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Abstract

Characterizing the pathogenicity of DNA sequence variants of unknown significance

(VUS) is a major bottleneck in human genetics, and is increasingly important in

determining which patients with inherited retinal diseases could benefit from gene

therapy. A library of 210 rhodopsin (RHO) variants from literature and in‐house
genetic diagnostic testing were created to efficiently detect pathogenic RHO variants

that fail to express on the cell surface. This study, while focused on RHO,

demonstrates a streamlined, generalizable method for detecting pathogenic VUS. A

relatively simple next‐generation sequencing‐based readout was developed so that a

flow cytometry‐based assay could be performed simultaneously on all variants in a

pooled format, without the need for barcodes or viral transduction. The resulting

dataset characterized the surface expression of every RHO library variant with a high

degree of reproducibility (r2 = 0.92–0.95), recategorizing 37 variants. For example,

three retinitis pigmentosa pedigrees were solved by identifying VUS which showed

low expression levels (p.G18D, p.G101V, and p.P180T). Results were validated across

multiple assays and correlated with clinical disease severity. This study presents a

parallelized, higher‐throughput cell‐based assay for the functional characterization of

VUS in RHO, and can be applied more broadly to other inherited retinal disease genes

and other disorders.
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1 | INTRODUCTION

With the increasing availability and use of human DNA sequencing, the

problem of accurately characterizing newly‐discovered DNA variants

has become a major issue in human genetics (Lappalainen, 2015;

Richards et al., 2015). Difficulties in predicting the pathogenicity of DNA

“variants of unknown significance” (VUS), even with all available

bioinformatic, functional, and human data, routinely produce an

ambiguous final result of genetic testing (Bean, Tinker, da Silva, &

Hegde, 2013; Davies et al., 2012; Richards et al., 2015). Dealing with

this ambiguity is a major problem for medical geneticists and genetic

counselors who have to manage this uncertainty with patients who are

expecting clarity. For example, grading systems have been developed to

rank each variant on a scale from one to five, representing “pathogenic”,

“likely pathogenic”, “uncertain significance”, “likely benign”, and “benign”.

Evidence supporting pathogenicity is divided into additional categories,

and counting the number of evidence points from each evidence

category results in a final rank (Richards et al., 2015). Such complex
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systems can attempt to manage uncertainty in pathogenicity, but

clearly, it would be preferable to have more information about a variant

to decrease the uncertainty level.

Current bioinformatic approaches to predicting variant patho-

genicity are impressive in that they efficiently produce large numbers

of predictions about very complex biological systems, but they are

not sufficient to meet the increasing expectations about the fidelity

of these predictions (Richards et al., 2015). For example, older

algorithms for predicting the pathogenicity of missense mutations,

many still in use, are only 65–80% accurate (Thusberg, Olatubosun, &

Vihinen, 2011), and specificity for the predictions of pathogenicity of

missense and splice variants can be low (Choi, Sims, Murphy, Miller, &

Chan, 2012; Houdayer et al., 2012; Kircher et al., 2014). The latest

techniques are raising the quality of the predictions, for example with

ROC curve areas of 0.72–0.86 (Caminsky, Mucaki, & Rogan, 2014;

Gray, Hause, Luebeck, Shendure, & Fowler, 2018), but in the end, the

state‐of‐the‐art is that “it is not recommended that these (bioinfor-

matic) predictions be used as a sole source of evidence to make a

clinical assertion” about a potentially pathogenic variant (Richards

et al., 2015). In fact, “well‐established functional studies showing a

deleterious effect” is considered two levels‐of‐evidence higher than

“multiple lines of computational evidence support(ing) a deleterious

effect on the gene/gene product” (italics added; Richards et al., 2015).

Again, while the bioinformatic predictions are becoming even more

impressive, and expected to become even more accurate when

trained with more empirical data (Gray et al., 2018), empirical wet‐
lab functional assays are still required to achieve the level of

accuracy desired to, for example, decide whether a patient is eligible

for gene therapy treatment (Cideciyan et al., 2018).

VUS not only cloud the interpretation and utility of clinical

diagnostic testing, but also can lead to outliers and ambiguities when

analyzing structure‐function relationships of proteins of interest

(Rakoczy, Kiel, McKeone, Stricher, & Serrano, 2011). For example,

when correlating the computational prediction of misfolding pro-

pensity and the age of onset of disease among rhodopsin (RHO)

mutants, some mutations are considered outliers and excluded from

the regression analyses (Rakoczy et al., 2011); however, it is not clear

whether the outliers could be due to imperfect computational models

or to miscategorization of the mutant. Thus, improving the

characterization of DNA variants is scientific importance, and has

been included U.S. federal research priorities and identified as a

knowledge gap in the understanding of inherited retinal diseases

(Duncan et al., 2018; National Eye Institute, 2012).

This study implements an improved method to characterize

potentially pathogenic DNA variants causing retinitis pigmentosa (RP).

RP accounts for up to 25% of blindness or visual impairment in working‐
age people (21–60 years; Al‐Merjan, Pandova, Al‐Ghanim, Al‐Wayel, &

Al‐Mutairi, 2005; Buch et al., 2004; Hartong, Berson, & Dryja, 2006;

Hata, Yonezawa, Nakanishi, Ri, & Yanashima, 2003), and therefore it is

an important cause of vision loss. Although RP is a Mendelian disease, it

is genetically very heterogeneous, with mutations in over 60 different

genes that can cause nonsyndromic RP (Berger, Kloeckener‐Gruissem,

& Neidhardt, 2010; Daiger, Rossiter, Greenberg, Christoffels, & Hide,

1998; RetNet, 2017). Genetic testing to identify the cause of disease

has become increasingly important as more clinical trials for RP focus on

patient populations with specific genotypes, for example, studies

recruitingMERTK‐, MYO7A‐, PDE6A‐, PDE6B‐, RPGR‐, or RLBP1‐ affected

RP patients (U.S. National Institutes of Health, 2017), as well as the

occasional RP patient due to RPE65 mutations who would be eligible for

the first food and drug administration (FDA)‐approved gene therapy,

voretigene neparvovec (Luxturna; Russell et al., 2017). Patients without

a genetic diagnosis are not eligible for gene‐specific treatments. Despite

the practical importance of obtaining a genetic diagnosis, definitive

causal variant(s) can be found in only about half of patients, and slightly

more using the latest next‐generation sequencing (NGS) techniques

(Consugar et al., 2015; Corton et al., 2013; Glockle et al., 2014; Huang,

Wu, Lv, Zhang, & Jin, 2015; Neveling et al., 2012; Wang et al., 2014). For

this reason, improving the characterization of DNA variants in RP is also

of practical importance.

This study focuses on RHO mutants because RHO has the largest

set of known pathogenic variants of any dominant RP gene, and

among those genes, the structural, biochemical, and cell biological

understanding of RHO is unmatched (Athanasiou et al., 2018; Behnen

et al., 2018; Dryja, Berson, Rao, & Oprian, 1993; Krebs et al., 2010;

McKeone, Wikstrom, Kiel, & Rakoczy, 2014; Mendes & Cheetham,

2008; Mendes, van der Spuy, Chapple, & Cheetham, 2005; Mendes,

Zaccarini, & Cheetham, 2010; Rakoczy et al., 2011). The rich body of

existing data provides a context for interpreting data on new

variants, and conversely, provides an opportunity to refine existing

models of RHO structure and function (Rakoczy et al., 2011). A recent

review (Athanasiou et al., 2018) notes that ongoing questions about

the pathogenicity of RHO variants “reinforce the need for thorough

genetics, such as segregation analyses, and in‐depth functional

analyses to confirm pathogenicity.” (Note that the term “variant” is

used in this study to include any sequence change, whether that

sequence change is a “mutant” i.e., known to be pathogenic, a VUS, or

a benign change such as a synonymous control.)

