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Abstract: Transcriptional and post-transcriptional regulation shapes the transcriptome and proteome
changes induced by various cellular signaling cascades. MicroRNAs (miRNAs) are small regulatory
RNAs that are approximately 22 nucleotides long, which direct the post-transcriptional regulation
of diverse target genes and control cell states. Transforming growth factor (TGF)-β family is
a multifunctional cytokine family, which plays many regulatory roles in the development and
pathogenesis of diverse diseases, including fibrotic disease, cardiovascular disease and cancer.
Previous studies have shown that the TGF-β pathway includes the miRNA pathway as an important
component of its downstream signaling cascades. Multiple studies of epithelial–mesenchymal
transition (EMT)-related miRNAs have highlighted that miRNAs constitute the intrinsic bistable
molecular switches of cell states by forming double negative feedback loops with EMT-inducing
transcription factors. This may be important for understanding the reversibility of EMT at the
single-cell level, the presence of distinct EMT transition states and the intra- and inter-tumor
heterogeneity of cancer cell phenotypes. In the present review, I summarize the connection between
TGF-β signaling and the miRNA pathway, placing particular emphasis on the regulation of miRNA
expression by TGF-β signaling, the modulation of TGF-β signaling by miRNAs, the miRNA-mediated
modulation of EMT and endothelial–mesenchymal transition as well as the crosstalk between miRNA
and TGF-β pathways in the tumor microenvironment.
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1. Introduction

The regulation of transcriptomes is a major consequence of various intracellular signaling
cascades that are located downstream of growth factors and cytokines, which often represents their
biological activities. These signaling cascades are usually directly linked to their corresponding
transcription factors, which mediate the repression or activation of target genes. However, it is
now clear that this transcriptional regulation is closely associated with epigenetic modification
and post-transcriptional regulation, with the resulting transcriptomes being shaped by complex
multilayered regulatory networks.

MicroRNAs (miRNAs) are small regulatory non-coding RNAs, which are approximately
22 nucleotides long. miRNAs form an RNA–protein complex with Argonaute proteins, recognize
multiple target mRNAs via sequence complementarity and repress target RNAs, thereby serving as
the major players in the post-transcriptional gene regulation of diverse species [1]. In humans, many
conserved miRNAs display preferentially conserved interactions with hundreds of target mRNAs
and thus, they exhibit diverse effects on transcriptomes [2]. To date, hundreds of distinct miRNAs
have been identified in humans using stringent criteria, while thousands of human genes have been
shown to be miRNA targets [2–4]. Reflecting the diversity of their targets and their involvement in
various biological pathways, miRNAs have been shown to regulate multiple cellular pathways and
to play important roles in multiple aspects of development, physiology and disease pathogenesis [5].
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For example, multiple loss-of-function studies have shown that depletion of miRNA genes leads to
developmental, physiological and/or behavioral abnormalities [1,6]. Furthermore, miRNAs have also
been implicated in many biological characteristics of cancer (i.e., hallmarks of cancer) [7].

Significant evidence has indicated that miRNAs are involved in the post-transcriptional gene
regulation in various conserved cellular signaling cascades [8,9]. These signaling cascades include
the transforming growth factor (TGF)-β, Notch, Hedgehog and mitogen-activated protein kinase
(MAPK) pathways. The downstream targets of these pathways include multiple downstream
miRNAs, which provide positive or negative feedback to downstream signal mediators or transcription
factors [10,11].

The TGF-β family is a multifunctional cytokine family that regulates multiple cellular functions,
including cell growth, differentiation, adhesion, migration and death [12,13]. TGF-β signaling has
many regulatory roles in development, with alterations in this signaling pathway having been
associated with the pathogenesis of various diseases, including fibrotic disease, cardiovascular disease
and cancer [14–17]. Previous studies have shown that the TGF-β signaling pathway embraces the
miRNA pathway as an important component of its downstream signaling cascades [18–24]. In the
present review, I summarize the connection between TGF-β signaling and miRNAs with a particular
focus on: (1) regulation of miRNA expression by TGF-β signaling; (2) modulation of TGF-β signaling
by miRNAs; (3) miRNA-mediated regulation of cell state transitions, such as epithelial–mesenchymal
transition (EMT) and endothelial–mesenchymal transition (EndMT); and (4) crosstalk between miRNA
and TGF-β pathways in cancer.

