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YOLOX-DG robotic detection systems
for large-scale underwater concrete structures

Chenjie Zhang,1,4 Hongkuan Ma,1,4 Zhaochang Chen,1 Shengquan Li,1,3 Zhongze Ma,1 Hui Huang,1,3

Ronghua Zhu,1 and Pengcheng Jiao1,2,3,5,*
SUMMARY

Large-scale complex underwater concrete structures have structural damage and the traditional damage
detectionmethodmostly usesmanual identification, which is inaccurate and inefficient. Therefore, robotic
detectionsystemshavebeenproposed to replacemanual identification forunderwater concrete structures
in ocean engineering. However, the highly corrosive and disruptive environment of the ocean poses great
difficulties for the application. Here, we develop a manta ray-inspired underwater robot with well control-
lability to establish the damage datasets of underwater concrete structures, proposing the YOLOX-DG
algorithm to improve the damagedetection accuracy, and integrating themodel into the robotic detection
systems for underwater concrete damages. Eventually, the system is used for ocean testing in real applica-
tions (i.e., underwater marine harbors around the East China Sea), and satisfactory detection performance
is obtained. The reported manta ray-inspired robotic detection system can be used to accurately monitor
and analyze the underwater regions.

INTRODUCTION

Assessing and maintaining safety and stability has become increasingly crucial for large-scale underwater concrete structures.1–5 Given the

limitation of manual inspection methods in highly relying on visual inspection, subjective judgment, and personal experience of inspectors,

various robotic systems have been developed for automatic damage detection in recent years.6 Underwater robotic detection systemsmainly

consist of two functional components, including underwater robots and detection technologies. Compared to traditional methods, robotic

damage detection systems offer higher efficiency and accuracy with less fewer risk factors (see Section S1). More importantly, small robots can

effectively approach the complex regions that are unreachable formanual inspection, especially for large-scale complex underwater concrete

structures.7

Detection technologies in underwater robotic systems mainly include machine vision8–11 and laser scanning.12–15 The former assesses

structural damages by analyzing monitoring images, and the latter uses lasers to measure the shape and size of structural surfaces. Machine

vision, such as pattern recognition (PR), excels at detecting changes in color, shape, and texture. It has the capability to capture images from

various angles and is flexible in detecting structures with complex shapes or obstacles. On the contrary, laser scanning needs to be tailored to

detect complex structures as the laser may have difficulty reaching the target surface. With its advantages in accuracy and convenience,

different machine learning (ML) algorithms have been developed for PR of the concrete detection images.16,17 Currently, however, the exist-

ingML algorithms still face the challenges of high computing cost and inadequacy in implementing edge computing.18–21 The variety of con-

crete damages in the existing datasets is low, while the quality of the images used for model training needs to be improved.22 In addition, the

post-processing of the existingmonitoring systems for underwater concrete structures is inadequate, which critically affects the repairing res-

olutions after identifying those damages.7

Here, we report the robotic detection systems inspiredbymanta ray for large-scale complex underwater concrete structures, which include

the biomimetic robotic systems (Figure 1A) and concrete detection model (Figure 1B). The manta ray-inspired robots are developed to flex-

ibly adjust postures23–26 in the underwater environments such as the bottomofmarine harbors tomonitor structural damages. Since sediment

and water plants around harbors may entangle the underwater devices, the manta ray-inspired robots are designed with the transient driving

method (TDM)27–33 component for reaching or getting rid of the monitoring regions by a sudden activation with high acceleration (i.e., within

0.01 s) (see Video S1). To minimize the influence of ocean waves on stability, the robots are designed with the self-adjusting balance function

(see Videos S2 and S5). To develop the concrete detectionmodel, we establish the concrete target detection datasets, dividing them into the

four damage types of cracks, spalling, exposed reinforcement, and corrosion, collecting detection images accordingly, and marking the
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Figure 1. Design principle of the robot and mechanism of the prediction system

(A) Illustration of the robotics and intelligent recognition system, the manta ray-inspired fast response robot swims into the bottom of the harbor to capture

concrete structural damages. (i), The robot mimics manta ray in appearance for well controllability and is equipped with propeller system. (ii), The ejection

system of the robot enables the robot to rapidly avoid obstacles and start-up.

