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Abstract: In this review article, we present the current knowledge on PTPN13, a class I non-receptor
protein tyrosine phosphatase identified in 1994. We focus particularly on its role in cancer,
where PTPN13 acts as an oncogenic protein and also a tumor suppressor. To try to understand these
apparent contradictory functions, we discuss PTPN13 implication in the FAS and oncogenic tyrosine
kinase signaling pathways and in the associated biological activities, as well as its post-transcriptional
and epigenetic regulation. Then, we describe PTPN13 clinical significance as a prognostic marker in
different cancer types and its impact on anti-cancer treatment sensitivity. Finally, we present future
research axes following recent findings on its role in cell junction regulation that implicate PTPN13 in
cell death and cell migration, two major hallmarks of tumor formation and progression.
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1. Introduction

Tyrosine phosphorylation is a key post-translational modification and a major research topic
because of its crucial role in the control of cell proliferation, cycle progression, differentiation,
and development. The interest in protein tyrosine phosphatases has been growing steadily in the last
25 years.

In this review, we focus on protein tyrosine phosphatase non-receptor 13 (PTPN13) because
many studies have highlighted its possible dual role in cancer. PTPN13 was first named PTP-BAS [1],
hPTP1E [2], and PTP-L1 [3] since it was cloned by three different groups, then renamed FAS-associated
phosphatase 1 (FAP-1) by Sato et al because of its interaction with Fas [4]. PTPN13 belongs to the
Class I superfamily of tyrosine-specific phosphatases in which the catalytic domain contains a cysteine
residue [5]. Substitution of this cysteine residue by a serine results in a catalytically inactive form
(PTPN13-C/S) [6]. PTPN13 is a soluble and cytosolic non-receptor protein that can be translocated to
the sub-membranous and nuclear compartments [7] during mitosis [8]. The PTPN13 gene is located on
chromosome 4q21.3 and encodes the non-receptor protein phosphatase with the highest molecular
weight (270 kDa; 2466 amino acids) [9].

PTPN13 is composed of an N-terminal KIND domain of unknown function, followed by a FERM
domain and five PDZ domains before the catalytic phosphatase domain located at the C terminus [1]
(Figure 1). The FERM domain is common to the family of membrane proteins that link the cytoskeleton
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to the plasma membrane [10]. The FERM domain of PTP-BL (PTPN13 murine ortholog with 80% of
homology [11]) is sufficient to support its sub-membranous localization [12]. We showed that PTPN13
is mainly localized at the plasma membrane in HeLa cells, and that the FERM domain is necessary and
sufficient to direct the enzyme to the membrane [13]. Kimber et al. showed that tandem pleckstrin
homology-domain-containing protein (TAPP1), which binds PtdIns(3,4)P2 and the first PDZ domain of
PTPN13, participates in the regulation of its membrane localization [14]. Moreover, the FERM domain
allows the interaction of PTPN13 with other proteins, such as serologically defined colon cancer antigen
3/endosome-associated trafficking regulator 1 (SDCCAG3/ENTR1) that is overexpressed in colon cancer
and is involved in cytokinesis regulation [15]. PDZ domains are protein interaction domains that are
used as scaffolding platforms in protein complexes, mostly associated with the plasma membrane [16].
Multiple partners of PTPN13 PDZ domains have been identified [17] and they are often involved in
carcinogenesis and/or in cytoskeleton organization and cell migration (Figure 1; Table 1).

Figure 1. PTPN13 structure, interactions, and substrates. Interactors or substrates in green were
involved in PTPN13 tumor suppressor role. Interactors or substrates in red were involved in
PTPN13 pro-tumoral role. KIND domain: kinase non-catalytic C-lobe domain (unknow function),
FERM: 4.1/Ezrin/radixin/moesin domain (protein/protein and protein/plasma membrane interaction),
PDZ domains: PSD95/Dlg1/Zo-1 domain (protein/protein interaction domain), Calp2: Calpain-2,
β-cat: β-catenin.

Table 1. PTPN13 interacting proteins.

