and 0.40 in increments 0.01 were tested
for λ and ρ each. The models with penalties below 0.10 were too dense to
be easily interpretable, and penalties above 0.40 produced models were
too sparse to be informative. Twenty subsamples of 80% of the usable
data were taken for each combination. Standard errors for the effect es-
timates for the selected model were estimated using residual mean
square errors.
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Analyses were performed using R (v4.1.3).23 Chain graph learning
code was adapted from Lin et al. (2016).20,24

Results
The most common non-susceptible phenotypes were CHL
(40.4%), CLI (42.5%), ERY (91.8%) and LEV (81.6%) (Table 1).
No other phenotypic resistances exceeded 10% prevalence. No
isolates were vancomycin resistant, and three isolates had inter-
mediate susceptibility to vancomycin (MICVAN =4 mg/L).

Stability selection found the most stable model structure oc-
curredwith penalties λ=0.20and ρ=0.30,which produced amodel

with 13 edges in the undirected Ω component (16.7% density) and
54 edges in the directed β component (18.1% density) (Figure 3).
The model was divided into neighborhood graphs to facilitate visu-
alization (Figure 4). Each outcome node is displayed with its adja-
cent nodes. Overall, the total number of adjacent nodes was
highly variable across resistance outcomes; VAN and TET had only
1 edge, while CHL had the most with 14 edges.

The directed edges in the graphical model represent the
debiased non-zero estimated linear coefficients describing
the average effect measure of the patient predictors on the
outcome MICs (Table 4). Eight of the 15 predictors had no
significant relationship with any of the susceptibilities. Eleven of

Figure 1. Comparison of three types of probabilistic graphicalmodels. (a) Bayesian networks have directed edges connecting nodes and are common-
ly used in epidemiology in the form of directed acyclic graphs, which illustrate the relationship between exposure variables (blue nodes) and outcome
variables (orange node), as shown here. (b) Markov networks have undirected edges connecting nodes within a graph, here depictedwith a dotted line.
(c) Chain graphs utilize both directed and undirected edges, with undirected edges connecting edges within the same layer (denoted by the respective
orange and blue colour schemes) and directed edges connecting nodes between different layers.

Table 1. Proportions of non-susceptible isolates and breakpoints for 13 phenotypic susceptibilities in 8982 MRSA isolates collected in the USA between
2005 and 2012

Drug Code Mean log2 MIC (+SD) Breakpoint (mg/L) Log2 breakpoint Non-susceptible (%)

Chloramphenicol CHL 3.40+0.51 ≥16 ≥4 40.4
Clindamycin CLI 0.58+3.01 ≥1 ≥0 42.5
Erythromycin ERY 2.67+1.16 ≥1 ≥0 91.8
Daptomycin DAP −0.95+0.28 ≥2 ≥1 0.5
Doxycycline DOX 0.01+0.49 ≥8 ≥3 1.6
Tetracycline TET 0.14+0.88 ≥8 ≥3 4.3
Gentamicin GEN 1.06+0.64 ≥8 ≥3 2.6
Levofloxacin LEV 2.73+1.91 ≥2 ≥1 81.6
Linezolid LIN 1.30+0.48 ≥8 ≥3 ,0.1
Mupirocin MUP 2.17+0.93 ≥8 ≥3 4.9
Rifampicin RIF −0.92+0.57 ≥2 ≥1 2.6
Trimethoprim/sulfamethoxazole TMS −0.72+1.06 ≥4 ≥2 7.6
Vancomycin VAN −0.19+0.47 ≥4 ≥2 0.0

Breakpoints are based on CLSI published MIC breakpoints.43
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13 susceptibilities were affected by at least one predictor, and 9
of those susceptibilities had at least one regional predictor
(Table 4). The undirected edges in the graphical model represent
the penalized partial correlations between the outcome MICs
(Table 5).