(B) The illustration of the YOLOX-DG algorithm used in the detection system, including four steps Input, Data augmentation, Iteration process, and GIoU loss.
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damage regions. The datasets have good annotation quality with good algorithm testing performance. Next, we expand the YOLOX34 algo-

rithm to YOLOX-DG by enhancing the data augmentation and modifying loss function for underwater concrete structures with well damage

detection performance, e.g., 4.5% for mAP0.5:0.95. is improved on the original basis. Eventually, the robotic detection systems have been

applied for large-scale complex underwater concrete structures in real applications. Ocean testing has been conducted on the underwater

marine harbors around Gouqi Island in the East China Sea with satisfactory detection performance. The reported manta ray-inspired robotic

detection systems can be used to accurately monitor and analyze the underwater regions that are unreachable for typical underwater robots

in complex underwater scenarios.

RESULTS

Robotic systems

The robotic detection system proposed in this paper consists of both hardware and software components. First, we describe the fabrication

process of the robot and its components. The fabrication of the manta ray-inspired robot can be divided into three steps, including the
2 iScience 27, 109337, April 19, 2024



Figure 2. Fabrication of the manta ray-inspired fast-response robot

(A) Manufacturing process of the robot, including soft membrane, chamber and manta ray-inspired robot shell.

(B) The working schematic of the robot detection systems.

(C) Overall prototype and the details of the 3D printed robot shell size.
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ejection, propulsion, and biomimetic body shell, as shown in Figure 2. Figure 2A demonstrates the fabrication process of the ejection actu-

ator, chamber, and 3D-printed body shell. The soft membrane in the ejection actuator was made of silicon rubber.We poured the silicone gel

A and B into the beaker in equal amounts and fully mixed. The mixed silicone gel was poured into a mold and cured at the room temperature

for 8 h. The steel chamber was manufactured by the selective laser melting (SLM) technology, and the 3D printed manta ray-inspired body

shell was made by the resin materials with the density close to water. Figure 2B presents the working schematic of the robotic detection sys-

tems. Smart phone was used to manipulate the robot’s movements through a Wi-Fi station. For example, when the robots needed to move

fast for obstacle avoidance, themicrocontroller unit (MCU) sent the control signal to the explosionmodule to actuate the ejection system (see

Figures S1 and S2, and Tables S1–S3). The manta ray-inspired robots can adjust their attitude and position using the balance sensors and

propellers. The camera on the head of the robots can capture the structural damage of the harbor and send video signals to the MCU for

damage analysis. It is worthmentioning that we designed two powerful fill lights to address the issue of dim underwater light andmurky water

(see Video S6). Figure 2C shows the overall prototype and details of the 3D-printed manta ray-inspired robots. The length, width, and height

are 54, 42, and 27 cm, and the cable is used to connect the robot and the Wi-Fi station.

Setup of datasets

Deep learning (DL)-based computer vision techniques have the potential to extract and analyze an enormous volume of visual data generated

from underwater robotic systems. However, datasets play a key role in training the DLmodels for accurately detecting and analyzing a diverse

array of damage types. Therefore, it is imperative to stimulate the creation ofmore comprehensive and diverse annotated datasets that reflect

the wide array of damage types and conditions on underwater concrete structures. In this study, we widely collect the relevant monitoring

images to build high-quality datasets, including the three sources of concrete damage images taken from the underwater concrete structures

located in Gouqi Island in the East China Sea, the concrete damage images collected online, and certain unmarked concrete images selected

in CODEBRIM.35 The concrete images are divided into four damage types, i.e., crack, spalling, exposed reinforcement, and corrosion.

Figure 3A shows the sample images and labels of the four damage types in the dataset. Annotation of the images has been manually

achieved using the LabelImage tool for target detection.36 The quality of the datasets determines the upper limit of the algorithm model,

so to facilitate the subsequent optimization of the dataset and annotation methods, we make a statistical analysis of 3917 sample images
iScience 27, 109337, April 19, 2024 3



Figure 3. The Dataset of the prediction model

(A) Sample damage pictures with labels, including crack, spalling, exposed reinforcement, and corrosion.

(B) Distribution of the labeled areas.

