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Muséum National d’Histoire Naturelle, Paris, France, 3 School of Biological Sciences, University of Sydney, Sidney, Australia, 4 Department of Medical Zoology, Osaka City

University Medical School, Osaka, Japan, 5 Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United

States of America, 6 Instituto de Zoologia Tropical, Universidad Central de Venezuela, Caracas, Venezuela, 7 Departamento de Zoologia, Universidade Federal de Juiz de
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Abstract

Background: Wolbachia are intriguing symbiotic endobacteria with a peculiar host range that includes arthropods and a
single nematode family, the Onchocercidae encompassing agents of filariases. This raises the question of the origin of
infection in filariae. Wolbachia infect the female germline and the hypodermis. Some evidences lead to the theory that
Wolbachia act as mutualist and coevolved with filariae from one infection event: their removal sterilizes female filariae; all
the specimens of a positive species are infected; Wolbachia are vertically inherited; a few species lost the symbiont.
However, most data on Wolbachia and filaria relationships derive from studies on few species of Onchocercinae and
Dirofilariinae, from mammals.

Methodology/Principal Findings: We investigated the Wolbachia distribution testing 35 filarial species, including 28 species
and 7 genera and/or subgenera newly screened, using PCR, immunohistochemical staining, whole mount fluorescent
analysis, and cocladogenesis analysis. (i) Among the newly screened Onchocercinae from mammals eight species harbour
Wolbachia but for some of them, bacteria are absent in the hypodermis, or in variable density. (ii) Wolbachia are not
detected in the pathological model Monanema martini and in 8, upon 9, species of Cercopithifilaria. (iii) Supergroup F
Wolbachia is identified in two newly screened Mansonella species and in Cercopithifilaria japonica. (iv) Type F Wolbachia
infect the intestinal cells and somatic female genital tract. (v) Among Oswaldofilariinae, Waltonellinae and
Splendidofilariinae, from saurian, anuran and bird respectively, Wolbachia are not detected.

Conclusions/Significance: The absence of Wolbachia in 63% of onchocercids, notably in the ancestral Oswaldofilariinae
estimated 140 mya old, the diverse tissues or specimens distribution, and a recent lateral transfer in supergroup F
Wolbachia, modify the current view on the role and evolution of the endosymbiont and their hosts. Further genomic
analyses on some of the newly sampled species are welcomed to decipher the open questions.
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Introduction

The alpha proteobacteria Wolbachia (Rickettsiales) are present in

two distinct zoological groups: the arthropods, where they are

widespread [1], and the nematodes, where they are restricted to a

single but notable family of parasites, the Onchocercidae [2,3].

They encompass the agents of human onchocerciasis and

lymphatic filariases [4]. The zoological host range of Wolbachia

raised a fundamental question on the origin of infection in the

filarial nematodes [5,6]. Investigations performed during the past

fifteen years on Wolbachia in filarial and arthropod hosts has led to

establish a rather clear and complex picture of the taxonomic

status of the bacterium, its distribution and phylogeny [7]. Several

distinct bacterial lineages have been called supergroups [8], and, at

this date, they are all attributed to the only valid recognized species

Wolbachia pipientis. The taxonomy of this species is quite uncertain,
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and in the scientific literature the genus name Wolbachia has been

widely used as a specific name. This is taxomically incorrect, but

common in microbiology (where species concept is usually

complicated) and in the present work we will follow this trend

until new data will be made available for a proper taxonomic

restructuring [9,10]. The supergroups are in majority distinct in

arthropods and filariae: A, B, E, H, I, K are found in the

arthropods; C, D and J in the nematodes [6,8,11]. However, the

supergroup F is a relevant and very well supported exception,

encompassing arthropod and filarial hosts (i.e. some insects such as

termites and the human filariae of the genus Mansonella, [12–15]).

Moreover, a newly discovered Wolbachia harboured by a plant

parasitic nematode might represent a further supergroup [16],

while the supergroup G [17] has been decommissioned due to the

high probability of being characterised on the basis of an event of

recombination [18].

Whereas the bacteria are mainly parasites in arthropods, usually

acting as manipulators of reproduction [19–21], they are

mutualistic in filariae [4,22]. These mechanisms may be diverse,

considering that Wolbachia is not only present in the germline but

also in a somatic tissue, the hypodermis (lateral chords) of both

females and males [23–25]. The biological studies and the

Wolbachia genome projects [26] allowed us to suppose that the

bacteria may be essential in the biosynthesis of some molecules

necessary for filarial host fertility and viability, such as heme,

riboflavin or nucleotide synthesis. Biosynthetic pathways are

currently analyzed to determine the components of the symbiotic

relationships [27–32]. To date, the mutualistic partnership is

targeted in treatments against filariases using antibiotics [33].

The spiruroid ancestors of filariae that have been screened so far

are devoid of endobacteria [5,34]. The presence/absence of

Wolbachia mapped on a filarial nematodes phylogenetic tree

suggests that the bacteria may have possibly been acquired as a

single event in the lineage leading to the onchocercid nematodes,

followed by host-parasite co-evolution, assuming that Wolbachia in

filariae was strictly vertically transmitted to the offspring through

the infected female germline [3,35]. Analysis of supergroup F is

changing this view, due to the presence of Wolbachia from both

filariae and some insects.

Another potential discrepancy with respect to the suggestion of

coevolution is provided by observations of the absence of

Wolbachia in two filarial species within the onchocercid lineage:

the human parasite Loa loa and the rodent parasite Acanthochei-

lonema viteae [3,36]. It has been suggested that for these host

species, the endobacteria had been present but subsequently were

lost during further evolution [5]. As a corollary, the loss of

Wolbachia led to a further hypothesis that the bacterial genes

essential to the host fitness might have been successfully

transferred and expressed into the host genome. Although still

subject of discussion [21], some support for this hypothesis

derives from studies on lateral gene transfer, as shown with

several insect and filarial hosts [37]. Remnants of Wolbachia-like

gene sequences have been identified in the filarial host genomes

of the endobacteria-free L. loa and A. viteae, with some of the

transferred genes being transcribed [38]. The elimination of the

bacteria might be an adaptive advantage because their antigens

are inflammation inducers and contribute to filarial pathologies

and immunological responses [39]. However, a recent study

suggests that the bacteria might act as a decoy target for

polynuclear neutrophils, preventing harmful effect of eosinophils

on filariae [40]. Furthermore, a strain of Wolbachia that over-

replicates in Aedes aegypti inhibits the development of Brugia malayi

larvae and switches on a few important immune system genes

[41–43]. Thus the limitation of the filarial infection may either be

due to immune activation of the invertebrate host or/and the

bacteria may outcompetes filariae for some metabolites.

In our previous study [5], it appeared that the number of

endobacteria-free filarial species had been underestimated and

that several species without Wolbachia detected were parasitic in

lizards and frogs. Thus it was suggested that these filariae from

reptiles and anurans diversified before the first bacterial invasion

on the onchocercid lineage which had been tentatively dated to

110 mya [3,6]. Indeed the origin of the Oswaldofilariinae,

parasitic in crocodiles and squamates, was hypothetically dated

from the late Jurassic, at the beginning of Gondwanian dislocation,

140 mya [44,45]. However representatives of this subfamily had

not yet been screened.