PTPN13 Interacting Proteins

Name Interacting Domain Reference

Necl2 FERM [18]

SDCCAG3/ENTR1 FERM [15]

TAPP 1/2 PDZ1 [14]

BP75 PDZ1 [19]

IκBα PDZ1 [20]

TRPM2 PDZ15 [21]

JAM-A PDZ-1 [22]

TRIP6/ZRP1 PDZ2 [23]

P75NTR PDZ2 [24]

APC PDZ2 [25]

RIL PDZ2-4 [26]

FAS PDZ2-4 [27]

PTEN PDZ2 [28]

PRK2 PDZ3 [29]

Calp2 PDZ3-4-5 [30]

PARG1 PDZ4 [31]

EphrinB1 PDZ4 [32]
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Little is known about PTPN13 physiological role. Ptpn13 gene ablation does not induce major
changes in mice. Its loss in murine CD4 T cells increases their differentiation into Th1 and Th2
helper T lymphocytes and enhances the immune defenses against Klebsiella pneumoniae [33]. Moreover,
PTP-BL plays a role in adipocyte differentiation [34], and loss of its catalytic activity slightly affects
motor neuron repair in mice [35]. In this review, we mainly describe its implication in cancer-related
signaling pathways and biological processes (Figure 2, Table 2).

Figure 2. PTPN13 is involved in multiple signaling pathways. PTPN13 in green: Tumor suppressor role;
PTPN13 in red: Pro-tumoral role. Arrow pointing to P: PTPN13 effects mediated by its phosphatase
activity. TLR: Toll-like receptor, LRP/Fz: lipoprotein receptor-related protein/Frizzled.

Table 2. PTPN13 Susbstrates.

PTPN13 Substrates Evidences

Name Dephosphorylation Substrate Trapping Reference

IRS1 In vitro/in cellulo In vitro/in cellulo [36]

HER2 In cellulo In cellulo [37]

SRC In vitro/in cellulo In vitro/in cellulo [38]

VCP/P97 In vitro/in cellulo In vitro/in cellulo [39]

EphrinB1 In vitro/in cellulo [40]

Trip6 In vitro/in cellulo [41]

STAT 4 In vitro/in cellulo [33]

IκBα In vitro/in cellulo [42]

JAM-A In vitro [22]

C-ABL In cellulo [30]

β-catenin In cellulo [43]
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2. Signaling Pathways and Biological Activities Affected by PTPN13

2.1. FAS Pathway

PTPN13 role in FAS-mediated apoptosis has been extensively studied. The first reported evidence
was the interaction of PTPN13 with the FAS (CD95/APO-1) death receptor. Many cancer cell lines
develop resistance to FAS-induced apoptosis by acquiring mutations in the FAS gene [44] or by
regulating FAS availability at the cell surface [45]. It has been demonstrated that PTPN13 reduces
FAS cell surface level, and that the second and fourth PDZ domain of PTPN13 directly interact with
FAS C-terminus [27,46,47]. Moreover, blocking this PDZ domain with a serine/leucine/valine (SLV)
tripeptide, which represents the FAS C-terminus sequence required for the association with PTPN13,
prevents the interaction of PTPN13 with partner proteins, leading to restoration of FAS-induced
apoptosis [47–51]. In agreement with these findings, Gagnoux-Palacios L et al. showed that FAS
interacts via its SLV terminal sequence with PDZ domain-containing proteins associated with cell
junctions [52], such as the scaffolding protein Discs Large homolog 1 (DLG1) and PTPN13 that is
involved in cell junction stabilization in breast cancer [53]. They then demonstrated that adherens
junctions (AJs) play a role in tissue homeostasis by sequestering FAS and inhibiting apoptosis.
AJ disruption allows the release of FAS and increases the number of cells sensitive to FasL-mediated
cell death [52]. They also established that transfection of HCT15 cells with siRNAs against DLG1
increases FAS-induced cell death. As this effect is correlated with an increase in total and cell surface
FAS expression, DLG1 might inhibit FAS cell death by impairing Death Inducing Signaling Complex
(DISC) formation [52].

Using siRNA-mediated knockdown or overexpression, Ivanov et al. demonstrated PTPN13
implication in FAS localization. Specifically, forced expression of PTPN13 in FEMX melanoma and
HeLa cervical carcinoma cells leads to reduced surface and higher intracellular expression of FAS.
Conversely, FAS surface expression is upregulated after transfection of TIG3 bladder carcinoma cells
with PTPN13 dominant negative mutants or after PTPN13 silencing by siRNA [45]. In line with
these findings, PTPN13 overexpression in Capan-1 pancreatic carcinoma cells negatively regulate
FAS-mediated apoptosis [54], and PTPN13 silencing by siRNA in SW480 colorectal cancer cells increases
FAS/FasL-mediated apoptosis [55]. Consistent with these results, another study reported that the
microRNA mir-200c sensitizes cells to FAS-induced apoptosis by targeting PTPN13 [56].