(C) Size of the labeled areas.
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and 6773 annotations of the datasets. Figure 3B shows the distribution of the labeled areas, wheremost of the labeled areas are located in the

center of the images, and the rest of the labeled areas are evenly distributed in the corners and boundaries. Figure 3C shows thatmost sample

points are densely distributed near the origin of the coordinate axis in terms of the size of the labeled areas, which indicates that the labeled

areas of these datasets are relatively small. It can be seen that the datasets have certain advantages in small targetmonitoring. However, there

are also a fewmarkedareaswhere thewidth or height has reached1 after normalization, indicating that theirmarks are across the entire image.

Combined with the marking situation, they are considered as the crack targets. For target detection models, the images may have a negative

impact on training and it is difficult to identify them during recognition, which affects the accuracy rate. Considering that there may be such

cracks across the whole picture in actual working environments, we still choose to retain the labeled samples of these cracks. Concrete dam-

ages are usually found in a variety of shapes and sizes, and therefore, defects of different shapes and sizes need to be detected in concrete

damagemonitoring, rather than classifying or segmenting the entire images. Besides, the entire images need to be classified at the pixel level

in the semantic segmentation algorithms, which brings in huge computational costs. Therefore, target detection algorithms aremore efficient

and suitable for mobile deployment, which is in line with the reported robotic detection systems for underwater concrete structures.
Model training and training results

Data augmentation is a commonly used method to boost the performance of a detector and reduce the risk of overfitting. Figures 4A–4D

show the four types of data augmentation techniques applied in the training pipeline, namely photometric distortion, geometric distortion,

mixup,37 and mosaic. Photometric distortion is adopted to reduce the model’s sensitivity to changes in illumination conditions in different

scenes. Due to the changing positional relationship between the camera system and the damaged surface in practical applications, the

perspective and scale of captured images can vary greatly. Geometric distortion is used to simulate this effect. Mixup and mosaic augmen-

tation algorithms, which have been proved effective in YOLOv438 and YOLOv5,39 are leveraged to improve the model’s capability of detect-

ing objects in complex backgrounds. Experiments have shown that these data augmentation strategies can significantly improve themodel’s

performance.

To improve the convergence speed of the training loss and achieve more accurate prediction, we consider the generalized intersection

over union (IoU) (GIoU) loss40 to replace the original IoU loss in the model. The calculation of GIoU loss with two arbitrary shapes A, B is

given as
4 iScience 27, 109337, April 19, 2024



Figure 4. Data augmentation techniques and training results

(A) Photometric distortion.

(B) Geometric distortion.

(C) Mixup.

(D) Mosaic.

(E) Ensembled results.

(F) Change in Map0.5 in three experiments including YOLOX, YOLOX-D, and YOLOX-DG.

(G) Change in mAP0.5:0.95 in three experiments.
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Figure 5. Prediction results of the YOLOX-DG model and postprocessing

(A) Normalized Confusion Matrix.

(B) Precision-Recall (P-R) Curve.

(C) The upper row shows the original pictures randomly selected in the datasets and the lower row shows the identification results with annotation using the

YOLOX-DG model.

(D) Flowchart of the software, including the target detection and damage evaluation.

(E) Calculation of Rij in the multi-attribute decision algorithm for auxiliary assessment of damage degree.

(F) Curve of the sigmoid function.

(G) Curves of ti-Rif.
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A;B4S˛Rn; (Equation 1)

and the smallest enclosing convex object C given A and B is

C4S˛Rn (Equation 2)

IoU and GIoU can be calculated as

IoU =
jAXBj
jAWBj (Equation 3)

and

GIoU = IoU � jC\jAWBjj
jCj ; (Equation 4)

and therefore, IoU loss and GIoU loss are

LIoU = 1 � IoU; LGIoU = 1 � GIoU: (Equation 5)

In YOLOX, bounding box regression is used to predict the target objects’ location using rectangular bounding boxes. Bounding box

regression uses the overlap area between the predicted bounding box and the ground truth bounding box referred to as IoU loss. IoU

loss, however, will not provide any moving gradient for non-overlapping cases. Instead, GIoU loss maximizes the overlap area of the ground

truth and predicted bounding box, which increases the predicted box’s size to overlap with the target box bymoving slowly toward the target

box for non-overlapping cases. With the introduced GIoU loss function, the test performance of the model witnessed a considerable

enhancement.