Until the present study, Wolbachia screening had been done in

only about 10% of the 93 genera currently recognized in the

Onchocercidae [46,47]. This is not surprising since the recovery of

filariae from connective tissues, their main localization, is not easy.

Our investigation was resolutely rooted in biodiversity, expecting

that the exploration of a broader range of filarial species would

contribute to decipher the history of the Wolbachia-filaria

symbiosis. The recovery of materials from wild animals from

several biomes was undertaken. The first oswaldofilarine, the first

splendidofilarine (a parasite of birds), and several onchocercid

genera from mammals have now been screened through PCR, as

well as classic immunohistochemical staining and whole mount

fluorescent analysis [21].

This study confirms that Wolbachia are not detected until now in

the filarioid species parasitic in amphibians and reptiles. Several

other features have emerged from this study: i) lateral hypodermal

localization of Wolbachia is not obligatory in bacteria-positive

filarial species; ii) new somatic tissue localizations of the bacteria

are observed; iii) the number of Wolbachia-free filarial species is

greater than expected among filariae of mammals; (iv) lastly, one

secondary event of Wolbachia infection, also well supported by a

formal cocladogenesis, likely took place in filariae in supergroup F.

Results

The screening for Wolbachia was performed on 35 species

(Table 1; specimens detailed in Figure S1 and Tables S1, S2), of

which 28 are here examined for the first time and one recently by

us [48]. These were the first representatives of Oswaldofilariinae,

Piratuba scaffi from a lizard, and of Splendidofilariinae, Aproctella sp.

1 from passeriforms; two more species, Ochoterenella sp. 1 and O.

royi, in Waltonellinae, a subfamily restricted to anurans; five genera

of Onchocercinae parasitic in mammals, a species of Monanema,

Mo. martini, parasitic in African murids and used during a decade

as a model for onchocerciasis because of its skin-dwelling

microfilariae [49]; several species of Cercopithifilaria, six from

ruminants, one from a bear (all from Japan), and one species from

an African porcupine; Loxodontofilaria, with the recently described

Lo. caprini, recovered from a Japanese caprine bovid [50]; in the

genus Mansonella, two of the six subgenera, Tetrapetalonema and

Cutifilaria, with a species each, M. (T.) atelensis amazonae from a

monkey, and M. (Cu.) perforata from a cervid; and the recently

studied species of Litomosa from a South African bat (reported in

[48].

The histoimmunostainings are presented according to the

following genera: Litomosoides and Litomosa (Figure 1), Onchocerca

and Loxodontofilaria (Figure 2), Cercopithifilaria japonica and Mansonella

(Figure 3), other species of Cercopithifilaria (Figure 4). Whole mount

fluorescent analysis is presented on Figure 5.

The results (Table 1 and 2; Figures 1–7) can be summarised as

following:

Wolbachia Distribution in Filarial Nematodes
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1. The presence or absence of Wolbachia were
confirmed in species previously screened (Tables 2
and S2). Species previously studied and as expected confirmed

positive are: Onchocerca volvulus (female worm from a human

nodule, Cameroon), Dirofilaria repens (from an Italian patient),

Litomosoides sigmodontis (2 females recovered from a wild Sigmodon

hispidus, Venezuela) and a less commonly studied species,

Dipetalonema gracile (a female recovered from Cebus olivaceus,

Table 1. The 35 species of filariae included in this study, their hosts and collection place.

N6 Subfamily Genus (subgenus) Species Host Collection place

1 Oswaldofilariinae Piratuba scaffi Bain, 1974 Ameiva ameiva (Lizard jungle runner) Venezuela

2 Waltonellinae Ochoterenella royi Bain, Kim & Petit, 1979 Bufo marinus (Cane toad) Venezuela

3 sp. 1 Phyllomedusa bicolor (Giant leaf frog) French Guyana

4 Setariinae Setaria digitata (Linstow, 1906) Bos taurus (cattle) Japan

5 tundra Capreolus capreolus (Roe-deer) France

6 sp. 1 Redunca fulvorufula adamaue (Mountain
Reedbuck)