2. Biogenesis of miRNAs

In mammals, many miRNAs are first generated as a part of a longer primary miRNA transcript
(pri-miRNA) transcribed by RNA polymerase II [25]. A hairpin structure of pri-miRNAs is cleaved by
the microprocessor complex, which is composed of RNase III Drosha and its cofactor DGCR8 in the
nucleus. The microprocessor is a heterotrimeric complex with one Drosha and two DGCR8 molecules
that generates stem-loop structured RNAs, which are termed pre-miRNAs, by cleaving the stem region
of the hairpin structure of pri-miRNAs [26]. Several proteins have been shown to be associated with the
microprocessor complex and regulate its processing activity [27–29]. Pre-miRNAs are transported to
the cytoplasm by Exportin 5 and RAN-GTP, where they undergo further cleavage by the RNase
III enzyme Dicer [30,31]. Dicer processes the pre-miRNA to a double-stranded ~22-nucleotide
product that is known as the miRNA duplex, which consists of the miRNA guide strand and
passenger strand. In mammals, Dicer associates with the partner proteins HIV transactivation response
element (TAR)-binding protein (TRBP) and protein activator of the interferon-induced protein kinase
(PACT) [32].

The miRNA duplex is sequentially loaded onto Argonaute proteins (Ago1–Ago4 in mammals)
with the help of HSP70/90 chaperone machinery [33]. Finally, one strand, whose 5′-end is captured
by the MID domain of Argonaute, is retained in the complex, while the other strand protrudes from
Argonaute to form the mature RNA-induced silencing complex. By convention, the more abundant
strand is referred to as the miRNA or guide strand, whereas the less abundant strand is known as
the miRNA* or the passenger strand. The selection of which strand serves as the guide strand is an
asymmetric process. In mammals, this asymmetric selection is directed by the Argonaute proteins [34].
Mammalian Argonaute proteins select strands with 5′-uridine/adenosine and thermodynamically
unstable 5′-ends with its two sensor regions, which come into contact with the 5′-nucleobase and
5′-phosphate(s) of prospective guide strands, respectively. Thus, the asymmetry of mammalian
miRNAs shows unique patterns that reflect two independent molecular rules for the 5′-end nucleotide
identity and thermodynamic stability of each miRNA duplex [34]. Many miRNA duplexes yield
a single dominant mature miRNA but often provide both strands as mature miRNAs [3].

Thus, the biogenesis of miRNAs consists of multiple steps, including transcription, processing
by Drosha and Dicer and Argonaute loading. This is further influenced by modification by RNA
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editing, RNA methylation, uridylation, adenylation and RNA decay. The expression of each miRNA
species can be regulated at each step [29,35,36]. In fact, the post-transcriptional regulation of miRNA
biogenesis has been well studied, while many RNA binding proteins (RBPs) and factors have been
reported as post-transcriptional or co-transcriptional modulators of miRNA biogenesis [35–40].

3. Function and Expression of miRNAs

In the recent version of miRBase (miRBase v21), 1193 mouse and 1881 human miRNA gene
annotations have been registered [41]. Using stringent criteria, the numbers of confidently identified
canonical miRNA genes are 475 and 519 in mice and humans, respectively [1,3,4].

In canonical miRNA-based targeting, the recognition of target mRNAs by miRNAs is mediated
primarily through sequence complementarity between the miRNA seed (miRNA nucleotides 2–7) and
its target site in the 3′-untranslated region (UTR) of target mRNAs [42]. Due to dependence on short
seed sequences for target recognition, each miRNA can potentially target hundreds of genes and the
emergence of miRNA target sites in 3′-UTRs has influenced 3′-UTR evolution [43,44]. Accordingly,
many conserved miRNAs have been shown to exhibit preferentially conserved interactions with
hundreds of target mRNAs [2]. The evolution of 3′-UTRs has been associated with the evolutionary
conservation of tissue-specific expression patterns of tissue-specific miRNAs [43,44].

In animals, target repression through partial complementarity involves two modes of target
repression, mRNA decay and translational inhibition although they do not target degradation
by Argonaute-dependent endonucleolytic cleavage triggered by extensive complementarity [1].
Canonical miRNA-mediated target repression largely depends on the adapter proteins of Argonaute,
TNRC6A/B/C. These adapter proteins induce shortening of the poly(A) sequence, subsequent mRNA
destabilization and translational repression. It has been reported that mRNA destabilization rather
than translation repression dominates target repression by mammalian miRNAs in post-embryonic
cells, except for in the early embryo [45–47].