Standard experimental methods of assaying RHO variants include

assessment of surface expression/subcellular localization in cell‐
based assays (Behnen et al., 2018; Chen, Wang, Lin, & Chen, 2011;

Chuang, Vega, Jun, & Sung, 2004; Davies et al., 2012; Hollingsworth

& Gross, 2013; Li et al., 1998; Liu et al., 2013; McKeone et al., 2014;

Sung, Davenport, & Nathans, 1993; Toledo et al., 2011; Yamasaki

et al., 2014) and assessment of bulk biochemical properties (Bosch,

Ramon, Del Valle, & Garriga, 2003; Bosch‐Presegue, Ramon, Toledo,

Cordomi, & Garriga, 2011; Dizhoor et al., 2008; Krebs et al., 2010;

Opefi, South, Reynolds, Smith, & Reeves, 2013). These assays are

performed on one variant at a time, and, especially for the

biochemical assays, do not scale easily for larger numbers of variants.

The purpose of this study was to develop higher‐throughput cell‐
biological methods to evaluate RHO variants for pathogenicity for

example, a “functional genomics” approach. We hypothesized that

this approach would result in the improved categorization of RHO

DNA variants compared with using computational information alone.

We also hypothesized that pedigrees with inconclusive genetic

testing results and an RHO VUS could be solved using the functional
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data. This study presents a streamlined functional genomic screen

(Figure 1) suitable for assaying hundreds of variants, using standard

mutagenesis, transfection, flow cytometry, and NGS amplicon

sequencing techniques that are broadly available. The bioinformatic

analysis was custom‐built, but also straightforward.

Figure 1 (see legend) describes the design of the experimental

screen. Specific design considerations included: the HEK293 cell line

was chosen because it has been widely used in the literature to

characterize RHO mutants (Chen et al., 2011; Chuang et al., 2004;

Davies et al., 2012; Hollingsworth & Gross, 2013; Li et al., 1998; Liu

et al., 2013; McKeone et al., 2014; Sung et al., 1993; Toledo et al., 2011;

Yamasaki et al., 2014). Also, it is a robust transfection host, and for the

multiplexed assays a high transfection rate was useful to preserve

library diversity. The transfection was performed in an unpooled format

(one variant per well), because preliminary experiments showed that a

pooled transfection at limiting dilutions of DNA, such that each cell

expresses a single variant, did not produce sufficient expression (not

shown). The selected pathogenicity assay was a quantification of cell

surface expression of RHO using antibody staining with indirect

immunofluorescence, as reported (for example, McKeone et al., 2014;

any mutant protein that misfolds and fails to be detected on the cell

surface was identified as pathogenic, whether that mutation is

dominantly or recessively inherited in humans). We then used two

different methods to implement this pathogenicity assay on the

transfected cells—first, we used an unpooled format using flow

cytometry analysis of RHO surface expression, which is similar to

published methods (e.g. McKeone et al., 2014) and served as a

validation of the system. Then, we used a method where the transfected

cells from every variant were pooled (Figure 1), allowing for higher

throughput, parallelized assay. Fluorescence‐activated cell sorting

(FACS) was used because it allowed for a large number of cells (~106)

to be assayed and sorted into pools for NGS analysis in parallel.

Amplicon sequencing of the entire RHO complementary DNA (cDNA)

plasmid, rather than an implementation of plasmid barcodes for each

variant, was a simpler approach given the number of variants under

study (~102, see Section 4).

More intricate functional genomic screens have been recently

developed that interrogate thousands of variants at once (Melnikov,

Rogov, Wang, Gnirke, & Mikkelsen, 2014; Brenan et al., 2016; Findlay

et al., 2018; Gasperini, Starita, & Shendure, 2016) but these methods

require specialized library construction techniques, lentivirus packa-

ging, and viral transduction followed by selection, which were not

needed for this study of 210 variants.

Overall, a functional genomics approach was used to create a

library of RHO variants and precisely assay their surface expression

in an efficient format.

2 | MATERIALS AND METHODS

2.1 | Identification of RHO variants

A literature review (PubMed) and database search (HGMD, ClinVar)

identified 211 known RHO variants. Twenty‐two database variants

were not created due to technical complexity (large insertions, large

deletions, in an intron, or in an untranslated region), due to likely

incompatibility with pathogenicity (a high‐allele‐frequency synon-

ymous allele), or due to never having been reported in humans

(“synthetic”). See Table S1. The remaining 189 variants were added

to the variant library and of those, 175 were known as pathogenic,

causing dominant RP, recessive RP, or congenital stationary night

F IGURE 1 Experimental design of library screening for VUS characterization. An expression plasmid library of RHO variants was constructed
using mutagenesis. (Four variants are shown as an example.) Each variant plasmid was individually transfected into a well of cells, and the cells

were then pooled after transfection. The cells, after expressing the desired variant, were stained using a fluorescent pathogenicity assay based
on RHO surface expression (fluorescent antibody). Fluorescence‐activated cell sorting was used to separate high‐ and low‐expressing cells. Each
transfected cell carries with it the DNA of the variant of interest, and this “tag” can be sequenced using NGS and therefore count the relative
frequency of each DNA variant in each pool, quantifying the pathogenicity of each variant in parallel. NGS: next‐generation sequencing;

RHO: rhodopsin; VUS: variants of unknown significance
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blindness. (Table S1) 14 variants were of uncertain significance or

thought to be benign polymorphisms. All of the variants were well

distributed across the cDNA, except that there were no variants

between bp 664 and 745, which corresponds to cytoplasmic loop 3 of

RHO (Zhou, Melcher, & Xu, 2012; DNA descriptors in this study refer

to NM_000539.3 and protein descriptors refer to NP_000530.1 also

known as RHO_v001).

A group of 11 individual synonymous mutations, expected to

have a similar expression to wildtype and to serve as controls, was

designed synthetically (Table S1). The mutations were placed near

the 3′‐end of the gene to minimize any possible (though unexpected)

changes to transcriptional or translational processes (Stoletzki &

Eyre‐Walker, 2007). In addition, a search for rare (detected <3 times

in our internal database, ExAC allele frequency <10−4) RHO VUS

from patient DNA sequencing performed in our institutionʼs genetic

testing service (Consugar et al., 2015), identified 10 variants

spanning 11 probands. All of these variants were novel (previously

unreported in patients) at the beginning of this study. Altogether,

232 RHO variants were identified and 210 were ultimately

constructed as a variant library: 189 variants from literature/

databases, 11 synonymous controls, and 10 novel VUS.

The study protocol adhered to the tenets of the Declaration of

Helsinki and was approved by the Institutional Review Board of

Massachusetts Eye and Ear.