Cameroon

7 sp. 2 Equus burchelli (Plains zebra) Namibia

8 sp. 3 Oryx gazella (Gemsbok) Namibia

9 Dirofilariinae Foleyella candezei (Fraipont, 1882) Agama agama (Rainbow agama) Togo

10 Dirofilaria repens Railliet and Henry, 1911 Homo sapiens (Human) Italy

11 Loa loa (Cobbold, 1864) Homo sapiens (Human) Cameroon

12 Onchocercinae Cercopithifilaria bulboidea Uni & Bain, 2001 Nemorhaedus crispus (Japanese serow) Japan

13 crassa Uni, Bain & Takaoka, 2002 Cervus nippon (Sika deer) Japan

15 japonica (Uni, 1983) Ursus thibetanus (Japanese black bear) Japan

14 longa Uni, Bain & Takaoka, 2002 Cervus nippon (Sika deer) Japan

16 minuta Uni & Bain, 2001 Nemorhaedus crispus (Japanese serow) Japan

17 multicauda Uni & Bain, 2001 Nemorhaedus crispus (Japanese serow) Japan

18 roussilhoni Bain, Petit & Chabaud,
1986

Atherurus africanus (Brush-tailed porcupine) Gabon

19 shohoi Uni, Suzuki & Katsumi, 1998 Nemorhaedus crispus (Japanese serow) Japan

20 tumidicervicata Uni & Bain, 2001 Nemorhaedus crispus (Japanese serow) Japan

21 Dipetalonema gracile (Rudolphi, 1809) Cebus olivaceus (Capuchin monkey) Venezuela

22 Litomosa* chiropterorum Ortlepp, 1932 Miniopterus natalensis (Natal
Long-Fingered Bat)

South Africa

23 Litomosoides sigmodontis Chandler, 1931 Meriones unguiculatus (Jird) MNHN strain

Sigmodon hispidus (Hispid cotton rat) Venezuela

24 taylori Guerrero & Bain, 2011 Nectomys palmipes (Water Nectomys) Venezuela

25 yutajensis Guerrero, Martin & Bain,
2003

Pteronotus parnellii (Mustached bat) Venezuela

26 Loxodontofilaria caprini Uni & Bain, 2006 Capricornis crispus (Japanese serow) Japan

27 Mansonella (Cutifilaria) perforata Uni, Bain & Takaoka, 2004 Cervus nippon (Sika deer) Japan

28 Mansonella
(Tetrapetalonema)

atelensis amazonae Cebus olivaceus (Capuchin monkey) Venezuela

29 Monanema martini Bain, Bartlett & Petit, 1986 Arvicanthis niloticus (African Grass Rat) Senegal

30 Onchocerca dewittei japonica Uni, Bain &
Takaoka, 2001

Sus scrofa leucomystax (Japanese wild boar) Japan

31 eberhardi Uni & Bain, 2007 Cervus nippon (Sika deer) Japan

32 skrjabini Ruklyadev, 1964 Cervus nippon (Sika deer) Japan

Nemorhaedus crispus (Japanese serow) Japan

33 suzukii Yagi, Bain & Shoho, 1994 Nemorhaedus crispus (Japanese serow) Japan

34 volvulus (Leuckart, 1893) Homo sapiens (Human) Cameroon

35 Splendidofilarinae Aproctella sp. 1 Turdus rufiventris (Rufous-bellied Thrush) Brasil

Saltator similis (Green-winged Saltator) Brasil

The presentation follows the classification of Onchocercidae by Anderson & Bain (2009).
Nu: number attributed to species in this study. Species, genera, subgenera and subfamilies screened for the first time are in bold characters. * Species screened in Junker
et al., 2009.
doi:10.1371/journal.pone.0020843.t001
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collected in Yutaje, Venezuela, like in [5] (Tables 2 and S2). The

species confirmed negative were Loa loa (two batches of infective

larvae recovered from Chrysops vectors, Cameroon) and the single

Litomosoides species that did not harbour Wolbachia, L. yutajensis (3

females, from the same species, Pteronotus parnellii, and locality than

in [5]; Figures 1E,F).

2. Eight newly screened filarial species harbored
Wolbachia but, for some of them, not all specimens
are positive (Tables 2 and S2). The species in which Wolbachia

was detected are the following: Onchocerca dewittei japonica, from Sus

scrofa leucomystax (Figures 2A–C); O. eberhardi, from Cervus nippon

(Figures 2D,E); O. skrjabini, from Cervus nippon (Figures 2F,G) and

Capricornis crispus; O. suzukii from Capricornis crispus; Loxodontofilaria

caprini, from Capricornis crispus (Figures 2H,I); Cercopithifilaria japonica,

from Ursus thibetanus (Figures 3A,B); Mansonella (Cutifilaria) perforata,

from Cervus nippon (Figures 3C–F); M. (Tetrapetalonema) atelensis

amazonae, from Cebus olivaceus (Tables 2 and S2).

However, in four infected filarial species, Wolbachia were not

detected in each specimen. These species were Lo. caprini, M. (Cu.)

perforata, O. d. japonica and O. suzukii. The prevalence of Wolbachia

varied from 50% to 66% in these species (9, 4, 8 and 4 samples,

respectively, see Tables 2 and S2).

3. In Wolbachia positive filarial species lateral hypo-
dermal chords might be infected, might not be infected,
or weakly infected. The presence of the bacteria in the female

germline was not constantly associated to their presence in the

lateral hypodermal chords. Among the Wolbachia positive species

in which the tissue distribution of Wolbachia was studied, the lateral

chords harboured Wolbachia in L. sigmodontis (Figures 1A–D), O.

eberhardi (Figures 2D,E) and O. skrjabini (Figures 2F,G), C. japonica

(Figures 3A,B). On the contrary, Wolbachia were not observed in

the lateral chords of Lo. caprini (Figures 2H,I) and M. (Cu.) perforata

(Figures 3E,F). In O. d. japonica, the bacteria were not detected in

lateral chords of sectioned worms (Figures 2A–C) and in one of the

two whole mounted worms (Figure 5A), but a few bacteria were

observed in the second specimen (Figure 5B).

4. Rare or novel tissue Wolbachia localizations were
observed in Mansonella (Cutifilaria) perforata and
Cercopithifilaria japonica. In M. (Cu.) perforata the somatic

gonad was found positive once on sectioned worms and this was

confirmed on a whole mounted worm; the epithelium lining the

gonad harboured the bacteria, but not the external muscle layer

(Figure 5C). Moreover, bacteria were constantly found in the cells

of the intestine wall, in both sectioned and whole mount material

(Figures 3C–F; 5D). Wolbachia were also detected in the somatic

gonad of C. japonica, in whole mounted worms, but not in sectioned

worms (Figure 5E); in this species, Wolbachia were not found in the

intestinal cells.

5. Four types of Wolbachia were identified in the whole
study. Interestingly, no events of recombination were found in

16S rDNA, dnaA, ftsZ and groEL genes of Wolbachia from the

sequences of the filarial nematodes studied. According to the

Wolbachia supergroups, four types of Wolbachia were identified in

this study: bacteria harboured by Onchocerca, Dirofilaria and

Loxodontofilaria species were assigned to supergroup C; bacteria

harboured by L. sigmodontis and Litomosoides taylori were assigned to

supergroup D; bacteria harboured by the species of the two

subgenera of Mansonella (Tetrapetalonema and Cutifilaria) studied, as

well as those harboured by Cercopithifilaria japonica were assigned to

supergroup F; bacteria harboured by Dipetalonema gracile were

assigned to supergroup J (Figure 6).

The main Wolbachia clusters shown in the 16S rDNA

phylogenetic tree of figure 6 were ((Litomosa+Litomosoides) +
(Wuchereria+Brugia)); (Dirofilaria+ (Onchocerca+Loxodontofilaria)); (Cerco-

pithifilaria+Mansonella+Microcerotermes+Rhinocyllus+Kalotermes + Micro-

cerotermes). Wolbachia from representatives of supergroups A, B and

E formed separated and supported clusters; Wolbachia from

Ctenocephalides and Dipetalonema formed two separate lineages, that

were recently assigned to supergroups I and J respectively [14].

6. Wolbachia was not detected in more than half of the
newly screened species (Tables 2 and S2). The Wolbachia

negative species are: in Oswaldofilariinae, Piratuba scaffi; in

Waltonellinae, Ochoterenella royi and Ochoterenella sp.1; in Setariinae,

the five Setaria spp.; in Onchocercinae, 8 (upon nine) Cercopithifilaria

species (Figures 4A–H, 5F), Litomosa chiropterorum (Figures 1G,H),

and Monanema martini; in Splendidofilariinae, Aproctella sp. 1.

7. Inconsistency between phylogenies of Wolbachia
and filarial hosts was evidenced in the cocladogenetic
analysis. The topologies of the trees of the infected filariae and

their respective Wolbachia were found to have a significant level of

similarity for all of the four tree metrics tested in Component,

based on comparisons of the Wolbachia tree with 1000 random

host trees (p,0.03 in all cases). The lnL scores of the filarial and

Wolbachia ML trees based on the filarial dataset were 26189.35

and 26207.14 respectively. A Shimodaira-Hasegawa test showed

that the Wolbachia topology was significantly less likely (p = 0.035)

than the filaria topology. The lnL scores of the Wolbachia and

filarial ML trees based on the Wolbachia dataset were 210757.38

and 210950.85 respectively. A Shimodaira-Hasegawa test showed

that the filaria tree was significantly less likely than the Wolbachia

tree (p,0.001). Thus the null hypothesis that the host and parasite

have strictly co-speciated was rejected. The major inconsistency

was due to the newly screened Cercopithifilaria japonica and

Mansonella (Cutifilaria) perforata (Figure 7).