Genome-wide expression profiling, including miRNA microarray and small RNA sequencing
analyses, has identified hundreds of miRNAs at detectable levels in a single cell type. However, only
a small number of miRNAs predominate the total miRNA expression in multiple cell types [48,49].
This is also the case for miRNA function, while a few abundant miRNAs mediate the marked target
repression at the population level [50,51]. Importantly, loss-of-function studies have highlighted
the importance of such tissue-specific abundant miRNAs in the development and pathogenesis
of disease [6]. We have recently shown that these quantitative features of miRNA-mediated gene
regulation can be explained by an association between super-enhancers and miRNA genes [52].
Super-enhancers are the major drivers of tissue-specific highly biased miRNA expression and function.
Moreover, super-enhancers can also explain alterations of the multiple miRNAs that are involved in
tumor pathogenesis [52].

4. Overview of TGF-β Signaling

The TGF-β family consists of three TGF-β isoforms, activins, nodal, bone morphogenetic proteins
(BMPs) and growth and differentiation factors [12,13]. These members regulate multiple cellular
functions, including cell growth, differentiation, adhesion, migration and death in a context-dependent
and cell type-specific manner [13,53,54].

TGF-β family ligands bind to two different types of serine-threonine kinase receptors, which are
the type II and type I receptors (TβR-II and TβR-I for TGF-β). Upon ligand binding, specific tetrameric
type II/type I receptor complexes are activated to transduce downstream signals. Type I receptors
phosphorylate the receptor-regulated Smads (R-Smads). Typically, TGF-β isoforms and activins
trigger the phosphorylation of Smad2 and Smad3 (activin/TGF-β-specific R-Smads), while BMPs
trigger the phosphorylation of Smad1, Smad5 and Smad8 (BMP-specific R-Smads). Thus, TGF-β
family members can be largely divided into two groups according to the downstream R-Smads [12].
Subsequently, R-Smads form complexes with a common-partner Smad (co-Smad). Smad4 is the only
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co-Smad in mammals that is shared with the TGF-β family signaling pathways. The R-Smad/co-Smad
complexes accumulate in the nucleus and regulate the transcription of various target genes together
with a range of transcription factors and transcriptional modulators [53,54]. The inhibitory Smads
(I-Smads), which are namely Smad6 and Smad7, can inhibit R-Smad activation and overall signal
strength [55]. Additionally, TGF-β activates several Smad-independent signal transduction pathways,
including the phosphatidylinositol 3 kinase (PI3K)-Akt and MAPK pathways. These are referred to as
non-Smad signaling pathways [56,57].

TGF-β signaling has been shown to play multiple important roles in cancer progression [15–17,54].
These can be largely categorized into four distinct processes: (1) growth modulation, particularly
escape from growth inhibition by TGF-β at the early stage of cancer initiation; (2) enhanced synthesis of
the extracellular matrix and fibrosis by TGF-β in the tumor microenvironment; (3) promotion of EMT
and/or metastasis by TGF-β; and (4) immune suppression by TGF-β in the tumor microenvironment.
TGF-β has been proposed to function both as a tumor suppressor and a tumor promoter, depending
on the cancer type and the stage of cancer progression [15]. It is thought that TGF-β serves as a tumor
suppressor through the inhibition of cell growth in the early stages of carcinogenesis. On the other
hand, it has been suggested that TGF-β promotes tumor progression in the advanced stages of cancer
by enhancing cancer cell migration, tissue fibrosis and/or immune suppression [58]. To date, it has been
suggested that multiple miRNAs contribute to these processes in relation to TGF-β signaling [18–24].

5. Regulation of miRNA Expression and Biogenesis by TGF-β Signaling

Multiple studies have shown that treatment with TGF-β family ligands induces changes in
the expression levels of multiple miRNAs in different cell types [18–24]. TGF-β signaling has
been shown to modulate miRNA expression at both the transcriptional and post-transcriptional
levels (Figure 1, top). In particular, early studies have shown that R-Smads directly influence
miRNA biogenesis by modulating Drosha-mediated pri-miRNA processing, which demonstrates
an unexpected transcription-independent function of Smads [59,60].
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Figure 1. Reciprocal crosstalk between TGF-β signaling and miRNA machinery. (Top) Regulation
of miRNA biogenesis by TGF-β signaling; (Bottom) Regulation of TGF-β signaling components by
miRNAs. Examples of miRNAs targeting TGF-β signaling components are shown.