Three sets of comparison experiments are conducted, including the plain YOLOXmodel, the YOLOXmodel using the data augmentation

strategy (YOLOX-D), and the YOLOX model using the data augmentation strategy as well as the GIoU loss function (YOLOX-DG) (see Fig-

ure S4 and Section S4 and S5). Figures 4F and 4G show the changes of mAP in the three experiments. After 80 epochs of training, the

mAP curves tend to smooth out and perform overfitting, and therefore, we only consider the results of 80 rounds in training, which can repre-

sent the upper limit of themodel. The results show that the YOLOX-Dmodel, though slower in convergence speed, has a better convergence

result compared with the plain YOLOXmodel. The final mAP of the YOLOX-Dmodel is 57.0 for mAP0.5:0.95 and 76.0 for mAP0.5, which is signif-

icantly better than that of the plain YOLOX model (i.e., 56.0 for mAP0.5:0.95 and 73.7 for mAP0.5). In addition, the YOLOX-DG model outper-

forms the YOLOX-Dmodel, which obtains 58.5 formAP0.5:0.95 and 78.0 formAP0.5. The results show that we have improved the performance of

the detector on the concrete damage datasets by 2.6% for mAP0.5 and 4.5% for mAP0.5:0.95.
Prediction results and postprocessing

Figure 5A displays the confusion matrix of the YOLOX-DG model, where no confusion among the four damage types is witnessed. The

YOLOX-DG model performs the best on crack in the four kinds of damage identifications. On the contrary, spalling, exposed reinforcement

and corrosion are all confused with the unlabeled backgrounds, including situations that damage areas being identified as background and

the background being identified as damage areas. Figure 5B shows the P-R curve of the YOLOX-DGmodel, indicating that themodel reaches

a high level of precision.When IoUgrows from0.5 to 0.9 at a rate of 0.05 per step, it is found that the intersection of the P-R curvewith the recall

axis shifts to left at a gentle rate, and then steeply decline when IoU grows from 0.85 to 0.9. When the confidence threshold is very low, a large

number of prediction boxes are generated by the model, leading the recall metrics to their maximum. When the IoU requirement grows to

0.9, large amounts of prediction boxes are no longer able tomeet the IoU requirement. Two factorsmay cause this phenomenon, poor quality

of annotation (i.e., inaccurate ground truth boxes boundaries), and limitation of the target detectionmodel. After checking and re-testing the

dataset annotations, it is found that the first possibility and the upper limit of YOLOX model accuracy is between IoU = 0.85–0.9.

We performed a 5-fold cross validation and the results (see Figure S6) show that the randomness of dividing the dataset does not have a

significant impact on the results and themodel has a good generalization performance. In addition, we compared YOLOX-DGwith YOLO v5,

Faster-RCNN and other well-known target monitoring algorithms, and YOLOX-DG has the best performance (see Figure S5). Prediction re-

sults of themodel are shown in Figure 5C, where the upper row shows the original images randomly selected in the datasets and the lower row

displays the identification results with annotation using the YOLOX-DG model.
iScience 27, 109337, April 19, 2024 7



Table 1. Weight coefficients of the four types of damages on underwater concrete structures

Damage type Crack Spalling Exp. reinf. Corrosion

ti0 0.1 0.3 0.5 0.7
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Apart fromproviding the damage prediction boxes, here we provide an additional comprehensive damage assessment algorithm to assist

in judging the extent of concrete damage. Figure 5D displays the software system for underwater concrete detection (see Table S4), including

the target detection algorithm (i.e., YOLOX-DG) and damage evaluation algorithm (i.e., multi-attribute decision). When the damage predic-

tion boxes are obtained from the YOLOX-DGmodel, concrete damages in the imagesmay still not be obvious, especially when the damages

are serious. In addition, the prediction boxes in some regionsmay overlap each other, which results in the difficulty in distinguishing the dam-

ages. As a consequence, we developed the multi-attribute decision model to automatically calculate the image damage scores to provide

assistance for further evaluation. Figure 5E shows that length and area can be used to calculate the proportion of the frame occupied by

different types of damaged prediction boxes, i.e., Rij. Different damage types have different impacts on structural safety, and different areas

of damage in the robot’s line of sight area have different impacts on structural safety, we introduce a factor ti to measure that impact. So the

damage score of a particular moment can be calculated as

Damage score =
X4

i = 1

X
j
tiRij : (Equation 6)

In Equation 6, i from 1 to 4 denotes the four damage types of crack, spalling, exposed reinforcement, and corrosion, and ij denotes the jth

damage prediction box for the ith damage in the images. Since the four kinds of damages often appear in different periods during the service

of the underwater concrete structures, it is necessary to limit ti within a range, so that the initial value ti0 is distinguished, and the final value

converges to the upper threshold.