Another point of inconsistency in the phylogenies of hosts and

symbionts regards the positioning of L. sigmodontis: while

Wolbachia from this filarial is placed as the sister group of

endosymbionts from lymphatic filariae (B. malayi, B. pahangi and

W. bancrofti), the filaria itself is placed as a deeper branch in the

filarial tree (Figure 7). Indeed, based on morphological adult and

larval criteria, Litomosoides is closer to lymphatic filariae than to

Mansonella [45].

Discussion

As expected, the screening of a broader and more diversified set

of species samples, by a combination of PCR and gene sequencing,

immunohistological staining and whole mount fluorescent analysis,

Figure 1. Wolbachia immunostaining in the genera Litomosoides (L.) and Litomosa (Li.). Transverse sections of gravid females of three
species. A–D. Litomosoides sigmodontis, laboratory strain. A. Cuticle, lateral crests and muscles thin; hypodermal lateral chords Wb+; female germline
Wb+, as seen in the rachis of the distal region of ovaries. B. Less distal region of an ovary Wb+, uterus with ova/eggs Wb+ and spermatozoa Wb–. C.
Uteri with many divided eggs Wb+. D. Uteri with many microfilariae Wb+. E. Litomosoides yutajensis: cuticle and lateral hypodermis thin; lateral crests
and muscles obvious; hypodermal lateral chords Wb–, germ line Wb–, as seen with intra-uterine divided eggs. F. Detail. G. Litomosa chiropterorum:
muscles, lateral cuticular crests and hypodermis well distinct; hypodermal lateral chords and germ line Wb–. H. Detail of uteri with microfilarioid eggs
Wb–. I, Intestine; O, Ovary; R, Rachis of ovary; U, Uterus; c, cuticle; h, hypodermal lateral chords demarcated by white stars; m, muscles; *, lateral plan;
white arrow, oocytes; full arrow, ovulae. Scale bars: F & H, 10 mm; others, 25 mm. Sections were stained with a rabbit polyclonal antiserum against
Wolbachia Surface Protein (WSP) of Brugia pahangi Wolbachia (Wol-Bp-WSP, dilution 1:2000).
doi:10.1371/journal.pone.0020843.g001

Wolbachia Distribution in Filarial Nematodes

PLoS ONE | www.plosone.org 5 June 2011 | Volume 6 | Issue 6 | e20843



Wolbachia Distribution in Filarial Nematodes

PLoS ONE | www.plosone.org 6 June 2011 | Volume 6 | Issue 6 | e20843



revealed new information about Wolbachia biology and evolution:

novel tissue localizations, strong evidence for recent transfers

between unrelated filarial species, and a larger number of species

that do not harbour Wolbachia. In addition, the occurrence of

Wolbachia in some members of a species and its absence in others

raises questions about the evolution of its obligate requirement

[51].

1. New filarial tissues infected with Wolbachia
It is clear that tissues other than the female germline and the

hypodermal lateral chords may be infected with Wolbachia. One of

these infected tissues is the somatic gonad (epithelial layer), once

briefly reported previously [52]. This Wolbachia localization was

evidenced in Mansonella (Cutifilaria) perforata and Cercopithifilaria

japonica (Table 2; Figures 5C,E). Interestingly, they are both

members of the supergroup F of Wolbachia.

The real novelty is the Wolbachia tissue localization in the

intestinal wall; it was only observed in M. (Cu.) perforata, but in all

sectioned and whole mount samples (Figures 3C–F, 5D).

These divergent localizations suggest a more complex and

diversified relationship between the bacteria and filariae. They

also raise the question of how and when Wolbachia bacteria reach

the appropriate filarial host tissues. It is likely that it is an early

event, since it was shown in Brugia malayi an asymmetric

distribution of bacteria in the egg followed by a preferential

segregation in defined blastomeres [21].

2. Recent capture of Wolbachia type F suggested by
Cercopithifilaria japonica, parasite of the Japanese bear

The species screened in this study generally confirm the previously

identified types of Wolbachia in the Onchocercidae (Figure 6; see for

instance [9]). The newly screened Loxodontofilaria is placed among the

species of Onchocerca [53]. In addition, endosymbionts from this filaria

belong to Wolbachia supergroup C (Figure 6). There is a major

phylogenetic congruence discrepancy between Wolbachia and their

hosts and it occurs in the genus Cercopithifilaria and the supergroup F

of Wolbachia. One African and seven Japanese species of Cercopithi-

filaria have no Wolbachia, while one species in Japan is Wolbachia

positive. The filarial hosts belong to a well-supported genus,

Cercopithifilaria as evidenced by adult morphology [45,54], larval

morphology [55], 12S rDNA gene sequences [53,56], the transmis-

sion by hard ticks and the skin-dwelling microfilariae [45]. A

parsimonious interpretation of the Wolbachia screening is that a single

acquisition event took place in C. japonica. This hypothesis is

supported by the co-cladogenetic analyses (Figure 7).

The supergroup F is intriguing as it is presently the only

Wolbachia type infecting both insects and onchocercid nematodes

[7]. The Wolbachia supergroup F contains the species of Mansonella

studied so far: M. (M.) ozzardi and M. (Esslingeria) perstans [13,15],

and in this study, M. (Tetrapetalonema) atelensis amazonae, M.

(Cutifilaria) perforata. Cercopithifilaria japonica in supergroup F suggests

a transversal transmission event, likely recent due to limited

occurrence among the species of this genus. C. japonica is a parasite

of the Japanese bear in which it coexists with a species of

Mansonella of the subgenus Mansonella [57]. This Mansonella species,

M. (M.) akitensis [58], has not been screened for Wolbachia but it

likely harbours the type F Wolbachia. The bacterial host switching

might have occurred between the two filarial parasites of the bear,

perhaps via an oral infection route. Indeed filariae, despite their

apparent small mouth, can ingest particles from their environ-

ment, such as red blood cells [59] and larger bodies, such as

microfilariae released in the coelomic cavities of the filarial host

[60].