TGF-β and BMP signaling have been shown to increase the expression of mature miR-21 in
human vascular smooth muscle and breast cancer cells [59]. This increase in miR-21 expression
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is accompanied by the upregulation of pre-miR-21 but not pri-miR-21. Treatment with TGF-β
and BMP4 has been shown to induce an association between R-Smads and the cofactor of the
microprocessor p68 on pri-miR-21, which is thought to facilitate pri-miR processing. In contrast
to the canonical Smad pathway, the co-Smad Smad4 is not required for this ligand-dependent
pri-miRNA processing [59]. The pre-miRNAs of TGF-β/BMP-regulated miRNAs contain a conserved
sequence, CAGAC, which is similar to the Smad binding element found in the promoters of
TGF-β/BMP-regulated genes [60]. Smads directly interact with this RNA-Smad binding element
(R-SBE) through their N-terminal MH1 domain, while TGF-β/BMP-induced pri-miRNA processing
depends on R-SBE. R-SBE has been identified in several other TGF-β/BMP-induced miRNAs, including
miR-105, miR-199a, miR-215, miR-421 and miR-529 [60]. Additionally, it has been suggested that
a Smad4-independent mechanism can mediate TGF-β-induced miR-181a upregulation [61], although
both Smad4-independent post-transcriptional and Smad4-dependent transcriptional mechanisms
are thought to be important in the TGF-β-dependent induction of the miR-181 family [62,63].
This type of post-transcriptional regulation of miRNA biogenesis has also been demonstrated for
other transcriptional regulators, including p53 and Nanog [64,65]. These observations suggest that
microprocessor cofactors, such as p68 and p72, as well as other RBPs serve as the molecular interfaces
for integrating intracellular signaling pathways into the miRNA pathway [29,37].

TGF-β/BMP-regulated miRNAs can be extended to other miRNAs in different cell types.
The miRNAs upregulated by TGF-β signaling include miR-21, the miR-181 family, miR-10b,
the miR-17/92 cluster, miR-155, miR-192, the miR-23/24/27 cluster, miR-216/217, miR-494 and
miR-182 [18,24,66–73]. The miRNAs downregulated by TGF-β signaling include the miR-200 family,
miR-203, let-7, miR-34a and miR-584 [18,24,74–77]. In some cases, transcriptional mechanisms have
been investigated. In normal murine mammary gland (NMuMG) epithelial cells, TGF-β activates
the miR-155 promoter and induces miR-155 expression through Smad4 [68]. miR-494 is also induced
by TGF-β at the pri-miRNA level in a Smad4-dependent manner, while miR-494 shows reduced
expression in pancreatic cancer cells with a loss of Smad4 [72].

Additionally, the downstream transcription factors of TGF-β signaling have been shown to
regulate multiple miRNAs at the transcriptional level. This is easily recognized with EMT-related
miRNAs. As discussed later, several miRNAs, including the miR-200 family, miR-203 and miR-216/217,
are suppressed by EMT-related transcriptional regulators, such as ZEB1 (also known as δEF1), ZEB2
(also known as SIP1), SNAIL, SLUG and E-box-dependent mechanisms, which are located downstream
of TGF-β signaling [71,74,78–81].

6. Regulation of TGF-β Signaling by miRNAs

TGF-β signaling and miRNA pathways have been shown to exhibit reciprocal crosstalk.
Consistent with the diversity of miRNA target genes, the computational prediction of miRNA targets
suggests that multiple components of the TGF-β signaling pathway are targeted by multiple miRNAs.
In fact, several miRNAs have been experimentally validated to be modulators of TGF-β signaling at
multiple levels by targeting ligands, receptors, R-Smad, co-Smad, I-Smad and non-Smad pathway
components as well as downstream targets of TGF-β signaling (Figure 1, bottom) [18,20,24].

Many miRNAs targeting TGF-β receptors, especially the type II receptor, have been identified in
various cancer types. These miRNAs, which include miR-21, the miR-17/92 cluster, miR-106b, miR-211
and miR-590 [82–87], are frequently oncogenic [20,24]. These miRNAs promote proliferation, invasion
or resistance to chemotherapeutic drugs in different cancer cell types.