The model found two susceptibilities (TET and DOX) without
any significantly associated covariates (Figure 4 and Table 4).
Patients with positive blood cultures had significantly increased
MICs (α=0.05) for five tested susceptibilities (βCHL|BLOOD=2.72
dilutions, βERY|BLOOD=1.86 dilutions, βGEN|BLOOD=0.97 dilutions,
βLIN|BLOOD=1.19 dilutions, βMUP|BLOOD=1.88 dilutions) and signifi-
cantly decreased MICs in two (βDAP|BLOOD=−0.90 dilutions,
βRIF|BLOOD=−0.87 dilutions). On average, samples from 2009
and later had significantly lower VAN (βVAN|YR.2009=−0.42
dilutions). All tested susceptibilities except VAN and DAP were
associatedwith at least one state. Estimated standard errors var-
ied from 0.01 to 0.03 dilutions with P,,0.001 in all cases.

Discussion
The chain graph model fit to the surveillance data showed com-
plex and varied relationships between patient predictors and
measured susceptibilities. The neighborhoods for TMS and VAN
were simple, being only affected by a single predictor each (re-
gion and time, respectively), and were independent of all other
susceptibilities (Figure 4). Other susceptibilities, such as CHL,
had much more complex associations with multiple predictors
andwere correlatedwithmany other resistances (Figure 4). It ap-
pears likely that within the sampled population of MRSA isolates,
different types of drivers are responsible for the resistance pheno-
types noted. The chain graphswere learnedwith phenotypic data
and without any genotypic or genomic information. Hence, any
interpretations we provide as to the genetic and evolutionary
mechanisms responsible for noted are limited to speculation
that is as consistent with our current understand of MRSA popu-
lation genetics as possible.

IDSA guidelines recommend clindamycin, combination folate
pathway inhibitors and doxycycline to treat uncomplicated skin
and soft tissue MRSA infections.25 DOX was associated with TET
(ωDOX-TET=0.43) and weakly with GEN (ωDOX-GEN=0.01). DOX
and TET had the highest partial correlation among resistances,
which would be expected given the structural and functional
similarity between both drugs. A possible, though still specula-
tive, explanation for the association between gentamicin and
doxycycline both bind to the 30S ribosomal subunit, so somemu-
tations may affect both resistances simultaneously.

Trimethoprim/sulfamethoxazole showed only regional vari-
ation, with all eight states other than GA having average TMS
just under one dilution less than the isolates from GA. Isolates
from patients with MRSA-associated cellulitis had slightly lower
CLI on average (βCLI|Cellulitis=−0.76 dilutions) and showed some
regional variation with four states. The only resistance associated
with CLIwas LEV (ωCLI-LEV=0.05), which is relativelyweak and co-
selection is unlikely to be a meaningful driver of clindamycin
resistance.

Vancomycin is commonly recommended as treatment for a
variety of MRSA infections including bacteraemia, endocarditis,
pneumonia or bone and joint infections.25 Only year was amean-
ingful predictor of VAN, indicating a slight decrease in mean VAN
in isolates during or after 2009 compared with those collected
prior to 2009 (βVAN|YR≥2009=−0.42 dilutions); nearly all this vari-
ation occurred within the susceptible MIC range (VAN ≤2 mg/L).
Other susceptibilities were not associated with VAN. Despite prior
reports that in vitro exposure to vancomycinmay select for higher
DAP,26 penalization in the current study reduced ωDAP-VAN to zero
and no isolates were concurrently daptomycin and vancomycin
non-susceptible.

Other drugs used to treat invasive MRSA cases include linezo-
lid, rifampicin and daptomycin.25 The penalized partial correla-
tions between these MICs and other resistances were small,
except with CHL, which is discussed below. Very weak negative
partial correlations were found between DAP and LIN
(ωDAP-LIN=−0.07) and MUP (ωDAP-MUP=−0.02). A very weak posi-
tive partial correlation with RIF (ωDAP-RIF,0.01) was noted,
meaning that rifampicin and daptomycin use are unlikely to
meaningfully impact resistances to each other.