Erdmann’s group proposed a mechanism whereby PTPN13 regulates FAS membrane trafficking.
First, they showed that in HeLa cells, PTPN13 can bind to ENTR1 (an endosome-associated trafficking
regulator that controls sensitivity to tumor necrosis factor-induced apoptosis [57], also known as
SDCCAG3) and that these two partners play a role in cytokinesis [15]. Then, they confirmed that
ENTR1 negatively regulates FAS surface expression and FAS-induced apoptosis by participating
in FAS endolysosomal sorting [58]. In addition, they reported that the regulation of FAS surface
expression requires the interaction between PTPN13 and ENTR1, and the colocalization of FAS, ENTR1,
and PTPN13 in early endosomes [58].

Eklund’s group showed that in myeloid progenitor cells, BCR/ABL activation leads to PTPN13
upregulation and inhibition of FAS-induced apoptosis. This inhibitory effect is abolished by the SLV
peptide [59], suggesting PTPN13 involvement. Interestingly, another study reported that PTPN13
can dephosphorylate and inhibit c-Abl[30], suggesting a possible retro-control of ABL activity that
is lost in the case of the BCR/ABL translocation. Then, Eklund’s group demonstrated that in
BCR/ABL-overexpressing myeloid progenitor cells, PTPN13 interacts with adenomatous polyposis
coli (APC), and that this interaction, which involves the same PDZ domain, is inhibited by the SLV
peptide [60]. BCR/ABL overexpression leads to a decrease in tyrosine phosphorylation of GSK3β
(an APC partner) and in serine phosphorylation of β-catenin (a GSK3 substrate), and consequently
to increased β-catenin transcriptional activity [60]. All these BCR/ABL-mediated effects can be
reversed by the SLV peptide, suggesting PTPN13 implication. Using a murine model of chronic
myeloid leukemia (CML) stem cells transplantation, Eklund’s group reported that administration of
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the SLV peptide (to inhibit PTPN13), in addition to the standard treatment with the BCR/ABL
inhibitor imatinib, delays tumor development, suggesting an inhibition of leukemia stem cell
persistence [61]. More recently, they showed that increased PTPN13 expression characterizes CD133+

colon cancer stem cells and that PTPN13 upregulation in metastases, compared with primary tumors
or after platinum-based chemotherapy, is due to the relative abundance of these cancer stem cells in
the tumor [51].

In line with these results, Sardina et al. observed increased PTPN13 expression during
megakaryocytic differentiation. This inhibits differentiation and limits tyrosine and serine
phosphorylation of β-catenin, leading to higher transcriptional activity [43]. In this model,
PTPN13 overexpression is induced by the Wnt pathway that stabilizes PTPN13, and the
PTPN13-β-catenin interaction appears to be direct [43].

On the other hand, Castilla et al. found that PTPN13 plays a pro-apoptotic role in PC3
and LNCaP prostate adenocarcinoma cells. Specifically, its overexpression enhances apoptosis
in cells incubated with phenylethyl isothiocyanate and anti-FAS antibodies or with paclitaxel [43].
Conversely, PTPN13 downregulation leads to resistance to apoptosis upon exposure to these agents [62].
Furthermore, they showed that PKCδ acts as an intermediary in PTPN13-mediated apoptotic signaling,
and that inhibition of IκBα degradation and suppression of NF-κB activity by IκBα association and
dephosphorylation are partly regulated by PTPN13 and PKCδ. Finally, they reported that PTPN13 and
PKCδ expression are lost in poorly differentiated, more aggressive human prostate cancer specimens,
suggesting a correlation between their absence, apoptosis resistance and tumor progression [62].

In the pancreatic adenocarcinoma A818-6 cell line, anti-FAS antibodies induce apoptosis in cells
grown in 2D- or 3D-polarized cell cultures, independently of PTPN13 and FAS colocalization [63].
Moreover, inhibition of PTPN13 expression does not affect apoptosis induced by anti-FAS agonistic
antibodies, suggesting that PTPN13 is not involved in the regulation of FAS-induced apoptosis in this
cell type [63].

In conclusion, PTPN13 inhibitory role in FAS-induced apoptosis is well documented in the
hematopoietic system. Conversely, its role in solid tumors is less clear due to the multiple signaling
pathways regulated by PTPN13, and particularly due to its role in cell junction maintenance that
contributes to FAS-induced apoptosis regulation.

2.2. SRC, Ephrin, ErbB Pathways

SRC is a non-receptor pro-oncogenic tyrosine kinase that participates in different pathways,
for instance, the integrin [64], EGFR [65], and ephrin signaling cascades [40,66].