Intriguingly, some TGF-β-regulated miRNAs target TGF-β signaling components, thus
comprising the feedback regulation of TGF-β signaling. The miR-200 family, which consists of
TGF-β-downregulated miRNAs, targets TGF-β, TβR-I and Smad2 [88,89]. Thus, the downregulation
of the miR-200 family by TGF-β enhances TGF-β signaling and induction of EMT. miR-182,
a TGF-β-inducible miRNA, targets Smad7 and thus, modulates a negative feedback loop of TGF-β
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signaling as Smad7 is also induced by TGF-β [90]. As a result, miR-182 potentiates the TGF-β-induced
EMT and metastasis of cancer cells.

The miRNAs also regulate TGF-β signaling by convergently suppressing a range of downstream
TGF-β target genes. The miR-106b/205 cluster that is composed of E2F1-regulated miRNAs targets
the TGF-β downstream effectors, p21Waf1/Cip1 and Bim, and disrupt TGF-β-dependent cell cycle arrest
and apoptosis in gastric cancer [91]. Additionally, the miR-17/92 cluster, which targets multiple TGF-β
signaling components, such as TβR-I, Smad2 and Smad4, suppresses the TGF-β-responsive genes
p21Waf1/Cip1 and Bim. This ultimately inhibits the effects of TGF-β signaling [84,92,93].

7. Control of Epithelial Identity and Epithelial–Mesenchymal Transition (EMT) by the
miR-200 Family

The dynamic and reversible regulation of cell identity is important for the organization of complex
multicellular systems and for adaptation under diverse physiological and pathological conditions.
EMT, which converts the epithelial cells into mesenchymal cells, is a well-known example of such
cellular plasticity, with the regulation of EMT being involved in the development and pathogenesis
of cancer [94]. TGF-β is known to induce EMT. Previous studies have identified multiple miRNAs
that are involved in EMT and have shown that both downstream transcription factors and miRNAs
orchestrate the conserved TGF-β-inducible EMT programs. In this section, I focus on the miR-200
family as its role in EMT has been extensively studied [78–81].

The miR-200 family consists of five miRNAs with similar seed sequences: miR-200b, miR-200c
and miR-429 with the seed sequence AAUACU and miR-200a and miR-141 with the seed sequence
AACACU, which differ by a single nucleotide [95–97]. These miRNAs are encoded in two
transcriptional clusters, which are namely the miR-200b/200a/429 and miR-200c/141 clusters.
Consistent with their roles in epithelial identity, these miRNA clusters are closely associated with
super-enhancers found in digestive organs [52].

Members of the miR-200 family are markedly downregulated following TGF-β treatment in
multiple EMT models using various cell lines, including Madin Darby canine kidney (MDCK) epithelial
cells, NMuMG epithelial cells and MCF10A mammary epithelial cells [78,80,98]. Forced expression of
the miR-200 family is sufficient for preventing the TGF-β-induced EMT in MDCK cells and inducing
mesenchymal–epithelial transition (MET) in mesenchymal cells. This suggests that the miR-200 family
acts as an enforcer of epithelial identity [78–81]. The promoter regions of the miR-200b/200a/429 and
miR-200c/141 clusters are repressed by the TGF-β-induced transcriptional repressors ZEB1 and ZEB2
during EMT through ZEB-type E-box elements [81,99]. Furthermore, prolonged exposure to TGF-β
can induce reversible DNA methylation of miR-200 family promoters [88]. Conversely, the miR-200
family targets the 3′-UTRs of ZEB1/2 [78–81]. Thus, ZEB1/2 and the miR-200 family form a double
negative feedback loop, which controls epithelial identity (Figure 2a). Additionally, the maintenance
of a stable mesenchymal phenotype requires TGF-β autocrine signaling, which is supported by the
release of miR-200-mediated repression of TGF-β ligand production in MDCK cells. This suggests
a more complex feedback network involving TGF-β, ZEB1/2 and the miR-200 family [88]. The clinical
importance of this feedback loop is supported by a positive correlation between ZEB1/2 and TGF-β;
by negative correlations between miR-200 and TGF-β and between miR-200 and ZEB1/2 in breast
cancer [78,88]; and by an association between high miR-200 expression and better clinical outcomes in
multiple cancer types [100].