3. Absence of Wolbachia
The filarial species in which Wolbachia were not detected

appeared more numerous than it was thought, based upon

previous observations. In [34], the percentage of negative species

was 10.5% (2 negative among 19), in [5] with a larger sample, it

was 37%. In this study, it is twice more elevated, 63%. It has to

be emphasized that the negative results were not due to DNA

degradations or bad extractions because all of the Wolbachia PCR

negative samples gave positive amplifications using filarial

nematode specific primers. However, we must take into account

the fact that, in a few species, Wolbachia were not detected in all

the specimens. This can partly be explained in species which do

not harbour Wolbachia in the lateral chords, or at very low

density, as Onchocerca dewittei japonica (Figures 5A,B) and Lox-

odontofilaria caprini (Figures 2H,I). In M. (Cu.) perforata, the bacteria

are in the intestine wall of the female worms (Figures 3C,D, 5D)

and any part of female body would be Wolbachia positive, but this

is not the case (Tables 2, S1 and S2). Thus, in M. (Cu.) perforata,

presence/absence of Wolbachia may occur, as suggested by [15]

for another Mansonella species, M. (Esslingeria) perstans from

humans. It is interesting to note that in both of these cases, the

Wolbachia supergroup is F. Further, research performed on deeply

studied filariae, such as Brugia malayi, have also shown that the

amount of Wolbachia carried by a worm may vary greatly over

time and be stage-dependent [21]. This dynamic probably has

little impact when considering developing larval stages, because

these are transient and the chance of recovering them in the wild

is extremely low. More interesting is the observation that the

female worms recovered in the wild are not all fully gravid in

some species (Figure 2F). This was not the case of filariae from

frogs, lizards, bats, birds, but was the case from some parasites of

Japanese ungulates. It is worth to note that we paid great

attention to the part of worm sampled to ensure that the germline

was screened in all species.

4. Systematic position of Wolbachia negative filariae
It is clear that there is a need to increase the number of screened

specimens for more solid results. However, in several cases, the

global results are impressive and the distribution of the Wolbachia

negative species does not appear random. As a matter of fact, at

present, the species parasitic in frogs and lizards are negative for

Wolbachia if they are Waltonellinae (three species of Ochoterenella),

Figure 2. Wolbachia immunostaining in the genera Onchocerca (O.) and Loxodontofilaria (Lo). Transverse sections of females of four species
of filariae with Wb+ germ line, at two magnifications. A. Onchocerca dewittei japonica: cuticle thick, lateral crest not marked, hypodermal chords well
delineated and Wb–, large section of uterus and small sections of ovaries Wb+. B: Detail of lateral hypodermal chord Wb– and ovary Wb+. C: Detail of
intra-uterine ova and ovary Wb+. D. Onchocerca eberhardi: thick cuticle with few ridges, thin muscles and thinner Wb+ lateral hypodermis; uteri with a
few sections of divided eggs Wb+. E. Detail. F. Onchocerca skrjabini: cuticle very thick, with particular crescent-like layer forming the lateral crest, very
thin lateral hypodermis Wb+ and empty uteri. G. Detail. H. Loxodontofilaria caprini: cuticle thick, well-developed muscle cells, thinner lateral chords
Wb–; two uteri, one empty, one with Wb+ ova. I. Detail. I, Intestine; O, Ovary; U, Uterus; c, cuticle; h, hypodermal lateral chords delimitated by white
stars; m, muscles; *, lateral plan; thin arrow, detail of Wolbachia. Scale bars: A,D,H, 50 mm; B,C,E,G,I, 25 mm. For staining, see Fig. 1.
doi:10.1371/journal.pone.0020843.g002
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Oswaldofilariinae (one species of Piratuba), or Dirofilariinae (two

species of Foleyella). It was also shown here that the first screened

species parasitic in birds, an Aproctella in the Splendidofilariinae,

was Wolbachia negative (7 females screened with PCR, from two

passeriform species, totalising 7 specimens hosts). Wolbachia were

not detected also in several species of Onchocercinae from

mammals. The first is Litomosa chiropterorum, from an African bat (8

specimens screened from 8 Miniopterus schreibersi), an unexpected

observation since the single Litomosa species screened previously,

Li. westi from a North American rodent Geomyoidea, was

Wolbachia positive [5].

The second species is Monanema martini (8 females screened from

8 murid specimens). The absence of the bacteria is an important

feature, considering that this filaria was used, in the past, as a

model of onchocerciasis, a true limit due to the important role

played by the bacteria in the pathology of the disease [39,61–63].

The absence of Wolbachia could explain partly the weak ocular

pathology induced in the murid host [49]. Severe or mild ocular

onchocerciases have been related to a strain-dependent variation

of density of Wolbachia per filarial genome [64].

Other species in which Wolbachia were not detected belong to

the genus Cercopithifilaria; 8 out of 9 species were Wolbachia-negative

(Table 2; Figures 4; 5F).

Two hypotheses might be taken into account to explain the

absence of Wolbachia. In the first case, Wolbachia could be

considered to be present and then were subsequently lost [38].

This could have occurred before the mutually dependent

symbiosis between symbiont and host developed. The second

hypothesis is that the bacteria were not yet acquired within that

filarial group.

The first hypothesis seems to possibly explain some of the

observed cases, such as Litomosoides yutajensis (5 samples: 2 males

previously and now 3 more females), a species without Wolbachia,

in contrast with 5 congeneric species infected with Wolbachia. In

the cases of Acantocheilonema viteae and Onchocerca flexuosa [38], the

absence of Wolbachia appears to be a secondary loss, because some

genes of the bacteria were incorporated in the filarial genomes.

However, it is not clear whether this loss occurred before symbiosis

was established or not. This is of interest because if loss was after

symbiotic establishment, perhaps some of the genes incorporated

into the host genome were those required by the host now

provided by Wolbachia, but the extent of this event is still to be

understood.

The hypothesis that the Wolbachia negative species might

never have been infected, might be considered for the filarial

groups that are supposed to be ‘‘ancient’’ such as the Oswaldo-

filariinae [44,45,65]. Estimation of dates of divergence has

been proposed for some groups of nematodes based on mole-

cular phylogenetic analyses [66]. In filariae, data from mor-

phology, biology, geographic distribution, host range and

palaeontology led to the proposal that the Oswaldofilariinae

emerged during the late Jurassic, at the beginning of the

Gondwanian break up, 140 mya [44,45]. This is before the

hypothesized ancestral acquisition of a Wolbachia by an oncho-

cercid [3]; it follows that the absence of Wolbachia in Oswaldo-

filariinae could be primitive.

Foleyella is another parasite of saurians, which appears to have

no Wolbachia; it is presently placed in the Dirofilariinae, which

includes the Wolbachia positive Dirofilaria, but this systematic

position needs to be revised because the characters of the infective

larvae are very distinct [55]. A solid phylogeny of Onchocercidae

linking traditional and molecular data is needed and warrants

further investigations.

The subfamily Setariinae, parasitic in ungulates and in which

Wolbachia were not detected, as first shown by [67], also deserves a

comment. Based on larval morphology, it has been hypothesized

that it evolved separately from the other onchocercids and derived

from a group of spirurid Habronematinae [65]. Until now no

spirurids have been found infected with Wolbachia [5,34].

Did the bacterial infection never occur, or was the useful part of

Wolbachia genome incorporated in the host genome and

subsequently the bacteria eliminated, to reply to some adverse

constraint? Further genomic analyses will solve this question

concerning the absence of Wolbachia in ancestral filariae.

At present, the features observed on tissue or specimen

distribution, and a very probable recent lateral transfer, suggest

complex evolutionary dynamics of interactions between the

symbionts, their host filariae and the nematode hosts. In the

sampling studied, which will be further enlarged, it may become

possible to use some defined species to decipher these questions.