SRC [38], ephrinB [40], EGFR [67], and HER2 [37,38] signaling are inhibited by PTPN13 that limits
anchorage-independent cell growth (SRC) [49], cell proliferation (HER2 and EGFR) [67], and also
invasion and tumor aggressiveness (SRC, HER2) [37,38].

Several PTPN13 partners involved in these inhibitory effects have been identified. For instance,
in HCT116 colon cancer cells, PTPN13 inactivates SRC through interaction with reversion-induced LIM
domain protein (RIL) [68], and in A549 pulmonary and Caco-2 colon adenocarcinoma cells, it inhibits
the ERBB3/ERBB2 receptors through association with nectin-like molecule 2 (NECL2) [18]. In addition,
there may be a HER2-induced feedback mechanism that induces the expression of PTPN13 and thereby
negatively regulates its own signaling pathways [69].

In 2012, Vermeer et al. discovered a new signaling pathway that involves ephrinB1, ERBB2,
and ERK and that is regulated by PTPN13 in breast cancer cell lines [70]. Specifically, PTPN13 silencing
by shRNA leads to ERBB2 overexpression and to phosphorylation of ephrinB1 (a PTPN13 substrate)
that forms a complex with ERBB2 and induces ERK1/2 phosphorylation in breast cancer (MDA-MB-468),
human keratinocyte (HaCaT) and head and neck squamous cancer (UM-SCC84) cell lines. Formation
of the ephrinB1/ERBB2 complex was confirmed by coimmunoprecipitation experiments and by their
colocalization at intercellular junctions. Moreover, ephrinB1/ERBB2 complex formation is promoted by
expression of a constitutively active oncogenic mutant of ERBB2. Signaling by this complex is activated
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by SRC and is increased by transfection of the catalytically inactive PTPN13-C/S variant. These findings
were also confirmed by proximity ligation assay and ephrinB1/ERBB2 coimmunoprecipitation in head
and neck cancer cell lines [71]. Besides ERBB2, ephrinB1 interacts with ERBB1 that is overexpressed in
head and neck cancer [72]. This interaction, which is promoted by human papilloma virus 16 (HPV16)
(known to inhibit PTPN13 in this cancer type [73]), activates the MAPK pathway [70]. Transfection
of HEK293 cells with the PTPN13-C/S mutant increases ephrinB1 phosphorylation, its association
with ERBB1, and ERK1/2 phosphorylation. These effects are not observed upon transfection of
wild-type PTPN13 [71]. Altogether, these data indicate that PTPN13 regulates phosphorylation of
ephrinB1, which preferentially associates with ERBB1 in head and neck cancer, and allows MAPK
pathway activation.

In vivo, in a mouse model of HPV-positive head and neck squamous cancer (HNSCC),
tumor growth was reduced (p < 0.001) and survival was improved (p < 0.001) in mice injected
with HNSCC cells transfected with ephrinB1 shRNA compared with cells transfected wild-type
ephrinB1 [71]. This suggests that ephrinB1 may have a pro-oncogenic role through activation of the
MAPK pathway via the ephrinB1/ERBB2 [70] or ephrinB1/ERBB1 complexes [71].

Other studies on PTPN13 regulation using miRNAs support these results, notably in bronchial
adenocarcinoma [74,75] and esophageal carcinoma [76] cell lines. Moreover, NECL2 and NECL4 can
interact with PTPN13 to inhibit the ERBB2/ERBB3 pathway in colorectal cancer (Caco-2), breast cancer
(MCF7), and human embryonic kidney (HEK293) cells [77,78].

In conclusion, the ephrinB1/ERBB2 (in breast cancer) and ephrinB1/ERBB1 (in head and neck
cancer) complexes induce MAPK pathway activation and are positively regulated by SRC and negatively
regulated by PTPN13.

2.3. PTPN13 Is Implicated in HPV16 Carcinogenicity

The HPV proteins E6 and E7 exert their oncogenic activity through inhibition of the p53 and pRb
tumor suppressor genes, respectively [79,80]. In addition, E6 binds to several PDZ domain-containing
proteins, including PTPN13, via a PDZ binding domain (PBM), leading to their proteasome-mediated
degradation [81,82]. By transfecting wild-type and PBM-mutated E6 proteins in human and mouse
keratinocytes, Spanos’ group confirmed that HPV16-induced degradation of PTPN13 promotes
anchorage-independent tumor cell proliferation [59]. In vivo, expression of an activated RAS mutant
enhances the growth of epithelial cells (MTECs) transfected with wild-type E6 [83]. This RAS effect is
not observed when cells are co-transfected with PTPN13 shRNA or PBM-mutated E6, suggesting that
RAS activation acts in conjunction with PTPN13 inhibition to promote tumor proliferation.