2.2 | RHO variant cDNA library construction

A Gateway destination vector was created that contained: a CMV

early enhancer/chicken β actin (CAG) promoter, V5 tag, Gateway

cassette (Thermo Fisher Scientific, Waltham, MA), internal ribosome

entry site (IRES), mCherry fluorescent protein marker (Addgene,

Watertown, MA), and ampicillin resistance gene. Plasmids were

propagated in ccdb survival cells (Thermo Fisher Scientific) with

chloramphenicol and ampicillin. A pDONR entry clone containing the

human RHO cDNA sequence was purchased (#GC‐T1321; GeneCo-
poeia, Rockville, MD). Each of the 210 RHO variants was created via

site‐directed mutagenesis using a one‐primer modification to the

QuikChange II protocol from Agilent (Braman, Papworth, & Greener,

1996; http://qb3.berkeley.edu/macrolab/quick‐change‐mutagenesis/).

Primers were synthesized in 96‐well plates by Integrated DNA

Technologies (Coralville, IA). Entry clone plasmids were propagated

in One Shot Top10 chemically competent E.coli (Thermo Fisher

Scientific) with kanamycin 50 μg/ml. The 1,047 bp RHO insert and

flanking at sites were Sanger sequenced in both directions to exclude

second‐site mutations. Reracked positive clones were resequenced to

verify the identity of each clone on each plate.

Expression clones (n = 210) were created by recombination of

destination vector and each of the mutagenized entry clones, using

LR Clonase II (Thermo Fisher Scientific). The resulting expression

clone consisted of pCAG‐V5‐RHO (WT or variant)‐IRES‐mCherry and

was propagated in Stbl3 cells (Thermo Fisher Scientific) with

ampicillin 50–100 μg/ml. Clones were sequenced, reracked, and

resequenced to verify the identity of each clone on each final library

plate. DNA purification and sequencing (96‐well plate) were

performed by the CCIB DNA Core Facility at Massachusetts General

Hospital (Cambridge, MA).

2.3 | Cell culture

HEK293 cells (American Type Culture Collection) were cultured

using aseptic technique and grown in 10% fetal bovine serum (FBS) in

Dulbeccoʼs modified Eagleʼs medium serum without antibiotics. Cells

were grown at 37°C and 5% CO2 in a standard cell culture incubator

and passaged at subconfluent densities every 2–3 days as needed.

2.4 | RHO transfection and surface expression
assays by immunofluorescence

All transfections were performed using Lipofectamine 2000

(11668019; Thermo Fisher Scientific) on HEK293 cells seeded at a

density of 200 cells/mm2 on tissue culture dishes. The day after

seeding, the media was refreshed and the transfection mixture added

as described below. Samples were collected 48 hr after transfection.

2.4.1 | Immunofluorescence microscopy

Glass coverslips were placed in wells before cell seeding into six‐well
dishes. Transfection was performed using 2 μg plasmid DNA and 3 μl

Lipofectamine in 150 μl Opti‐MEM I (31985062; Thermo Fisher

Scientific). At collection, cells on coverslips were fixed in 4%

paraformaldehyde for 20min and blocked with 3% bovine serum

albumin in phosphate‐buffered saline for 10min before applying Ret‐P1
anti‐RHO antibody (#O4886; Millipore, Sigma, Burlington, MA) at a final

concentration of 1:1,000 in blocking buffer for 1 hr. After washing with

PBS, Alexafluor‐488 goat anti‐mouse antibody (A‐11029; Thermo

Fisher Scientific) was applied at a final concentration of 1:300 in

blocking buffer for 1 hr and Hoechst 33342 (#H3570; Thermo Fisher

Scientific) applied for 1–5min at a concentration of 1:5,000. Coverslips

were mounted onto slides with Fluoromount G and dried overnight at

room temperature. Slides were kept at 4°C before viewing on a Nikon

TI Eclipse microscope or Leica TCS SP5 confocal microscope.

2.4.2 | Flow cytometry

Transfection was performed in 24‐well plates using 0.5 μg plasmid and

1.5 μl Lipofectamine in 50 μl Opti‐MEM I. At collection, the cells were

washed briefly with PBS and then 200 μl trypsin added and allowed to

incubate for 4min at 37°C. A 300 μl aliquot full media was then added,

and cells collected into 2.2‐ml tubes. The cells were centrifuged at 400g

in a floor centrifuge for 4min and the supernatant aspirated. Cells were

fixed in 4% PFA for 20min and blocked with 3% BSA in PBS before

applying the Ret‐P1 primary antibody at a final concentration of 1:1,000

in blocking buffer for 30min. After washing with PBS, Alexfluor‐488
secondary antibody was applied at a final concentration of 1:300 in

blocking buffer for 30min. After a final PBS wash, cells were analyzed

on a BD LSRII Flow Cytometer.

1130 | WAN ET AL.

http://qb3.berkeley.edu/macrolab/quick-change-mutagenesis/


Flow cytometry results were analyzed with Flowing Software

(http://www.flowingsoftware.com). The percentage of cells with high

RHO surface expression was determined by setting the quadrants

based on the WT and p.P23H controls in each experiment and then

dividing the percent of cells in the top right quadrant (double‐
positives) by the sum of the top right and bottom right quadrants (all

transfected cells). Resulting data were averaged over independent

transfections from different weeks (n = 1–3).

2.4.3 | FACS

Cells were prepared as described for flow cytometry analysis but

pooled after transfection and then fixed in zinc‐based fixative (ZBF;

#550523; BD Pharmingen) instead of 4% PFA (ZBF was used because

PFA fixation/crosslinking prevented downstream PCR amplification

of residual plasmid DNA [Wester et al., 2003], while unfixed cells did

not stain with Ret‐P1 antibody). All subsequent washes substituted

Tris‐buffered saline (TBS) for PBS to reduce salt precipitation. Cells

were sorted into TBS or PBS with 1% FBS using a BD SORP 5 Laser

Vantage SE DIVA. Replicate samples were derived from independent

transfections on different weeks (n = 3).

Additional experiments to implement a pooled transfection

method were not effective; at standard plasmid concentrations,

large numbers of different variants entered each cell causing every

cell to stain similarly, while at low plasmid concentrations, not

enough RHO expression was achieved for robust staining and cell

sorting (not shown).

2.5 | RHO cDNA OR RNA extraction and
amplification from sorted cells

Immediately after sorting, cells (from 4 × 104 to 2.3 × 106) were

pelleted at 400g for 4 min and resuspended in 700 μl RLT buffer

(Qiagen) with β‐mercaptoethanol (1:100), mixed and aliquoted into

two samples of 350 μl each and stored at −80°C until extraction.

Plasmid DNA and total RNA were isolated. Preliminary experiments

(not shown) demonstrated that RNEasy mini columns (#74104;

Qiagen) can isolate both RNA and the relatively low molecular weight

plasmid DNA in one step using the manufacturerʼs standard RNA

isolation protocol. However, as on‐column DNAse treatment

performed more reliably for the RNA preparation, the cells were

separated into two aliquots loaded on separate columns: For total

RNA extraction, the manufacturerʼs standard RNEasy protocol was

followed, including on‐column DNAse digestion (#79254; Qiagen).