Materials and Methods

Specimens and species
Specimens of filariae were recovered during dissections of the

vertebrate hosts captured in the wild from different geographic

areas [50,54,68–72].

All experiments, procedures and ethical issues were conformed

to the competent national ethical bodies: Venezuelian animals

were captured according to Licencia con Fines Cientificos Nu
2192 dated June 18, 2007 and Contrato Marco Acceso Recursos

Genéticos Nu 33/2007 both granted by Ministerio del Ambiente

de la Republica Bolivariana de Venezuela. Japanese serows, sika

deer, bears, and wild boars were killed by hunters who have an

individual permit to kill wild animals in accordance with the

conservation and control policies of the Ministry of the

Environment of Japan. Italian samples were collected by

veterinarians and physicians and no permits were necessary.

African rodents and agama do not belong to protected species and

were obtained from local hunters. African mountain reedbuck,

plain zebra, gemsbok and porcupine were also obtained from local

hunters. Bats from South African bats have been collected for

previous studies [48] in which no permits were necessary. Brazilian

birds were donated by the Brazilian Institute of the Environment

and Renewable Resources (IBAMA), Region of Juiz de Fora,

Minas Gerais for the laboratory of Taxonomia and Ecology of

Helminths of the Department of the Zoology.

Many of the filariae from large mammals were extracted from

the subconnective tissue, dermis, or tendons of limbs. Host animals

kept at 4uC were sent to the laboratory after they were killed.

Afterwards the parts of the animals were dissected to collect living

filarioids for Wolbachia study. From frogs, lizards, birds, bats and

rodents filariae were generally recovered immediately after host

Figure 3. Wolbachia immunostaining in the genus Cercopithifilaria (C.). Transverse sections of females of four species Wb–, at two magnifications.
A. Cercopithifilaria crassa: muscles and lateral cuticular crests thick; lateral narrow thick hypodermis and distal ovaries Wb–. B. Detail. C. Cercopithifilaria
longa: thin lateral chords Wb–, two uteri with microfilariae Wb–. D. Detail. E. Cercopithifilaria minuta: thin lateral chords Wb –, thick muscles, two uteri
with divided eggs Wb–. F. Detail. G. Cercopithifilaria shohoi: lateral crest rather thick, thin hypodermal chord Wb–, small section of ovary with oocytes
Wb– and large section of uterus with ova Wb–. H. Detail. I, Intestine; O, Ovary; U, Uterus; c, cuticle; h, hypodermal lateral chords delimitated by white
stars; m, muscles; *, lateral plan; white arrow, oocytes. Scale bars: A,C,E,G, 25 mm; B,D,F,H, 10 mm. For staining, see Fig. 1.
doi:10.1371/journal.pone.0020843.g003
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death. Samples used for positive and negative PCR controls were

laboratory strains.

Species identification of the specimens was done with

morphological studies performed by several of us (OB, SU, RG,

SL, MD). Some species are not yet named, but all are under study,

and morphological analysis and sequencing of coxI gene in this

study and in [53] showed that they represent distinct molecular

entities. Co-infection of a host specimen by several congeneric or

Figure 4. Immunostaining of Wolbachia in females of two species. A. Cercopithifilaria japonica: wide rather flat lateral crests, hypodermis thin
and Wb+, muscles thicker, germ line Wb+. as seen with the intra-uterine ovulae (on left); Wb– spermatozoa in this uterus and in the smaller more
distal section (on right). B. Detail. C. Mansonella (Cutifilaria) perforata: lateral chords wide, flat and Wb–, muscle cells much thicker, germ line Wb+ as
seen with 3 divided eggs in one of the uteri, intestine Wb+. D. Detail. E. Other section, intestine Wb+, eggs Wb+ and hypodermal lateral chord Wb–. F.
Detail. I, Intestine; O, Ovary; R, Rachis of ovary; U, Uterus; c, cuticle; h, hypodermal lateral chords delimitated by white stars; m, muscles; *, lateral plan;
thin arrow, detail of Wolbachia. Scales: A,C,E, bar = 25 mm; B,D,F, bar = 10 mm. For staining, see Fig.1.
doi:10.1371/journal.pone.0020843.g004
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non-congeneric filarial species was rather frequent in large

mammals, but in a few cases, the same filarial species was

recovered from two host species. The supraspecific levels of

taxonomy followed the systematic works of [46,73,74] and more

recent studies for some taxa: [65,71,75] for the subgeneric

divisions of Mansonella Faust, 1929; [54,56] for the genus

Cercopithifilaria Eberhard, 1980 (created as a subgenus); and [54]

for the genus Loxodontofilaria Berghe & Gillain, 1939.

Abbreviations used in the text are: A. for Aproctella; C. for

Cercopithifilaria; Cu. for Cutifilaria; D. for Dirofilaria; Di. for

Dipetalonema; F. for Foleyella; L. for Litomosoides; Li. for Litomosa; Lo.

for Loxondontofilaria; M. for Mansonella; Mo. for Monanema; O. for

Onchocerca; Oc. for Ochoterenella; P. for Piratuba; S. for Setaria; T. for

Tetrapetalonema. The material screened in this study is detailed in

Figure S1, Tables S1 and S2.

Filarial worms were fixed and kept in absolute alcohol at 4uC
for PCR analyses, in 4% PFA (paraformaldehyde) for overnight at

4uC for immunohistochemical staining and whole mount fluores-

cent analysis. In many cases, filarial specimens were cut into

anterior (a), median (m) and posterior (p) parts, which were fixed

for the different analysis approaches. Since Wolbachia are

transmitted by female filariae, almost all of the studies were based

on female worms; male specimens were rarely examined, and we

analysed this sex alone in a single case, Di. gracile (Table S3).

Molecular screening for Wolbachia on filarial nematodes
PCR screening for Wolbachia was conducted according to [5,12],

using general Wolbachia primers for 16S rDNA (99f and 994r [76]),

originally designed to work on Wolbachia from the supergroups A

and B, and primers for 16S rDNA (16SWolbF and 16SWolbR3),

originally designed to work on Wolbachia from the supergroups A–

D [12], but whose target sites are also conserved in Wolbachia from

supergroups E and F [8].

PCRs were performed in a 20 ml final volume under the

following conditions: 1x buffer (containing 1.5 mM MgCl2,

EppendorfTM), 0.2 mM of each dNTP, 1 mM of each primer,

and 0.5 U of Taq DNA Polymerase (EppendorfTM). The thermal

profile used was: 94uC 45 sec, 52uC 45 sec, and 72uC 90 sec for

40 cycles.

When the PCRs were negative under the above PCR

conditions, a nested-PCR approach was implemented in order

to improve the sensitivity of the PCR screening [5,77]. The first

PCR was performed using the general eubacterial primer 27F [78]

combined with 16SWolbR3; PCR volumes and conditions were as

above. Five ml were visualised on a 1.5% w/v agarose gel and one

ml of the first PCR was diluted 1/10 and 1/100 in water, and then

both used as templates in a second PCR, performed using primers

W-EF and W-ER [70]. W-ER and W-EF recognize sites that are

conserved in supergroups E–F and that are internal to the primers

used in the first PCR. PCR conditions for this amplification were

as described in [79].