Figure 5F presents the sigmoid function. The sigmoid function compresses any input value between 0 and 1 and is commonly used for data

normalization. The output can be mapped to a range of probability values by

f ðxÞ =
1

1+e� x
: (Equation 7)

Equation 7 is used to normalize ti through the coordinate transformation, as shown in Figure 5G. Since the sequence of the four kinds of

damage indirectly reflects the service time and damage degree of the underwater concrete structures, we assign different initial values to ti
that eventually converge to 1 by increasing Rij. The expression for ti is given as

ti =
2ð1 � ti0Þ

1+exp
�� 3Rij

� � ð1 � 2ti0Þ: (Equation 8)

The values of ti0 is shown in Table 1 based on the expert rating. According to the time sequence of concrete damage development, we

determined the severity of four kinds of damage. Corrosion has the highest weight, because it is a relatively serious and dangerous concrete

damage, and crack, as a common mild concrete damage, has the lowest weight. The damage score is intended to be a part of the robotic

systems to provide the auxiliary judgment basis.
Ocean testing in the East China Sea

Ocean testing was carried out on the reportedmanta ray-inspired robotic detection systems to monitor the damages of the underwater con-

crete structures (i.e., marine harbors) next to the Gouqi Island in the East China Sea. Figure 6A presents the location of the marine harbors in

the ocean testing close to theGouqi Island, which is located approximately 30miles away from the Shanghai ShenjiawanHarbor. The concrete

harbor next to the Gouqi Island has visible structural damages due to the ocean waves and tides, as shown in Figure 6A. To provide effective

wave protection, the Gouqi Island Harbor is designed in the pile array structures; however, there are still severe wave erosions on the under-

water regions of the harbor. The conventional structural monitoring equipment is unable to approach the harbor pile arrays. Therefore, it is

essential for the developed manta ray-inspired underwater robots to reach these regions and monitor the structural damages on the pile-

arrays (see Video S3).

Figure 6B presents the entire robotic systems, including the ejection and robotic monitoring components. The robots are ejected from the

fixture panel within 0.1 s to rapidly start for underwater motions. Next, the robots are controlled by the propellers to swim into the bottom of

the wave-eroded pile arrays of the harbor. The robots swim straightly into the wave-eroded regions to monitor the structural health along the

edge of the harbor, allowing for more comprehensivemonitoring of structural damage. Figure 6C shows the results of the structural damages

of the harbormonitored by the reportedmanta ray-inspired robots.We transmitted themonitoring images of damages to the damagedetec-

tion system to recognize the four kinds of concrete damages and obtain damage scores accordingly. When the damage score exceeds the

warning threshold, the robots return the coordinates for further repairing and treatment. Based on the damage images, it can be seen that the

underwater concrete damages of the harbor are mainly caused by the wave and biological erosion (also see in Video S4). Note that mussels

and water plants are also clearly observed in the monitoring images.
8 iScience 27, 109337, April 19, 2024



Figure 6. Ocean testing of the reported manta ray-inspired robotic detection systems

(A) Location of the ocean testing on the Gouqi Island Harbor in the East China Sea.

(B) Ejection and motion performance of the robots.

(C) Monitoring results on the underwater concrete structures and the damages analyzed by the detection systems. The detection system is able to recognize

different types of structural damages, and mussel and kelp on the underwater concrete structures.
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DISCUSSION