For plasmid DNA extraction, a separate aliquot of cells in RLT buffer

was purified using RNEasy mini columns without DNAse digestion,

and PCR performed without reverse transcription to avoid amplifying

RNA. The final RNA or plasmid DNA/RNA mixture was eluted in 35 μl

water, and 15 μl was used for the reverse transcription polymerase

chain reaction (RT‐PCR) or PCR reaction described below.

For DNA‐extracted samples, PCR amplification was performed

using forward primer 5′‐GTTTGTACAAAAAAGCAGG‐3′ and reverse

primer 5′‐GGAATTTACGTAGCGGC‐3′, which were complementary

to regions of the plasmid DNA flanking the RHO sequence.

HotStarTaq polymerase (#203203; Qiagen) was used with the

following PCR program: (a) 95°C for 15min; (b) 36 cycles of: 94°C

for 30 s, 50°C for 30 s, 72°C for 1min; (c) 72°C for 10min. For RNA‐
extracted samples, One‐Step RT‐PCR reagent (#210212; Qiagen)

was used to create cDNA and then the cDNA was amplified by PCR.

The following program was used: (a) 50°C for 30min; (b) 95°C for

15min; (c) 36 cycles 94°C for 30 s, 50°C for 30 s, 72°C for 1min; (d)

72°C for 10min. One microliter of each 100 μl reaction was run on a

Tapestation (Agilent) to determine approximate size and concentra-

tion and to confirm the presence of a single band of an amplified

template. Negative control reactions (minus RT for RNA, plus DNAse

for DNA) showed no cross‐amplification between samples that were

intended to amplify RNA or DNA, respectively. PCR reactions were

processed through a PCR clean‐up column (#28104; Qiagen,

Germantown, MD), and the concentration determined using a QuBit

dsDNA HS Assay (Q32854; Thermo Fisher Scientific).

2.6 | NGS amplicon sequencing without library
barcodes

Smaller scale NGS sequencing (1/96 of a MiSeq run per sample)

was performed by the CCIB DNA Core Facility at Massachusetts

General Hospital (Cambridge, MA). For more read depth (~1/10 of

a MiSeq run per sample), NGS sequencing was performed in the

Ocular Genomics Institute facility (https://oculargenomics.meei.

harvard.edu/index.php/gc) using the following protocol: the PCR

product was sheared on a Covaris E220 focused ultrasonicator set

to a treatment time of 360 s, acoustic duty factor of 10%, peak

incident power of 175W and 200 cycles per burst. Library

preparation was performed with the Truseq nano LT Kit (#FC‐
121–4001; Illumina, San Diego, CA) but modified to use AMpure

XP beads for the clean‐up steps (#A63881; Beckman Coulter,

Indianapolis, IN). Briefly, steps included: clean‐up, quantification,
end repair, clean‐up, A‐tail, adapter ligation, clean‐up, PCR

enrichment, clean‐up, quantification and normalization, denature,

and run on MiSeq using 2× 121 cycles with a 6 bp index. Because of

relative overrepresentation of the amplicon ends, PhiX library

(10%) was added to the final mixture.

2.7 | Bioinformatic quantitation of low‐frequency
variants in NGS amplicon sequencing

Most variant callers are designed to work with diploid genomes and

do not call variants present at less than about 50% frequency.

Extensive testing with specialized low‐frequency variant callers

(Spencer et al., 2014) showed that these variant callers, including

“lofreq” (Wilm et al., 2012), did not accurately call all variants,

particularly small insertions/deletions (a known limitation of align-

ment algorithms; Jiang, Turinsky, & Brudno, 2015). Additional

analyses with MuTect (Cibulskis et al., 2013) or MuTect2 showed

low sensitivity using default settings, and settings with appropriate

sensitivity and specificity were not identified (not shown).
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Multinucleotide polymorphisms (e.g. 511_512delCCinsGA) were

particularly problematic.

Therefore, an alignment‐free approach was used to detect and

quantify low‐frequency variants in NGS data when the variants are

known. This algorithm uses no alignment step and simply counts the

number of exact‐match occurrences of a 20 bp “probe” sequence string

designed for each known variant. The “probes” (in analogy to Southern

blot probes), were designed in silico containing each of the known 210

nucleotide changes. In most cases, the primer used for QuikChange

mutagenesis was simply trimmed to 20 bp to create the “mutant probe”.

A corresponding “wildtype probe” was created to quantify and

normalize for variations in coverage. To estimate signal‐to‐noise ratio

in the context of NGS sequencing errors (Fox, Reid‐Bayliss, Emond, &

Loeb, 2014), a “noise probe” was manually created containing an

alternate nucleotide change which was not present in the wildtype or

mutant probes. Each occurrence of these 630 probes (wildtype, mutant,

or noise × 210 variants) was counted in the text of each sampleʼs

FASTQ file using the Linux tool grep, similar to a strategy previously

published (Bujakowska, White, Place, Consugar, & Comander, 2015).

The coverage at both ends of the amplicon was overrepresented,

presumably due to the sequencing of the residual unsheared amplicon.

Preliminary experiments showed that the signal‐to‐noise ratio

was low for some variants, particularly at amplicon ends, where early

MiSeq cycles had a lower base call quality value. Thus, before

quantifying the frequency of each probe in each FASTQ file, a script

was implemented to censor all FASTQ files on a base pair‐by‐base
pair basis for a high‐quality Q score from 36 to 41 (“E” to “J”),

resulting in improved signal‐to‐noise ratio (not shown). For graphing,

signal‐to‐noise ratios were capped at 1,000 when zero noise probes

were detected. Run‐time for quantification of the entire dataset was

about 2 hr on our local computer cluster. These scripts are available

at https://github.com/jcomand/VariantCounting.

The experimental design called for relative quantitation of each

variant in two pools of transfected and sorted cells, in this case,

“high” versus “low” surface‐RHO‐expressing cells. The raw read

counts of each mutant probe were normalized to the read depth of

the wildtype probe. that is the final “NGS ratio” used for analysis was

the number of read counts: mutant probe_high/wildtype probe_high/

mutant probe_low/wildtype probe_low. Three independent biological

experiments (e.g. separate transfections on different weeks) were

converted to log‐ratios for calculation of averages and standard

errors for each variant. This log transformation was sufficient to

produce approximately normally distributed ratios in this dataset

with relatively large read counts (not shown); however for a dataset

with small read counts, a transformation of the counts would be

required (Viner, Dorman, Shirley, & Rogan, 2014).

2.8 | Predicting clinical disease severity

Clinical outcomes of subjects with RHO mutations have previously been

published, including by our institution (Berson, Rosner, Weigel‐
DiFranco, Dryja, & Sandberg, 2002). Electroretinography (ERG) data

were analyzed from these subjects and subsequent subjects with RHO

mutations from later years. The baseline (first visit) 30Hz cone flicker

ERG amplitude was used as the clinical outcome measure, as it has a

broad dynamic range (>3 log units) across disease severities (Berson

et al., 2002). Other ERG parameters or other outcomes such as visual

field area and visual acuity were not used, to avoid multiple testing. To

maximize sample size, data from DNA variants with the same amino

acid change were pooled. Of the amino acid changes represented in the

clinical data, class 2 (misfolding) mutations were the only biochemical

category (Rakoczy et al., 2011) that had more than two mutations

represented. The analysis was therefore limited to subjects with class 2

mutations (n =69 subjects; class 2 mutations also have the best

biological rationale and precedent for correlating with disease severity

in this assay; Athanasiou et al., 2018; Rakoczy et al., 2011). Standard

linear regression was used to predict the logged 30Hz ERG amplitude

based on the logged NGS‐based final surface expression ratio. A

multivariate model (analysis of variance) was also used which adjusted

for age at baseline visit, as younger subjects have higher baseline ERG

amplitudes. For comparison with computationally‐derived datasets,

ΔΔG values (Rakoczy et al., 2011) and pathogenicity predictions from

the Envision dataset (Uniprot P08100; Gray et al., 2018) were tested as

predictors of clinical severity as well.