Of samples remaining negative after the two PCRs approaches

described above, PCRs with primers 16SWolbF and 16SWolbR3

were performed varying the following parameters: MgCl2
concentrations at 2.5, 4 and 6 mM and annealing temperatures

of 52uC +/25uC.

DNA preparations from filarial species harbouring Wolbachia (D.

immitis and Brugia pahangi) and from a Wolbachia-infected strain of

mosquitoes (Culex pipiens) [5] were included in the screening as

positive controls. DNA preparations from a filarial species not

harbouring Wolbachia (A. viteae) [5] were included as negative

controls.

Of the samples positive for PCR screening homologous to

Wolbachia 16S rDNA, dnaA, ftsZ and groEL were also amplified

using the primers described in [5,80] under the following

conditions: 1x Eppendorf buffer including 1.5 mM MgCl2,

0.2 mM of each dNTP, 1 mM each of forward and reverse

primers, and 0.5 units MasterTaq (Eppendorf). The thermal

profiles we used were: (1) dnaA, 94uC 45 sec, 52uC 45 sec, and

72uC 90 sec, for 40 cycles; (2) groEL, 94uC 45 sec, 60uC 45 sec,

72uC 80 sec, for 5 cycles, and 94uC 45 sec, 55uC 45 sec, and 72uC
80 sec, for 34 cycles; (3) ftsZ, 94uC 30 sec, 60uC 45 sec, 72uC
90 sec, for 5 cycles, and 94uC 30 sec, 57uC 45 sec, and 72uC
90 sec, for 34 cycles.

Amplifications were performed in 20–50 ml volumes.

In all cases, in order to ascertain the DNA conditions before

Wolbachia screenings and to confirm morphological identification,

coxI amplification was performed as described in [12].

Sequencing conditions
coxI sequencing was performed as described in [12]. dnaA,

ftsZ and groEL sequencing were performed as described in

[5,80]. From the Wolbachia PCR positive samples, almost the full

length of the 16S rDNA gene of Wolbachia was sequenced using

primers 27F and 16SWolbR3. The amplifications obtained

(about 1400 bp) were gel-purified (using the QIAquickH PCR

Purification Kit, Qiagen) and directly sequenced using ABI

technology. The sequences obtained have been deposited in

the EMBL Data Library. The dnaA, groEL and ftsZ sequences

Figure 5. Whole mount fluorescent analysis of Wolbachia in
females of four species stained with propidium iodide for DNA
(in red) and phalloidin for actin (in green). A. Hypodermal lateral
chord of a specimen of Onchocerca dewittei japonica without
Wolbachia. B. Idem, a second specimen with a few Wolbachia (arrow).
C. Epithelial somatic gonad with Wolbachia in Mansonella (Cutifilaria)
perforata. D. In the same specimen, intestinal wall cells (in) with
Wolbachia and above, lateral chord (ch) without Wolbachia. E.
Wolbachia in epithelial somatic gonad of Cercopithifilaria japonica. F.
Metaphase in a Cercopithifilaria crassa zygote, showing the absence of
Wolbachia in the embryo. Polar bodies (PB) on the left. *: host cell
nuclei; arrow: Wolbachia. Scale bar = 20 mm.
doi:10.1371/journal.pone.0020843.g005
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were not obtained from all the taxa included in this study

mainly caused by the scarcity of certain specimens, and

amplification/sequencing problems for some of the species

examined. Where DNA of the host was amplified, the PCR

product was purified as above and directly sequenced using ABI

technology.

A list of the sequences including accession numbers is available

in Table S2.

Immunohistochemical staining of worm sections
Immunohistochemical staining was performed according to

[24,48]. A rabbit polyclonal antiserum raised against the WSP of

Table 2. Synthetic results of the screening for Wolbachia with PCR, immuno-histo staining and whole mount fluorescent analysis.

immunostaining/whole mount

N6 Subfamily Species Wb +/n Wb supergroup Lat. hyp. Other tissue Wb+

1 Oswaldofilariinae Piratuba scaffi 0/3 absent

2 Waltonellinae Ochoterenella royi 0/4 absent

3 Ochoterenella sp. 1 0/2 absent

4 Setariinae Setaria digitata 0/1 absent

5 S. tundra 0/1 absent

6 sp. 1 0/1 absent

7 sp. 2 0/2 absent

8 sp. 3 0/1 absent

9 Dirofilariinae Foleyella candezei 0/1 absent

10 Dirofilaria repens 1/1 C

11 Loa loa 0/2 absent

12 Onchocercinae Cercopithifilaria bulboidea 0/2 absent

13 C. crassa 0/4 absent 2

15 C. japonica 7/7 F + som. gonad

14 C. longa 0/5 absent 2

16 C. minuta 0/3 absent 2

17 C. multicauda 0/1 absent

18 C. roussilhoni 0/2 absent

19 C. shohoi 0/4 absent 2

20 C. tumidicervicata 0/1 absent

21 Dipetalonema gracile 1/1 J

22 Litomosa chiropterorum* 0/9 Absent 2

23 Litomosoides sigmodontis 2/2 D +

1/1 D

24 L. taylori 1/1 D

25 L. yutajensis 0/3 absent 2

26 Loxodontofilaria caprini 5/9 C 2

27 M. (Cu.) perforata 3/4 F 2 som. gonad, gut

28 M. (T.) atelensis amazonae 1/1 F

29 Monanema martini 0/8 absent

30 Onchocerca d. japonica 4/8 C 2 +

31 O. eberhardi 4/4 C +

32 O. skrjabini 3/3 C +

3/3 C

33 O. suzukii 3/4 C

34 O. volvulus 1/1 C

35 Splendidodilariinae Aproctella sp. 1 0/1 absent

0/1 absent

nb of Wb+ specimens/nb of specimens 40/112

nb of Wb+ species/nb of species 15/35

Nu: number attributed to species in this study; n = number of specimens screened; Lat. hyp.: lateral hypodermal chords, som.:somatic; Bold characters: species, genus
and subgenus newly screened; * Species screened in Junker et al., 2009.
doi:10.1371/journal.pone.0020843.t002
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the Wolbachia from B. pahangi (designed by [81]) has been used to

stain samples of 13 filarial species (see Tables S2 and S3). After

paraffin inclusion, 4 mm sections were obtained and placed on

Silane coated glass slides (3-aminpropyltriethoxysilane) and then

kept at 63uC overnight, to avoid sections detaching from slides.

To verify that the 63uC overnight did not alter the specific

epitopes, Wolbachia positive L. sigmodontis laboratory strain were

incubated at both 63uC and room temperature overnight and

then stained: no significant differences in the staining were

observed. Negative controls were carried out by omitting the

primary antibody.