An unbiased investigation of miR-200 targets using Ago2 HITS-CLIP (high-throughput
sequencing after cross-linked immunoprecipitation) has identified hundreds of miR-200a and miR-200b
targets. This study has revealed an important effect of miR-200 on actin cytoskeleton dynamics [101].
Thus, the miR-200 family is important for maintaining epithelial identity and prevents cell migration
by regulating a core EMT transcriptional program and multiple regulators of Rho-ROCK signaling,
focal adhesion, matrix metalloproteinase activity and invadopodia formation. In addition to their
regulation of cell motility and metastasis, the miR-200 family also plays important roles in regulating
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drug resistance in cancer therapy [95–97]. The crosstalk between miR-200 and ZEB1/2 has also been
demonstrated in stem cell biology. The induction of the miR-200 family and MET occurs in the initial
phase of the reprogramming of somatic cells to induced pluripotent stem (iPS) cells, facilitating their
generation [102,103].Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  7 of 18 
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8. miRNA Regulation and miRNA-Mediated Bistable Switches of the TGF-β-Mediated EMT

Similar to the miR-200 family, additional miRNAs have also been shown to be associated with
EMT. miR-205 is downregulated after TGF-β treatment and suppresses ZEB1/2 like the miR-200 family
in MDCK cells [78]. ZEB1 has also been shown to repress several other miRNAs, such as miR-203 and
miR-183, which cooperatively repress stem cell factors and inhibit the stemness property in cancer cells
and mouse embryonic stem cells [104]. Additionally, several TGF-β-upregulated miRNAs, such as
miR-181, miR-155 and miR-10b, promote EMT [61,66,68]. Other EMT-related miRNAs include miR-30,
the miR-34 family and miR-223 [89,105–107].

The members of the miR-34 family, which are namely miR-34a and miR-34b/c, are suppressed
by the EMT-inducing transcription factor SNAIL and conversely, the miR-34 family targets the
3′-UTR of SNAIL [105,106]. Thus, SNAIL and the miR-34 family comprise another double negative
feedback loop controlling EMT, which is similar to the ZEB1/2-miR-200 feedback loop (Figure 2a).
Detailed quantitative measurement of the dynamics of the TGF-β-induced EMT in MCF10A cells at
the population and single-cell levels suggests that the two transcription factor-miRNA double negative
feedback loops (i.e., the SNAIL-miR-34 and ZEB1-miR-200 loops) form bistable cell fate switches in
the epithelial phenotype, partial EMT phenotype and mesenchymal phenotype (Figure 2a) [98,108].
These three phenotypes are characterized by high and low; medium and medium; and low and
high abundance of E-cadherin and vimentin, respectively. The time course measurements of the
TGF-β-induced EMT have suggested a two-step process among the three cell phenotypes (Figure 2b).
In the first step, the epithelial cells transit to the partial EMT state and the SNAIL-miR-34 bistable
switch is activated, which leads to reduced expression of E-cadherin and increased expression of
vimentin. In the second step, the cells transit from the partial EMT state to the mesenchymal stat,
and the ZEB1-miR-200 bistable switch is activated, which leads to reduced expression of E-cadherin
and robust induction of vimentin expression [98]. In MCF-10A cells, it appears that the transition
from epithelial to partial EMT state is reversible, whereas the transition from partial EMT to the
mesenchymal state is irreversible, especially at high concentrations of TGF-β. In summary, in MCF10A
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cells, the TGF-β-induced EMT proceeds through the stepwise activation of the SNAIL-miR-34
and ZEB1-miR-200 modules in the initial and later phases, respectively [98,108]. This model will
be important in furthering our understanding of the reversibility of EMT at the single-cell level
and in interpreting the heterogeneity in EMT phenotypes, including partial EMT, in vivo and in
clinical samples.

9. Regulation of TGF-β-Induced EndMT by miRNAs

TGF-β also plays important roles in the plasticity of other cell types. TGF-β is a major inducer of
EndMT, which is a process that is similar to EMT. This process converts differentiated endothelial cells
into mesenchymal cells [109]. EndMT is observed in cardiac development and diverse pathological
conditions, including tissue fibrosis, cavernous malformations, vein stenosis and graft remodeling and
cancer [110–114]. Several reports have recently described changes in the expression levels of multiple
miRNAs during EndMT and the regulatory roles of several miRNAs in EndMT in different endothelial
cells [115,116].