3 | RESULTS

3.1 | Example of inconclusive genetic testing
results including a rare RHO VUS

This study hypothesizes that functional studies can help interpret

DNA VUS found in patient samples. Figure 2 shows an example of

a clinical situation in which an inconclusive genetic testing result,

including a rare RHO VUS, was obtained for a proband with RP. Of

the 210 RHO variants identified for this study, 10 variants were

from rare RHO VUS that were discovered in DNA samples from

subjects with inherited retinal diseases (See Section 2 and Table

S1). Figure 2a shows the fundus appearance of one of these 10

subjects (D00726) who was diagnosed with RP after a full clinical

evaluation. In this Mendelian disorder, it is most likely that variant

(s) in a single gene are truly pathogenic. Figure 2b shows the large

number of VUS identified in genetic testing for this subject using

panel‐based sequencing of inherited retinal disease genes (GEDi

test; Consugar et al., 2015). The RHO p.P180T variant (row 3) is

predicted to be pathogenic, but so are other VUS to varying

degrees, two of which are coding variants in genes that can cause

dominantly‐inherited RP (SNRNP200 and RP1). An expert in

ocular genetics may suspect that the RHO variant is the most

likely to be pathogenic, but it is not conclusive. Therefore,

additional functional data are needed.

3.2 | Flow cytometry assay validation

RHO variant plasmids (n = 210) were created using site‐directed
mutagenesis and these were then cloned into an expression vector

suitable for transfection into cultured cells. The next step (Figure 1)
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was to optimize a fluorescent assay to identify which variants have

pathogenic surface expression levels. Based on the assay by

McKeone et al. (2014), Figure 3 shows that indirect immunofluor-

escence staining successfully distinguishes between wildtype RHO

and known mutant (p.P23H) RHO. In this case, whereas the wildtype

RHO was expressed well on the cell surface, the p.P23H mutant did

not express on the cell surface but rather was trapped inside the cell

as expected. The results were validated using nonpermeabilized cells

to ensure that only surface RHO was detected (Figures 3a,b); flow

cytometry results corresponded to the immunofluorescence staining

patterns (Figure 3c). By comparing flow cytometry results from

wildtype and p.P23H mutant RHO as positive and negative controls,

respectively, the assay to separate wildtype from p.P23H mutant

RHO was highly reproducible (Z’ = 0.94; Figure 3d; Z’ is a measure of

statistical effect size, used in high‐throughput screening to judge

whether the response in a particular assay is large enough to warrant

further attention). While this performance in distinguishing p.P23H

versus wildtype RHO does not guarantee that all mutants will be

detected with the same level of fidelity, it suggests that this assay is

appropriate for use in a “high‐throughput screening” context.
Each of the 210 variants in the library was then tested by flow

cytometry using two methods for comparison: (a) the standard

unpooled flow cytometry assay in which each variant is maintained in

a separate tube and analyzed separately (Figure S1); and (b) a pooled

assay in which transfected cells are then pooled and FACS is used to

sort RHO high‐expressing versus low‐expressing cells (Figure 4a).

The entire cDNA within the transfected plasmid (inside the cell)

serves as the “barcode” and allows deconvolution/quantitation of the

level of each variant that is represented in the high and low pools.

The residual plasmid is isolated from each cell pool, amplified by PCR

and sequenced by NGS.

3.3 | Validation of string‐based pooled variant
detection and quantification

All 210 library variants were detected at a coverage‐normalized

frequency that was >1.5 of that observed by sequencing a wildtype

RHO amplicon with no variants (Figure 4b). Two hundred and seven

of the 209 variants were seen at >×2. One variant which was used

in the positive control sample during flow cytometry (diamond)

showed overrepresentation, possibly due to cross‐contamination at

the flow cytometry stage; this was minimized in future iterations.

Next, intra‐sample quality control was performed by evaluating the

level of the “noise probes” as described in the Methods. Customized

computational filtering of sequencing quality scores was needed to

obtain high signal‐to‐noise data. Figure 4c shows the signal‐to‐noise
(S‐N) ratio as a function of location in the cDNA. All variants were

detected with a S‐N ratio >1.5×, and with 208 of 210 detected at

>2× (Figure 4c).

The starred cluster of points (Figure 4c) with a lower, but

acceptable, S‐N ratio is from variants located near a sequencing

error‐prone sequence context that is GC rich with a poly‐C repeat

(GGCCCCGGCC). There are a large number of reported variants in

this region (Table S1), and in the 3′‐end of the coding region in

F IGURE 2 Example subject (ID#D00726) with multiple VUS. (a) Fundus photographs show midperipheral bone spicule pigmentation

consistent with a diagnosis of RP. (b) DNA sequencing using the Gene Eye Disease panel revealed a large number of VUS, with annotations color
coded (red/dark = supporting pathogenicity; green/light = supporting benign). An additional 31 rare, noncoding variants are not listed. *splice
site potentially broken, Human Splice Finder −34%. RP: retinitis pigmentosa; VUS: variants of unknown significance
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general, forming a “hot spot” of reported variants. In contrast, there

are no reported variants between bp 665–744.

3.4 | Validation and quality control of the final
NGS‐based surface expression ratio

The final surface expression ratio was high when cells with a particular

variant are primarily found by flow cytometry within the “Hi” gate

(Figure 4a), with good surface expression, similar to wildtype RHO. The

final ratio was low when cells with a particular variant are primarily

found in the “Lo” gate, similar to known RHO mutants which do not

express well on the cell surface. The characteristics of this ratio were

evaluated both by comparing it to the standard unpooled flow

cytometry assay and by its analytical and biological variability.

Figure 5 demonstrates that there was very good concordance

between the standard unpooled assay and the NGS‐based pooled

assay, with an overall r2 of 0.92. The pooled assay drastically reduced

the number of samples (per biological replicate) that had to be

examined by flow cytometry; unpooled: 210 samples analyzed, plus

three controls. Pooled: two samples sorted, plus three controls. For

the minor discrepancies/outliers in the intermediate range of the

assays, it is not known which assay was more accurate. The red and

pink areas contain variants with “very low” and “low” expression

levels, respectively, consistent with those variants being pathogenic

mutations. While hard cutoffs of such regions have no exact

biological meaning, for practical purposes the regions were defined

by 40% and 80% surface expression on the x‐axis, and the

corresponding pooled assay ratios can be compared with positive

and negative controls (Figure 6). Of note, while the box‐and‐whiskers

plot at the top of Figure 6 identifies the statistical range of the

wildtype‐like synonymous controls, it is not necessarily the case that

variants falling just below these levels would be pathogenic

biologically. To be conservative about making claims of pathogenicity,

the above cutoffs were used instead of cutoffs based on a statistical

confidence interval.