Table 2. Summary of patient covariates for 8982 MRSA isolates collected
in the USA between 2005 and 2012

Predictor/Level Data code n (%)

MRSA-positive blood culture BLOOD 7442 83%
MRSA-associated disease
Abscess ABSCESS 502 6%
Bursitis BURS 187 2%
Cellulitis CELL 846 9%
Urinary tract infection UTI 580 6%
Internal surgical site SURGSITE 182 2%
Sepsis SEPTIC 606 7%

Chronic dialysis at culture CIDAL9 654 7%
MRSA infection typea

CA class_x 1854 21%
HO 1927 21%
HACO 5201 58%

Conditions in the previous year
MRSA culture PREVMRSA 2276 25%
Hospitalization HOSPYR 5312 59%
Long-term care facility LTCYR 2265 25%
Dialysis DIALYR 1522 17%

Location
California CA 1290 14%
Colorado CO 540 6%
Connecticut CT 711 8%
Georgia GA 2013 22%
Maryland MD 429 5%
Minnesota MN 1147 13%
New York NY 1276 14%
Oregon OR 1130 13%
Tennessee TN 446 5%

Year
2005–08 Year 4964 55%
2009–12 4018 45%

aCA, community-associated; HO, hospital-onset; HACO, hospital-asso-
ciated community onset.
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The negative correlations between CHL and RIF and DAP are
likely attributable to difference in strains, where determinants
of chloramphenicol susceptibility do not coincide with determi-
nants of rifampicin susceptibility, e.g. rpoB27 or determinants of

daptomycin susceptibility, e.g. dltABCD, mprF and others.28

Mupirocin resistance can be conferred via the genes mupA and
mupB and via ileS mutations.29,30 These mechanisms do not ap-
pear to provide cross-resistance to other antimicrobial classes,

Table 3. Distribution of 8982 invasive MRSA samples from the 9 CDC-EIP sampling sites

State

Year

Total2005 2006 2007 2008 2009 2010 2011 2012

CA 342 250 148 140 151 122 120 17 1290
CO 78 3 62 58 105 115 119 0 540
CT 142 97 100 101 94 100 77 0 711
GA 265 178 184 345 345 284 320 92 2013
MD 0 0 0 16 125 152 136 0 429
MN 68 84 76 281 206 191 241 0 1147
NY 283 142 272 280 95 98 90 16 1276
OR 191 147 143 179 167 130 173 0 1130
TN 104 78 82 45 50 51 30 6 446
Total 1473 979 1067 1445 1338 1243 1306 131 8982

Figure 2. Symbology for vertices and directed and undirected components of chain graphs.
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butmupA andmupB can reside on plasmids with other suscepti-
bility determinants.31,32 However, no references describing plas-
mids carrying both chloramphenicol and mupirocin resistance
genes could be found. One possible explanation for the remain-
der of the CHL neighborhood could be multiresistance plasmids
similar to pSCFS1,33 which carries lsa(B) that induces low-level
linezolid resistance and erm(33) that induces resistance to MLS
antibiotics. In this case the plasmid could harbour another
gene that induces low-to-moderate chloramphenicol resistance,

e.g. cat or fex, instead of the cfr gene identified on pSCFS1. This
combination of genes on a resistance plasmid would explain
the moderate to strong positive partial correlations observed be-
tween CHLand LIN (0.26) and CHLand ERY (0.14), all of which tar-
get the 50S ribosomal subunit. The difficulty in identifying the
mechanisms underlying correlations with CHL in this population
of MRSA demonstrates the limitations of using phenotypic data
alone to interpret noted patterns and the need for more work in-
corporating genetic data into these chain graphs.

Figure 3. Chain graph representation of the CDC-EIP invasive MRSA surveillance data. Orange nodes represent the resistance outcomes (as log2 MIC),
and blue nodes are the risk factors associatedwith the log2 MIC nodes. The edges are decoratedwith lineweights and styles to indicate themagnitude
of the partial correlations among resistances (Ω) and the magnitude of the effect estimates (β). The vertices representing states (CA, CO, CT, MD, MN,
NY, OR and TN) represent the comparison of these states to GA, the referent category, and the node ‘≥2009’ represents the comparison of isolates
collected from 2009–12 to isolates collected from 2005–08.
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In this surveillance data, 36.8% of the CA-MRSA isolates and
13.9% of HA-MRSA isolates were susceptible to levofloxacin. HA
isolates had average LEV values more than two dilutions higher
than community associated infections (βLEV|hosp=2.20).
Patients with a history of hospitalization in the previous year
had a 0.56 dilution increase in LEV. These findings are consistent
with previous studies of MDR MRSA in which fluoroquinolone re-
sistance was common in HA-MRSA clones34 and resistance
rapidly evolved when fluoroquinolones were used to treat
MRSA.35