This work proposes a novel manta ray-inspired robotic detection system for large-scale underwater concrete structures which is unreachable

for normal monitoring robot. In order to improve the flexibility and stability of the robot, we design a manta ray-like robot and the robot is

capable of adjusting posture autonomously due to balance sensors in the robot. Taking advantage of the TDM, we constructed an ejection

system which enables manta ray-inspired robot to rapidly get rid of obstacles and startup. In the software part of the manta ray-inspired ro-

botic detection system, we firstly establish a concrete damage target detection dataset, dividing into the four damage types of cracks, spal-

ling, exposed reinforcement, and corrosion, collecting pictures andmarking the damage areas. The dataset has good annotation quality with

well algorithm testing performance. Next, we improved the performance of YOLOX algorithm in concrete damage target detection task in

terms of the data augmentation and changing loss function.We used photometric distortion, geometric distortion, mixup andmosaic in data
iScience 27, 109337, April 19, 2024 9
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augmentation and changed IoU loss to GIoU loss, forming YOLOX-DG model. The new model improved 2.6% for mAP0.5 and 4.5% for

mAP0.5:0.95 on the original basis. Eventually, we have proposed amanta ray-inspired robotic detection systemwhich are used for ocean testing

in real applications (i.e., underwater marine harbors around the Gouqi Island in the East China Sea) to monitor concrete damages. The target

detectionmodel (i.e., YOLOX-DG) and damage evaluationmodel (i.e., multi-attribute decision) provides assistance for human evaluation. The

reportedmanta ray-inspired robotic detection systems can be used to efficiently monitor and analyze underwater regions which are unreach-

able for normal monitoring robot.

Limitations of the study

Further optimization is still required for the proposed robotic system. The limitations of this study can be summarized as follows.

(1) Although the addition of the self-balancing module improves the stability of the robot, the movement of the robot in the marine envi-

ronment is still affected by waves, ocean currents, or even seaweed.

(2) The robotic system is designed with a cable to provide reliable solutions to the technological issues of (1) energy limitation, (2) navi-

gational instability, and (3) underwater communication challenge. However, the cable may affect the control and movement of the

robot in reality.

(3) Due to the lack of underwater concrete damage pictures, the number of high-quality pictures and damage types in the dataset can be

further improved.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Silicone rubber SMOOTH-ON Dragon skin

Photosensitive resin eSUN S200 Standard Resin

Software and algorithms

Python 3.8 Python Software Foundation https://www.python.org/

mmdetection 3.2.0 OpenMMLab https://github.com/open-mmlab/mmdetection/tree/v3.2.0

RTX3090ti (training) Nvidia 24G

Jetson nano (deploying) Nvidia 4G

Concrete damage target detection dataset / https://github.com/ChenjieZhang00/Concrete-damage-detection
RESOURCE AVAILABILITY

Lead contact

Pengcheng Jiao (Email: pjiao@zju.edu.cn) takes responsibility for the Lead Contact role.
Materials availability

This study did not generate new unique reagents.
Data and code availability

� All data reported in this paper will be shared by the lead contact upon request.
� All original code has been deposited at https://github.com/ChenjieZhang00/Concrete-damage-detection and is publicly available.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Sample selection and data processing

When collecting images of concrete damage in the field, we tried to find areas to photograph where the damage features were distinct, the

edges were well-defined, and included in the damage-defining categories. In data processing, we do not perform any preprocessing on the

original image and use the labelImage tool to label the area and type of damage.
Benchmark model

Unmanned concrete damage detection is accomplished by using small robots to patrol the target area, which requires both accuracy and

computational efficiency of the algorithm. In this study, we choose the relatively lightweight YOLOX algorithm to ensure the recognition

speed. The model structure of the YOLOX model is roughly divided into the three parts of backbone, neck and head. Backbone is used

to extract the features of the input images (6403640 pixels of the RGB3 channel), and Darknet53 is used as the backbone network in the

YOLOX model. The function of the neck part is to fuse the features extracted in the first part to extract deeper and more easily processed

information. The neck of YOLOX uses feature pyramid networks (FPN) and path aggregation network (PAN), and the head is used to

make the final prediction. The meaning of the first detection head tensor 85320320 is that the COCO dataset used by YOLOX contains

80 categories, plus 4 numbers representing the position information of the prediction box, plus a confidence level, forming 85 lines of output.