To evaluate variability, the pooled assay was performed on DNA

from three separate biological replicates performed in different

months. The resulting ratios showed high correlations between

replicate experiments (r2 = 0.86–0.88; see Figure S2). Of note, the

data described above were derived from DNA amplification of the

F IGURE 3 Unpooled assay validation.
(a) Indirect immunofluorescence without

permeabilization using Ret‐P1/Alexafluor‐
488 antibodies shows strong RHO surface
expression (green) using the wildtype
plasmid (WT; left column), but not with a

known mutant construct (p.P23H; middle
column) or no plasmid control (right
column). Red: mCherry transfection

control. Blue: nuclei (Hoechst). (b) With
permeabilization, mutant RHO is
detectable inside the cell (middle column).

(c) When the same antibodies were used in
flow cytometry (without permeabilization),
the percentage of RHO+/transfection+ cells

(inset) correlates to the results obtained
using immunofluorescence. (d) Replicate
flow cytometry assays show high
separation between positive and negative

controls, and low noise,
Z’ = 0.94. RHO: rhodopsin
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residual plasmid in the transfected cell. Ratios derived from RT‐PCR
of RNA were much more variable, and while they showed similar

trends, were less consistent (data not shown).

Next, the pooled assay results were graphed by the variant class

derived from pre‐existing literature and database annotations (Figure

6). The reported biochemical classes were obtained from the

literature (Athanasiou et al., 2018; Mendes et al., 2005; Rakoczy

et al., 2011; additional historical categorizations have also been

published; Krebs et al., 2010; Sung et al., 1993), as well as

classifications that integrate pharmacologic response (Behnen et al.,

2018). The synonymous controls (top row) demonstrated high

surface expression, as expected. Most of the known class 2 mutants

exhibited very low surface expression as expected, but a minority

(19%) expressed at levels that were unexpectedly high (p.L125R,

p.E150K), intermediate (p.: A164V, G51V, F52Y, F56Y, T58M,

K296M, and K296N), or moderately low (p.: G51R, T58R, L88P,

G109R, C167R, S186W, M207R, M216K, and K296E). Class 3

variants showed intermediate levels. Class 4 variants showed low

and high levels (see Section 4). Class 5–7 variants and benign variants

show intermediate to high levels. Labeled variants that were

previously considered VUS (p.L47R, p.G18D, p.G101V, and

p.P180T) have now been demonstrated to express at pathogenic

levels. Note that the variants with high expression levels are not

F IGURE 4 Pooled assay workflow and signal‐to‐noise ratio. (a)

Gates used for FACS sorting cells with high or low rhodopsin (RHO)
surface expression, based on a positive control wildtype RHO sample
(green/upper) and a negative control mutant sample (red/lower). (b)
Variant detection above background is demonstrated for each of 210

library variants, comparing sequencing results from of a pool of all
variants (x‐axis) to those from a wildtype RHO amplicon with no
variants (y‐axis). (c) Signal‐to‐noise ratio of the 210 variants as a

function of location in the cDNA sequence. Error bars represent
standard error of three independent replicates. Star = cluster of
lower signal‐to‐noise probes‐ see text. cDNA: complementary DNA

F IGURE 5 Concordance between unpooled and pooled assays.
The unpooled RHO surface expression flow cytometry assay
performed on individual tubes (x‐axis) showed highly correlated
results (quadratic fit; r2 = 0.92) to the NGS‐based, pooled assay (y‐
axis, log scale). Each point represents one variant. Red/dark = very
low expression, pink/medium = low expression, and green/light = high
expression. RHO: rhodopsin
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necessarily all benign, as the assay does not detect all classes of

mutations.

Next, six variants with new or unexpected findings were selected

for further validation using immunofluorescence with confocal

microscopy. p.A164V and p.G109R are class 2 mutants according

to Athanasiou et al. (2018) and Rakoczy et al. (2011), but

unexpectedly showed intermediate or relatively preserved surface

RHO staining in all three assays—standard and pooled flow

cytometry (Table 1) as well as confocal microscopy (Figure 7). The

following variants were originally of unknown pathogenicity: p.L47R

(literature) and p.G18D, p.G101V, p.P180T (internal VUS). All four of

these variants showed low or very low surface expression in the

standard and pooled flow cytometry assays and were further

validated to have a low surface expression in the confocal

immunofluorescence assay (Figure 7).

3.5 | Probands with a rare RHO VUS

Eleven probands that had genetic testing through our departmental

genetic testing service had a novel RHO VUS, as listed in Table 2.

These variants were submitted to ClinVar (https://www.ncbi.nlm.nih.

gov/clinvar/). These represent 10 unique VUS (as G18D was found in

two probands; since the start of this project, the p.R147C variant has

been added to the HGMD database as a pathogenic variant causing

RP). Of the remaining nine VUS, three (33%) showed pathogenic

surface expression levels. The variants that were pathogenic by the

functional assay were not uniformly predicted to be damaging based

on computational predictions alone (Table 2). Both of the subjects

with the p.G18D mutation and the one subject with the p.G101V

mutation had a phenotype of pericentral RP, as described in further

detail (Comander et al., 2017). The subject is shown in Figure 2 who

had RP and a p.P180T RHO variant now has been demonstrated to

have a pathogenic RHO mutation.

3.6 | Predicting clinical disease severity data from
surface expression levels

Among known class 2 mutants, the level of surface RHO

expression measured in vitro can predicted the clinical disease

severity of class 2 mutants, with an observed increase of 0.67 of Ln

ERG amplitude for each log of surface expression ratio (p = 0.0008;

Figure 8). A multivariate model that takes an age‐at‐baseline visit

into account gives similar results, with a 0.59 increase of Ln ERG

amplitude for each log of surface expression ratio (p = 0.016). In

contrast, ΔΔG values from Rakoczy et al. (2011), representing the

computationally predicted misfolding propensity, did not predict

ERG amplitudes alone, or in a combined model with age or age and

NGS ratio (all p > 0.05). Similarly, computational pathogenicity

predictions from the Envision dataset (Gray et al., 2018) did not

correlate with clinical severity, with or without restriction of class

2 mutants (p > 0.05).

A more robust observation was that class 1 mutants generally

had a worse severity than class 2 mutants (baseline log cone flicker

ERG amplitude of −0.56 + −0.17 versus 0.38+/−0.11, p < 0.01),

extending earlier findings (Berson et al., 2002).

4 | DISCUSSION

This study demonstrates the feasibility of a higher‐throughput cell‐
based assay for the functional characterization of VUS in IRDs,

compared with the standard approach of using a cell‐based assay for

each variant individually (Chen et al., 2011; Chuang et al., 2004;

Davies et al., 2012; Hollingsworth & Gross, 2013; Li et al., 1998; Liu

et al., 2013; McKeone et al., 2014; Sung et al., 1993; Toledo et al.,

2011; Yamasaki et al., 2014). A pooled, multiplexed assay for RHO

variants can efficiently identify class 2, 3, or 4a mutants. This assay

was used to identify pathogenic variants within a group of VUS,

provisionally solving three pedigrees of typical or pericentral retinitis

pigmentosa, including the proband in Figure 2.