In the embryonic heart, miR-23 is necessary for restricting endocardial cushion formation by
inhibiting TGF-β-induced EndMT and extracellular hyaluronic acid production [117]. miR-126,
which is specifically expressed in endothelial cells and closely associated with super-enhancers found
in human umbilical endothelial cells [52], has been reported to inhibit the TGF-β-induced EndMT
through modulation of the PIK3R2-PI3K/Akt signaling pathway [118]. This suggests an analogous
role of miRNAs in maintaining endothelial cell identity in addition to an essential role of the miR-200
family in epithelial cells. In a recent report, metastasis-associated lung adenocarcinoma transcript 1
(MALAT1) long non-coding RNA (lncRNA) was reported to be induced by TGF-β, which modulates
the TGF-β-induced EndMT by suppressing miR-145. This suggests a complex network between
lncRNAs and small RNAs [119]. Other reports have described the regulatory roles of several miRNAs,
such as miR-21, miR-302c, miR-18a and miR-20a, in EndMT [120–123].

We have also reported that several miRNAs modulate EndMT in MS-1 mouse pancreatic
microvascular endothelial cells [124,125]. Constitutively active miR-31 positively regulates the
induction of mesenchymal markers during the TGF-β-induced EndMT in MS-1 endothelial cells
without concomitant effects on the induction of TGF-β target genes and downregulation of
endothelial markers. Additionally, miR-31 potentiates the induction of various chemokines and
cytokines, including CCL17, CX3CL1, CXCL16, interleukin (IL)-6 and Angptl2, which has been
designated as the EndMT-associated secretory phenotype (EndMT-SP). TGF-β induces alternative
polyadenylation-mediated exclusion of the internal poly(A) sequence in the 3′-UTR of Stk40,
which is a negative regulator of the NF-κB pathway. This enhances miR-31-dependent Stk40
suppression without concomitant miR-31 induction [124]. We also identified miR-27b, a member
of the miR-23/24/27 cluster, as a TGF-β-inducible miRNA in MS-1 cells and observed that inhibition
of miR-27 suppressed the induction of mesenchymal markers by TGF-β treatment [125].

10. TGF-β-Related miRNAs and the Tumor Microenvironment

miRNAs have diverse functions in cancer progression and are linked to wide aspects of cancer
hallmarks. We have previously shown that the alterations of super-enhancers are observed for
various cancer-related miRNAs associated with cancer hallmark traits [52]. Previous studies have
demonstrated multifaceted contributions of multiple miRNAs to the roles of TGF-β signaling in
cancer progression, including modulation of growth, EMT and metastasis, which have been discussed
earlier (Figure 3) [18–24]. Additionally, recent advances in miRNA research have revealed that
miRNAs regulate not only the properties of cancer cells but also the tumor microenvironment to
facilitate tumor metastasis, resistance to cancer therapy and immune suppression [126]. This is also
the case for TGF-β-related miRNAs. In this section, I summarize the non-cell-autonomous functions of
TGF-β-related miRNAs and their roles in the cancer microenvironment (Figure 3).
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Alterations of miRNAs in cancer cells can foster a favorable microenvironment for cancer cells
through the altered production of factors secreted from cancer cells. In hepatocellular carcinoma
(HCC), increased TGF-β signaling, which is associated with persistent hepatitis B virus (HBV) infection,
results in suppression of miR-34a and subsequently enhances the production of the chemokine CCL22,
which promotes the recruitment of regulatory T cells [127]. In HBV-positive HCC and portal vein tumor
thrombus, miR-34a expression levels are inversely correlated with the expression levels of CCL22
and FoxP3, which strengthens the importance of the TGF-β-miR-34a-CCL22 axis [127]. Additionally,
in HCC, TGF-β secreted from tumor-associated macrophages (TAMs) suppresses miR-28 in cancer
cells [128]. Decreased expression of miR-28 results in increased secretion of its target IL-34 and
enhances the infiltration of TAMs. This miRNA-mediated feedback loop between cancer cells and
TAMs modulates HCC metastasis.
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TGF-β also modulates the functions of various stromal cells in the tumor microenvironment
through miRNA-mediated gene regulation. TGF-β induces miR-494 in myeloid-derived suppressor
cells (MDSCs), with this miRNA required for the accumulation and function of tumor-expanded
MDSCs through PTEN suppression [129]. Inhibition of miR-494 reversed the ability of MDSCs
and suppressed tumor growth and metastasis. TGF-β also promotes the induction of MDSCs by
upregulating miR-21 and miR-155 [130]. Additionally, TGF-β reduces the tumor cytolysis activity
of natural killer (NK) cells and abrogates its perforin polarization [131]. This inhibition of NK cell
function is mediated by the induction of miR-183 by TGF-β and suppression of its target gene DAP12,
which is important for surface NK receptor stabilization and downstream signals. Furthermore,
it has been suggested that TGF-β-related miRNAs modulate the TGF-β-induced formation of
cancer-associated fibroblasts. TGF-β-inducible miR-21 targets Smad7 and potentiates TGF-β-induced
cancer formation [132].