Fixed female worms were divided in three main parts,

posterior (p), median (c) and anterior (a) in order to observe

the different regions of the genital tract. Transverse sections

were made at different levels of each part, and few of them were

stained with hemalun-eosin for anatomical identification. Lateral

cuticular internal crests were identified to orient the worm

section; hypodermal chords extend above and on the side of the

crests. The filarial species used for histology are opisthodelphic

and the initial part of the ovaries is in the posterior part of the

worm; the distal region of the ovary is composed of a

cytoplasmic axis, the rachis [82,83], and an outer cytoplasmic

Figure 6. Phylogeny of Wolbachia based on 16S rDNA gene sequences. Names at the terminal nodes are those of the host species (with the
exceptions of the outgroup species). A–J are the supergroups names according to [1,3,8,14]. The tree has been obtained by Bayesian inference of
phylogeny, using MrBayes 2.01; numbers at the nodes are the posterior probability values. Species in bold are those newly found positive in the
screening for Wolbachia performed in this study. Accession numbers are given for the sequences present in the databases.
doi:10.1371/journal.pone.0020843.g006
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layer with the nuclei of oogonia and oocytes (in the text we will

refer to these states as oocytes, and germline to describe the

whole production of the gonad). An epithelial layer and an outer

muscle layer surround the gonad, both referred to as somatic

gonad in the text [25]. Uteri occupy almost the whole body and

are found in median and anterior part of worms. The different

uterine contents are ovulae, spermatozoa, divided eggs and

microfilariae. Eggs were identified as aborted by hemalun-eosin

staining when divided eggs were eosinophilic and nuclei not

discernible. The laboratory strain of Litomosoides sigmodontis,

which has been shown in several studies to harbour Wolbachia

[84–86] was used as a positive reference for Wolbachia

immunostaining.

Whole mount fluorescent analysis
Worms were cut with a razor blade to expose the different

tissues to RNAse A (15 mg/mL, Sigma) in rotating tubes

overnight at 4C. They were rinsed in PBS, and incubated with a

fluorochrome-conjugated Phalloidin (atto2488 Phalloidin, Fluka,

at 10 nanomolar) overnight to stain F-actin, followed by a

Propidium Iodide (Molecular Probes, 1.0 mg/mL solution)

incubation for DNA staining for 20 minutes in PBS (1:50) and a

5 minutes wash. Tissues were mounted in Vectashield (Vector

Laboratories) [25]. The species analyzed were C. crassa, C. japonica,

Lo. caprini, M. (Cu.) perforata and O. d. japonica (Table S1).

Phylogenetic reconstruction
The bacterial 16S rDNA, dnaA, groEL and ftsZ sequences and

filarial 12S rDNA and coxI sequences generated were aligned

with the sequences available in the databases (for the ribosomal

genes according to their secondary structures) using ClustalX2

[87].

The alignments were analysed using Maximum Likelihood

(ML) and Bayesian Inference of phylogeny (BI) methods. The

appropriate model of sequence evolution for ML and BI was

estimated via likelihood ratio test using Modeltest 3.7 [88]: the

model selected for the filarial concatenated dataset was HKY+G,

while the model for the Wolbachia concatenated dataset was

GTR+I+G. Phylogenetic analyses were performed using PAUP*

4.0 b10 [89] and MrBayes [90]. In addition, a phylogenetic tree

was inferred with a GTR+C4 nucleotide substitution model in a

Bayesian framework using MrBayes version 3.0 [90]. Two

independent runs were performed, each using 1 million steps

with four chains sampling every 100 steps. The first 10% of the

trees were removed and posterior probabilities were calculated

from these post-burnin trees.

Test for recombination
Four Wolbachia alignments (relative to the genes 16S rDNA, ftsZ,

groEL and dnaA) were screened for presence of recombination

events by using a set of nonparametric detection programs: RDP,

GENECONV, Bootscan, MaxChi, Chimaera, SisScan and LARD

[91–97]. The first six programs search for putative recombination

breakpoints in a set of aligned DNA sequences and are

implemented in RDP3 software package, whilst LARD checks

signals detected by other methods [92]. Sequences were auto-

masked for optimal recombination detection. General recombi-

nation settings were as follows: sequences were considered linear

Figure 7. Cocladogenesis of Wolbachia and filarial nematodes based on representatives of the species studied. For these species
sequences for nematode coxI and 12S rDNA (phylogeny on the left) and bacterial 16S rDNA (phylogeny on the right) were available. Dotted lines have
been added to emphasize major discrepancies between filarial and Wolbachia trees. For further details, see paragraph 7 in the Results section.
doi:10.1371/journal.pone.0020843.g007
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and the highest acceptable P-Value was set to 0.01 and

overlapping signals were disentangled.

Method specific options were as follow: MaxChi and Chimaera

were run with a variable window size; Bootscan and SisScan were

forced for exploratory screening. Successive phases of refining

analysis and manual tests were performed where needed.

Cocladogenesis analysis
To test for congruence, phylogenies for the hosts (based on a

concatenated dataset of coxI and 12S rDNA) and for the bacterium

(based on a concatenated dataset of 16S rDNA, ftsZ, dnaA and

groEL) were compared with two methods. The first tested whether

there was a greater than random correspondence between

reconstructed nodes for host and symbiont. This was performed

in Component (R. Page, University of Glasgow, UK) using the

‘‘compare tree with’’ function, with 1,000 randomized trees and

the four available tree-comparison metrics (partition; triplets;

quartets, nearest neighbour interchange). The second test

examined the null hypothesis that the endosymbionts have

undergone cocladogenesis with their hosts. ML trees for each

dataset were first estimated using the successive approximation

method [89]. Then, the scores for each of these ML trees based on

the host dataset were compared using the [98] test. This was

repeated using the parasite dataset. A single uninfected filarial (T.

callipaeda) and a non-filarial Wolbachia (from C. quinquefasciatus) were

used as outgroups.

Supporting Information

Figure S1 Position of the genera screened in the present study

indicated on a schematic representation of a key of the

onchocercid subfamilies, based on morphological characters

(following [46]). Total number of genera per subfamily listed.

*Genus screened for the first time. ** Two subgenera in Mansonella.

(DOC)

Table S1 Details of material studied with PCR, immunostaining

assays (IHS) and whole mount fluorescent analysis (fluo). The

scheme follows the classification as in Tables 1 and 2. Species,

genus and subgenus, subfamily are in bold characters when newly

screened; specimens ids are in bold characters when female

worms; m = male; f = female; a = anterior part; c = central part;

p = posterior part; *150 infective larvae; + = Wolbachia positive

specimens.

(DOC)

Table S2 Results of Wolbachia screening based on PCR,

immunostaining assays and whole mount fluorescent analysis in

35 filarial nematodes. Taxa are presented in alphabetical order.

(DOC)

Table S3 Wolbachia distribution in the tissues of 13 onchocercid

species. +: stained; 2: not stained; NA: not available because the

body structure is not present. *staining shown on Figures 1–4.

(DOC)
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