The barcode‐free, pooled, NGS‐based assay for evaluating RHO

surface expression was highly reproducible and quantitative, with

good agreement with the standard unpooled assay. This was

achieved by optimizing several segments of the schema in Figure 1,

including extensive library validation, with sequencing on both DNA

F IGURE 6 Pooled assay results by variant class. RHO surface
expression results are plotted by previously‐described biochemical
classes. The color gradient (red/light‐black) is based on the x‐axis
value, with pathogenic levels‐of expression to the left, and wildtype
levels to the right. A vertical line is drawn at the lower bound of the
box‐and‐whiskers plot, which shows the interquartile range and

upper and lower data point values of the synonymous controls. Class
2*, following Athanasiou et a., (20018) might behave as class 4 after
the 11‐cis‐retinal rescue and class 2** might behave as class 2 on

overexpression, but class 4 in vivo. Labeled points are examples of
variants previously considered class 2 mutants that unexpectedly
show intermediate or high expression levels (upper) or VUS that
were previously unclassified that are now likely to be class 2, 3, or 4

mutations (lower). RHO: rhodopsin

1136 | WAN ET AL.

https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/clinvar/


T
A
B
L
E

1
N
ew

fi
n
d
in
gs

b
as
ed

o
n
R
H
O

su
rf
ac
e
ex

p
re
ss
io
n
as
sa
y
re
su
lt
s.

N
ot
e:

R
H
O
:
rh
o
d
o
p
si
n
;
V
U
S:

va
ri
an

ts
o
f
u
n
kn

o
w
n
si
gn

if
ic
an

ce
.

P
re
vi
o
u
sl
y‐
re
p
o
rt
ed

R
H
O
m
u
ta
ti
o
n
ca
te
go

ri
es

(“
P
re
vi
o
u
s
cl
as
s,
d
et
ai
le
d
”)
w
er
e
re
vi
se
d
(“
R
ev

is
ed

C
la
ss
”)
b
as
ed

o
n
R
H
O

su
rf
ac
e
ex

p
re
ss
io
n
re
su
lt
s.
C
o
lo
r‐
co

d
ed

gr
ad

ie
n
ts

sh
o
w

p
at
h
o
ge

n
ic
le
ve

ls
(r
ed

)a
n
d
w
ild

‐
ty
p
e
le
ve

ls
(g
re
en

).
F
o
r
st
an

d
ar
d
iz
ed

va
ri
an

t
d
es
cr
ip
ti
o
n
s
(H

G
V
S
fo
rm

at
),
ad

d
p
re
fi
xe

s
N
M
_0
0
0
5
3
9
.3
:
fo
r
D
N
A

an
d
R
H
O
_v
0
0
1
:
o
r
N
P
_0
0
0
5
3
0
.1
:
fo
r
p
ro
te
in

d
es
cr
ip
ti
o
n
s

WAN ET AL. | 1137



strands after mutagenesis and after it was recombined into the final

expression vector; optimization of fixation and staining conditions to

maintain high discrimination between positive and negative controls,

while also using a fixative that preserved DNA integrity for

subsequent PCR; and quality filtering of NGS basecalls to maintain

signal‐to‐noise in variant quantification.

The data in Tables 1 and S1 provide new information about

previously‐uncharacterized variants, identify apparently misclassified

variants, and confirm pathogenicity of known mutations. Of 80

known class 2 mutants, 71 (89%) were confirmed to show

pathogenically low levels of RHO surface expression. However, 9

(11%) class 2 mutants unexpectedly showed high or intermediate

levels, especially those found in transmembrane helix I 0.8 of 66

(12%) mutants in other mutation classes also showed pathogenic

RHO surface expression levels, especially in class 3 and 4 mutants,

which tended to have an intermediate phenotype. A total of 14 of 33

(42%) unclassified pathogenic variants showed pathogenic expres-

sion levels, which are likely class 2, 3, or 4 mutants.

For example, RHO A292E does not cause RP but instead causes

the milder disease congenital stationary night blindness. RHO

p.A292E is known to be constitutively active in activating transduc-

tion without a chromophore (class 6; Dryja et al., 1993). Computation

predictions based on misfolding propensity (ΔΔG; Rakoczy et al.,

2011) led to the conclusion that this mutant should also be grouped

in class 2 (IIa), but the relatively normal actual expression level of this

variant indicates that it should be categorized as class 6 only.

F IGURE 7 Confocal immunofluorescence of selected mutants validates flow cytometry results. (a) Each column represents a transfection

with a particular labeled variant, arranged from highest (left) to lowest (right) RHO expression (WT =wildtype). Top row: flow cytometry results
showing surface RHO staining (y‐axis) and transfection marker (x‐axis), with the percent of transfected cells with high surface RHO as an inset.
Confocal staining: green = RHO cell surface staining, purple = total RHO staining after cell permeabilization, blue = nuclear stain. Row (a): single‐
slice confocal images demonstrate cell membrane staining for the left‐most three variants but fainter, punctate perinuclear staining for the
other variants. A similar pattern of decreasing RHO intensity is seen in maximum projection images of (b) surface RHO and (c) total RHO.
(d) Row shows a composite of all channels. RHO: rhodopsin
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Conversely, p.T193M was predicted to fold correctly (Rakoczy et al.,

2011), but in this study, p.T193M is not expressed well on the cell

surface. It is not known if this defect is due to misfolding or a

hypothesized defect in dimerization (Rakoczy et al., 2011).

This expanded dataset also provides more confidence in variant

interpretation based on smaller numbers of variants or among different

experimental systems. For example, D190N showed low expression

levels in this study, in contrast to smaller studies showing moderate

expression using a GFP fusion tag (McKeone et al., 2014) or normal

localization using a bovine sequence backbone (Liu et al., 2013).

Some special variant classes deserve further discussion. Even

though RHO surface expression in HEK293 cells has been widely

used to demonstrate pathogenicity (Chen et al., 2011; Chuang et al.,

2004; Davies et al., 2012; Hollingsworth & Gross, 2013; Li et al.,

1998; Liu et al., 2013; McKeone et al., 2014; Sung et al., 1993; Toledo

et al., 2011; Yamasaki et al., 2014), recessive mutations do not show

any special features in this assay, and are not distinguished from the

dominant mutations. The recessive mutations are not clustered in a

certain segment of the gene. However, because the number of known

recessive mutants is small (6.6%; 12 of 181 according to Table S1), it

is much more likely that any particular low‐expressed mutation is

dominant. Therefore, this study provides good evidence that the

“very low” and “low” expressing variants are pathogenic mutations,

but cannot conclusively state that they are dominant pathogenic

mutations (thus, the three families mentioned above are “provision-

ally” solved). Our initial experiments mixing together a known

dominant mutation with a wildtype construct showed no effect on

trafficking of the wildtype protein in this system (Figure S3).

Modifications of the cell type used or of expression levels may be

able to reveal such dominant negative or gain of function effects to

distinguish dominant pathogenic mutations from recessive patho-

genic mutations. In a different system using the SK‐N‐SH cell type,

dominant negative effects of dominant mutants have been demon-

strated (Mendes & Cheetham, 2008).