The MRSA clonal groups found in healthcare-associated infec-
tions are generally thought to be distinct from those responsible
for community-acquired infections.36 However, LEV was the

only phenotypic susceptibility found to be different between
healthcare- andcommunity-associated isolates. HA-MRSAstrains
tend to bemoremultidrug resistant because the integrons found
in HA-MRSA often contain several gene cassettes with resistance
genes conferring resistance to different drug classes.36 Three
plausible explanations for why hospital-associated versus
community-associated was not identified as a risk factor in our
analysis except for LEV are (i) that the epidemiological defin-
ition of HA-MRSA and CA-MRSA resulted in misclassified strains;
(ii) that the CA-MRSA strains are also likely to contain additional
resistances acquired through plasmids; or (iii) that similar
strains are circulating in both healthcare settings and the com-
munity.36 For instance, USA300 is a strain originally linked to

Figure 4. Neighborhood graphs for the chain graph representing the CDC-EIP invasive MRSA surveillance data. Orange nodes represent the resistance
outcomes (as log2MIC), and blue nodes are the risk factors associatedwith the log2 MIC nodes. The edges are decoratedwith lineweights and styles to
indicate the magnitude of the partial correlations among resistances (Ω) and the magnitude of the effect estimates (β). The vertices representing
states (CA, CO, CT, MD, MN, NY, OR and TN) represent the comparison of these states to GA, the referent category, and the node ‘≥2009’ represents
the comparison of isolates collected from 2009–12 to isolates collected from 2005–08.
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CA-MRSA but has recently been identified as a source of
HA-MRSA.37

Patients with positive blood cultures had significantly higher
average CHL, ERY, GEN, LIN and MUP values and lower average
DAP and RIF. Bacteraemia is a significant source of morbidity
and mortality in MRSA infections.2,3 Standard of care for treating
MRSA bacteraemia is daptomycin and vancomycin.25 Here, DAP
and RIF were lower in patients with positive blood cultures, and
not significantly different in septic patients. Also, resistance to
vancomycin was rare and not associated with blood culture or
sepsis. These findings reinforce the recommended practices re-
main sound for treating these cases.

We expect these chain graphs have two primary applications.
First, these chain graphs can be used as surveillance tools.
Antimicrobial resistance surveillance typically evaluates how
phenotypic susceptibilities change over time, but rarely reports
relationships between the phenotypes. Monitoring correlations
in phenotypic resistance, especially novel correlations, may iden-
tify selection pressures and strain emergence with clinically rele-
vant resistance outcomes. Our previous work has recommended
resistance relationship networks, or Rnets, to monitor correla-
tions among phenotypic resistances using widely available AST
data.14,15 These chain graphs of AMR extend and improve up
Rnets by including patient- and isolate-level covariates in the
model. The current study serves as a proof-of-concept for facili-
tating surveillance efforts.

Table 4. Directed effect estimates (β) of patient factors (X) on log2
susceptibilities (Y) from the chain graph model learned from 8962 MRSA
isolates

Y X β
Standard
error

CHL MRSA-positive blood culture 2.72 0.03
CHL MRSA-associated bursitis 1.02 0.08
CHL California 1.22 0.04
CHL Colorado 0.95 0.05
CHL Minnesota 1.05 0.04
CHL New York 1.42 0.04
CHL Oregon 0.68 0.04
CHL Tennessee 0.71 0.05
CLI MRSA-associated cellulitis −0.73 0.10
CLI Colorado 1.88 0.13
CLI Minnesota 1.65 0.09
CLI New York 1.57 0.09
CLI Oregon 0.75 0.09
ERY MRSA-positive blood culture 1.86 0.04
ERY MRSA-associated bursitis 0.95 0.10
ERY California 1.34 0.05
ERY Colorado 1.12 0.06
ERY Connecticut 0.82 0.06
ERY Minnesota 1.12 0.05
ERY New York 1.51 0.05
ERY Oregon 0.94 0.05
ERY Tennessee 0.96 0.07
DAP MRSA-positive blood culture −0.90 0.01
GEN MRSA-positive blood culture 0.97 0.02
GEN California 0.40 0.02
GEN New York 0.33 0.02
LEV Long-term care residence in the previous