Taken together, these findings suggest that miRNAs contribute to the modulation of the tumor
microenvironment and immune suppression by TGF-β signaling through multiple mechanisms,
including non-cell-autonomous functions in cancer cells and proximal functions in tumor stromal cells.

11. Concluding Remarks

In this review, I summarized the relationships between TGF-β signaling and the miRNA pathway.
Previous studies have produced considerable conceptual advances regarding: (1) the regulation of
miRNA expression by TGF-β signaling; (2) the modulation of TGF-β signaling by miRNAs; (3) the
miRNA-mediated regulation of cell state transitions, which include EMT and EndMT; and (4) the
crosstalk between miRNA and TGF-β pathways in cancer.

Crosstalk between TGF-β signaling and the miRNA biogenesis machinery has identified the
unique transcription-independent roles of R-Smads, which suggests intimate crosstalk between



Int. J. Mol. Sci. 2018, 19, 1901 10 of 17

transcriptional regulation and RNA processing. In fact, a recent study demonstrated that Smad2/3
facilitate the conversion of adenosine to N6-methyladenosine (m6A) on target RNA through the
recruitment of the m6A methyltransferase complex, expanding the transcription-independent roles of
R-Smads [133].

Studies regarding EMT-related miRNAs have highlighted that miRNAs constitute intrinsic
bistable molecular switches in conjunction with EMT-inducing transcription factors [98,108]. This may
be critical for modulating the reversibility of cell plasticity and the variability in cell differentiation.
Further investigation of these feedback modules may increase our understanding of the reversibility
of EMT at the single-cell level; of the intra- and inter-tumor heterogeneity of cancer phenotypes [134];
and of recently reported distinct EMT transition states [135]. Moreover, this may also provide further
insight into several open questions regarding the EMT in vivo and in clinical samples [136].

Finally, TGF-β-related miRNAs may serve as potential therapeutic targets in various
diseases, while clinically suitable methods of delivering small RNAs to various tissues should be
improved [137,138]. Further studies of transcriptional and post-transcriptional regulation will yield
a more comprehensive view of the alterations of the gene regulatory network modulated by TGF-β
signaling and provide a basis for the development of new diagnostic and therapeutic approaches,
which can be combined with improvements in the analytical analyses of miRNA networks [139–141].
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Abbreviations

Ago Argonaute
BMP bone morphogenetic protein
co-Smad common-partner Smad
ECM extracellular matrix
EMT epithelial–mesenchymal transition
EndMT endothelial–mesenchymal transition
EndMT-SP EndMT-associated secretory phenotype
GDF growth and differentiation factor
HBV hepatitis B virus
HCC hepatocellular carcinoma
HITS-CLIP high-throughput sequencing after cross-linked immunoprecipitation
I-Smad inhibitory Smad
lncRNA long non-coding RNA
MALAT1 metastasis-associated lung adenocarcinoma transcript 1
MAPK mitogen-activated protein kinase
MDCK Madin Darby canine kidney
MDSC myeloid-derived suppressor cell
MET mesenchymal–epithelial transition
MMP matrix metalloproteinase
NK natural killer
NMuMG normal murine mammary gland
PACT protein activator of the interferon-induced protein kinase
PI3K phosphatidylinositol 3 kinase
pri-miRNA primary miRNA
RBP RNA binding protein
R-Smad receptor-regulated Smad
SBE Smad binding element
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TAM tumor-associated macrophages
TβR TGF-β receptor
TGF-β transforming growth factor-β

TRBP
HIV transactivation response element (TAR)-binding
protein

3′-UTR 3′ untranslated region
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