This assay was focused on identifying class 2 (misfolding) mutations,

which is the most common class. Figure 6 shows that class 3 mutations

(endocytosis) and some class 4 mutations (altered posttranslational

modifications and reduced stability) also displayed low expression,

though not quite as low as class 2, on average. Interestingly, the older

Rakoczy classification separates the class 4 mutants slightly better, with

the class IVa (affecting a glycosylation site; p.T4K, p.T17M, p.N15S) all

showing pathogenic surface expression levels (note that three variants

—p.T4K, p.P12R, and p.N15S are at or near the Ret‐P1 antibody epitope

at amino acids 4–10, so the results from these variants should be

interpreted with caution).

Additional assays are needed to detect and distinguish other

mutation classes. For example, to identify mutations that are

rescued by retinal binding (Behnen et al., 2018; Krebs et al., 2010;

Mendes & Cheetham, 2008; Mendes et al., 2010), the assay could

be repeated in the presence of retinal (which was too toxic for use

in the current transient transfection system; not shown). For

context, the classical assay for analysis of RHO folding and retinal

binding is ultraviolet‐visible spectroscopy. However, this assay

does not scale well to hundreds of variants. Therefore this study

makes a compromise in that it implements an assay that is not the

gold standard but, in exchange, is amenable to higher throughput.

The larger dataset produced by this higher throughput has the

advantage that cross‐comparison within the dataset (e.g. Figure 6)

produces “internal calibrators” that increase the ability the

interpret the data that is collected. However, working within the

constraints of assays that can be parallelized will require some

creativity to implement more general pathogenicity detectors. For

the purpose of evaluating pathogenicity, general toxicity‐ or

stress‐based assays would be ideal. In this cell culture system,

expression of p.P23H or p.T17M mutants had no effect on cell

death as measured by membrane permeability dyes, on apoptosis

as measured by annexin V labeling, or on endoplasmic reticulum

stress as measured by the pCAX‐XBP1delDBD‐venus reporter

(Iwawaki, Akai, Kohno, & Miura, 2004; not shown). Other

approaches to look for these more general effects might use

different cell types or even in vivo. Thus, a panel of both general

and specific assays is likely the best approach to identify all types

of pathogenic mutations.

Truncating mutations (nonsense or frameshift) were expressed in

the context of a cDNA without internal introns, after the synthetic

intron in the CAG promoter. Because internal introns and their

potential effects of nonsense‐mediated decay (Roman‐Sanchez,
Wensel, & Wilson, 2016) were not included, the results for those

mutants should be interpreted with caution. All truncating variants 5′
of a.a. 315 showed pathogenic expression levels, while all variants 3′
to a.a. 332, including 10 truncating variants, showed wildtype

expression levels. These variants should preferably be retested in

F IGURE 8 Correlating RHO surface expression and clinical

disease severity. Among known class 2 RHO mutants, increasing
amounts of RHO surface expression correlated with a milder clinical
phenotype, as represented by the baseline cone flicker ERG response

amplitude (p = 0.012). Each point represents one patient. ERG:
electroretinography; RHO: rhodopsin
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their full genomic context (Roman‐Sanchez et al., 2016), which would

also allow for testing of splice variants.

4.1 | Screening small versus large variant libraries

This library construction strategy differs from larger‐scale screen-

ing strategies (Brenan et al., 2016; Gasperini et al., 2016; Melnikov

et al., 2014) (thousands of variants) in that this library, with 210

variants, was created with widely‐available techniques at lower

technical complexity. The library itself was constructed using

modified Quikchange mutagenesis reactions using inexpensive

short oligos ordered in 96‐well plates (Synthetic DNA variant

libraries may replace this step as prices continue to decrease).

Each variant plasmid was introduced into cells using a standard

transfection protocol, without the need for viral vectors. The

disadvantage of this approach is that it does not scale well to

larger sized libraries. Sequencing and reracking of individual

clones, as well as the unpooled transfection, become more

cumbersome with an increasing number of variants and wells.

However, for biological questions such as the one addressed in this

study involving about 200 variants or less, this approach is feasible

and has the above advantages.

A smaller library size also has advantages in achieving a quantitative

readout. In a very large, barcode‐free, pooled assay, NGS sequencing

errors would set a lower boundary so that the rarest variants are harder

to quantify, and therefore these assays would best be used to find

highly enriched “hits”. In this study, because of the smaller number of

variants, the quantitation of each variant could be maintained above the

noise floor caused by sequencing errors. Therefore, smaller gradations

in expression level were reproducibly quantified over the entire

dynamic range of the assay (Figure S2), allowing for observations such

as the “intermediate” expression phenotype of class 3 and 4 mutations

described above. More specifically, for the quantitation of each of 210

plasmids in a mixed pool, the frequency of an individual plasmid (ideally

~1/210 = ~0.5%) has to be greater than the background noise of

sequencing errors—theoretically 0.1% on the Illumina MiSeq at Q=30,

though sequence‐context and cycle number dependent. With library

inhomogeneity and context‐dependent sequencing error rates, this ratio
is not guaranteed to be maintained. Careful masking of low‐quality
basecalls allowed for low‐frequency variant quantitation above the

noise level (Section 2 and Figure 4b,c). For larger barcode‐free libraries,

maintaining accurate quantification at low levels in the presence of read

errors would not be solved by simply increasing read depth; specialized

wet‐lab assays to lower the actual sequencing error rate (e.g. Schmitt

et al., 2012) could be considered. Alternatively, barcoded libraries

designed to avoid barcode collisions in the presence of sequencing

errors could be used.

4.2 | Predicting clinical disease severity data from
surface expression levels

Among known class 2 mutants, the level of RHO surface

expression measured in this study was better at predicting

disease severity than computational folding predictions (Figure 8

and Section 3). These approaches are not mutually exclusive,

however, and structural biology can be used as a complementary

approach to experimental observations. For example, folding

calculations can be refined based on empirical data and then

extended to new mutants. For variants that express well on the

cell surface or where the mechanism is different (e.g. class 7

dimerization mutations) other classes of bioinformatic predictors

are needed.

The outliers in Figure 8 that do not follow the general trend of

less severe disease with increasing surface expression can be

informative as well. For example, p.Q184P shows low severity

despite low expression, and p.L125R shows high severity despite high

expression (Figure 8). These data suggest that these variants are

likely not classic class 2 mutations and influence disease course

through a different mechanism than simple misfolding.

The correlation between surface expression and disease severity

can produce some clinically‐useful estimates. For example, a typical

class 2 mutation with a low surface expression ratio of −1.5 would

have a predicted baseline ERG which is 1.34 natural log units lower

than a mutation with a higher expression ratio of 0.5. At an average

rate of progression (0.091 Ln units per year; Berson et al., 2002), this

corresponds to an extra 15 years of vision. If outliers (e.g. Q184P,

L125R) in the regression had been excluded, this estimated effect

would be larger. These estimates are based on the average severity

of a mutant. In particular, L125R is probably not a class 2 mutation

(Figure 6). However, there is a large amount of variation between

individual subjects, particularly notable for the p.P23H mutation

which is common in our cohort (Dryja et al., 1990; Hartong et al.,

2009); additional modifying factors are yet to be identified, whether

genetic, environmental, or stochastic (Chow, Kelsey, Wolfner, &

Clark, 2016).

In summary, a functional genomics approach can be used to

address the problem of VUS in inherited retinal diseases, which in

general is currently one of the major bottlenecks in the diagnosis

of human Mendelian diseases. Future studies may include general-

izing these assays to more genes and more mutation types, as well

as using more complex methods to screen larger numbers of

variants.
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