year
0.56 0.05

LEV HO/HACO MRSA 2.20 0.05
LEV Colorado 1.33 0.08
LEV Connecticut 1.35 0.07
LEV Maryland 1.15 0.09
LEV Minnesota 0.97 0.06
LEV New York 1.21 0.06
LEV Oregon 0.73 0.06
LIN MRSA-positive blood culture 1.19 0.02
LIN California 0.28 0.02
LIN New York 0.41 0.02
MUP MRSA-positive blood culture 1.88 0.03
MUP MRSA-associated bursitis 0.89 0.09
MUP California 0.74 0.04
MUP Minnesota 0.42 0.04
MUP New York 0.69 0.04
MUP Oregon 0.48 0.04
RIF MRSA-positive blood culture −0.87 0.02
RIF New York −0.33 0.02
TMS California −0.91 0.04
TMS Colorado −0.84 0.05
TMS Connecticut −0.82 0.04
TMS Maryland −0.89 0.05

Continued

Table 4. Continued

Y X β
Standard
error

TMS Minnesota −0.96 0.04
TMS New York −0.99 0.04
TMS Oregon −0.95 0.04
TMS Tennessee −0.90 0.05
VAN ≥2009 −0.42 0.01

Table 5. Penalized partial correlation estimates (ω) from the chain graph
model learned from 8962 MRSA isolates

Susceptibilities ω

CHL ERY 0.14
CHL DAP −0.19
CHL GEN 0.06
CHL LIN 0.26
CHL MUP 0.14
CHL RIF −0.04
CLI LEV 0.05
DAP LIN −0.07
DAP MUP −0.02
DAP RIF ,0.01
DOX TET 0.43
DOX GEN 0.01
GEN MUP 0.11

Love et al.

8 of 10



The second application is to supplement antibiograms. While
these tables are useful to summarize large amounts of clinical
data for practitioners, they give no information about the rela-
tionships amongst the susceptibilities, which we believe has un-
realized potential for clinical decision-making. The relationships
between the patient-level covariates and AST results in the β
component can also help empirical antimicrobial selection. For
example, a clinician presented with a patient with presumptive
invasive MRSA and a history of gentamicin administration may
be less inclined to prescribe mupirocin prior to seeing AST results
since these two susceptibility traits have a positive partial correl-
ation. This clinician may be even less likely to prescribe mupirocin
in this patient if they were in California, Minnesota, New York or
Oregon, or the patient had a positive blood culture, all of which
were found to be factors associated with increased MUP values.
These chain graphs provide an accessible and efficient modality
for communicating this information to support clinical decision-
making. The method can also be extended to include resistance
genotypes and virulence factors in addition to AST results, though
the necessary genomic data were not available in the current
dataset.

There are several limitations in this study. The partial correla-
tions among phenotypic resistance that remain after accounting
for the patient-level risk factors can be due to multiple factors.
Prescription patterns, community patterns of comorbid illness
and genetic structure of MRSA isolates can all influence how drug
resistances interact.38,39 Without additional information, especial-
ly genomic data, these factors cannot be elucidated in the current
study. Another limitation of the study is the generalizability of data
and the learned structure of the derived PGM to the broader popu-
lation ofMRSA isolated fromUS patients. The isolates in the current
study were collected by the CDC-EIP, an active, population-based
surveillance system in nine metropolitan areas.16,40 In 2019, the
study’s referent population was estimated to be approximately
16 million people, or 5% of the US population.16 Previous studies
using this data have suggest the hospital-focused approach may
under-represent CA infections.40,41 This surveillance programme
is restricted to invasive infections and excludes MRSA isolates
from skin and soft tissue infections.40

There have been a few previous studies that have approached
AMR as amultivariate problem, but they have not applied a chain
graph or comparable approach. One previous study applied prin-
cipal component analysis and factor analysis to identify groups of
antibiotics with similar trends in MIC from 15 groups of microbes
from 17 studies.17 Rotated principal components correspond to
dense subregions in PGMs.15 The PGMs give a more detailed pic-
ture of how the variables are correlated in a way that is visually
interpretable andmore detailed and that requires fewer assump-
tions. Bayesian networks have been previously applied to identify
risk factors for multiple resistance outcomes but are unsuit-
able.13,42 Chain graphs are a new analytical approach that can
provide insights on the interplay between multiple resistance
outcomes and their risk factors.
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