The first detection head divides the 6403640 original image into 20320 equal square grids for large target detection, while the corresponding

40 and 80 equal detection heads are used for medium and small target detection. Compared with the original YOLO series, the improvement

of YOLOXmainly lies in the decoupled detection head, Anchor-Free and SimOTA. In contrast to coupled detection head, decoupled detec-

tion head has faster rate of convergence and higher accuracy. On the basis of ensuring the performance comparable to that of Anchor-Based,

Anchor-Free greatly reduces the number of design parameters requiring heuristic optimization andmany tricks related to good performance,

and thus, greatly simplifying the training and decoding stages of detectors. SimOTA can reduce the training time of Sinkhorn-Knopp algo-

rithm while avoiding extra solver hyperparameters. As one of the latest and most powerful target detection networks, 3917 is selected as the

benchmark algorithm to train and develop the concrete damage identification model.
12 iScience 27, 109337, April 19, 2024

mailto:pjiao@zju.edu.cn
https://github.com/ChenjieZhang00/Concrete-damage-detection
https://www.python.org/
https://github.com/open-mmlab/mmdetection/tree/v3.2.0
https://github.com/ChenjieZhang00/Concrete-damage-detection


ll
OPEN ACCESS

iScience
Article
Performance metrics

In deep learning, performance metrix for different tasks is very different. However, for object detection tasks, in most cases, we use mAP to

represent the performance of the algorithm on the task. In this paper, two indexesmAP0.5 andmAP0.5:0.95 are used as the performancemetrix

of the algorithm, which respectively represent the proportion of coincidence rate between the predicted box and the real box that is greater

than or equal to 0.5 and the proportion of coincidence rate between 0.5 and 0.95.
Robot design

It is difficult for underwater robots to reach work area accurately and rapidly due to irregular waves. Therefore, the robot was designed to

mimic manta ray (see Figure 1) for well locomotion performance in hovering and swimming (i.e., hydrodynamic characteristics) comparing

with other underwater robots. And the driving principle and the fabrication of the robot has been shown in Section S2 and S3. The robot

was equipped with two driving systems. The propeller driving system enables the manta ray-inspired fast response robot to move forward,

backward, side-to-side, up and down. In addition, the manta ray-inspired robot driven by Transient Driving Method (TDM) is capable of

instantaneous driving within 0.1 s for rapid obstacle avoidance and fast response start-up.
Motion controllability experiment

Underwatermotion control of themanta ray-inspired robots is investigated in the lake testing, as shown in Figure S3. Figure S3A illustrates the

forward and backward motions of the robots. The symmetrical propellers on both sides are used to control the forward and backward move-

ments of the robots through the forward and reverse rotations. Figure S3B shows the left and right motions and Figure S3C demonstrates the

ascend and descend motions. When the robots need to turn left, the right propeller starts working while the left stopping, and vice versa.

When the robots need to descend or ascend, the middle propeller starts working to provide the up or down force. It can be seen from

the motion control images (see Video S2), the manta ray-inspired robots can complete complex motions with good controllability in dynamic

water conditions, e.g., moving straightly, turning left and right, and ascending or descending. The robot’s good locomotion allows it to access

the inner structure of complexmarine structures and to adjust the position tominimize the impact of marine life on the identification function.

Besides, we have installed two sets of searchlights on the robot’s head to minimize the effect of shadows on recognition.
Depth test

Underwater visibility conditions are affected by depth and turbidity, so to improve the accuracy of the shots, we mounted two sets of search-

lights on the robot’s head and improved the robot’s maneuverability to get as close as possible to the concrete cracks. Furthermore, to verify

that the robot is able to work at different depths in a turbid water, we conducted depth tests at Qizhen Lake in Zhoushan. We placed a steel

ruler in the water tomeasure depth, and as the robot went down in depth, wewere still able to recognize the scale of the ruler. The experiment

process has been shown in C.
Ocean testing

The harbor for ocean testing is close to theGouqi Island, which is located approximately 30miles away from the Shanghai Shenjiawan Harbor.

The Gouqi Island Harbor is designed in the pile array structures to reduce the impact of waves. However, there are still severe wave erosions

on the underwater regions of the harbor. Therefore, it is essential to develop themanta ray-inspired fast response robot to monitor the struc-

tural damages on the pile-arrays. The robot is ejected from the fixture panel within 0.1 s to rapidly start for underwater locomotion (see Video

S3). And then, the robot swims straightly and smoothly into wave-eroded regions to monitor the structural health. To obtain more compre-

hensive structural damages figures, robot moved along the edge of the harbor and dived down tomonitor the structural health at the bottom

of the harbor (see Video S4).
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