More recently, Wieking et al. showed that HPV inhibition of PTPN13 and p53 is involved also
in the induction of epithelial mesenchymal transition (EMT). Indeed, infection of human tonsillar
epithelial cells with a non-oncogenic mutated HPV16 virus (unable to degrade p53, pRb, PTPN13, or to
activate telomerases) did not induce EMT, unlike transfection with wild-type HPV16 [84].

Thus, E6-mediated inhibition of PTPN13 contributes to E6 oncogenicity by promoting
anchorage-independent growth and EMT in virus-infected cells.

2.4. NF-κB Pathway

After exposure to oxidative stress or hypoxia, IκBα phosphorylation at tyrosine 42 (Y42) releases
NF-κB that activates transcription of genes involved in apoptosis resistance, cell proliferation,
and immune and inflammatory responses [85–88]. Nakai et al. demonstrated that in vitro, IκBα is
dephosphorylated at Y42 by PTPN13 [42]. These results were confirmed by Wang et al. in a high-grade
serous ovarian carcinoma (HGSOC) cell line (OV-90), in which PTPN13 transfection decreased the levels
of IκBα phosphorylated at Y42 and of nuclear NF-κB, in contrast to transfection with PTPN13 siRNA.
By using a siRNA against PTPN13 in combination with an inhibitor of IκBα phosphorylation or an IκBα
mutant (Y42A), they confirmed that PTPN13 exerts its tumor suppressive effect by dephosphorylating
IκBα at Tyr42 [89]. These results could provide a mechanistic explanation for the work by Castilla et al.
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showing that PTPN13 and PKC-δ participate in NF-κB activation in PC3 prostate cancer cells [62]
(see Section 2.1).

2.5. EMT, Cell Migration and Invasion

Using a PTPN13-transfected hepatocellular carcinoma (HCC) cell line, Zhan et al. suggested
that PTPN13 negatively regulates EMT by inhibiting Slug and Snail, two master EMT transcription
factors [90]. However, PTPN13 might hinder EMT also through cell junction stabilization via its
positive role on desmosome formation, as demonstrated in vitro in MDA-MB-231 breast cancer cells
that overexpress PTPN13 and in vivo in a transgenic mouse model that lacks PTPN13 [53]. Although
inhibition of miRNA-200c, which targets PTPN13, is associated with EMT [33], an in vivo study found
no significant association between downregulation of the miRNA-200 family, PTPN13 expression,
and colorectal cancer metastatic potential [91].

PTPN13 is also involved in the regulation of cancer cell migration/invasion via its partner and
substrate thyroid hormone receptor interactor 6 (TRIP6, also called ZRP-1) that promotes cell mobility
induced by lysophosphatidic acid [41], and activates Wnt/β-catenin signaling [92].

Furthermore, siRNA-mediated PTPN13 silencing in the PC3 and DU145 prostate cancer cell lines
leads to overexpression of urokinase-type plasminogen activator (uPA) fibrinolytic system components
that can degrade the extracellular matrix, thus promoting tumor invasion [93].

In addition, two recent studies illustrate PTPN13 involvement in cell junction maintenance.
Fan et al. [22] demonstrated that PTPN13 can dephosphorylate junctional adhesion molecule-A
(JAM-A), a transmembrane component of tight junctions, leading to their stabilization. Then, analysis
of the interactome of different cell junctions showed that in epithelial cells, PTPN13 is part of the apical
marginal zone and interacts with tight junctions and cytoskeleton molecules [94].

In the hematopoietic system, PTPN13 silencing promotes hematopoietic stem cell (HSC) adhesion
to bone marrow (thus decreasing their invasiveness), and increases their quiescence [95]. This study,
based on previous results by Sardina et al. [43] showing that PTPN13 stabilizes β-catenin in
megakaryocytes, found that inhibition of PTPN13 or β-catenin in vivo increases HSC adhesion
to their niche. The authors hypothesized a negative transcriptional regulation of cell adhesion
molecules by β-catenin, which is positively regulated by PTPN13 [95].

Thus, in solid cancers, PTPN13 inhibits primary tumor cell invasiveness through inhibition of the
uPA system, regulation of the main EMT genes, and stabilization of cell junctions. In hematopoietic
malignancies, PTPN13 promotes, through β-catenin, HSC adhesion to their niche, which may later
lead to tumor cell invasion.

2.6. PI3K/PTEN Pathway

The PI3K pathway is often overactivated in different cancer types, particularly in breast cancer.
PTPN13 effect on PI3K activation varies depending on the cell type. In human fibroblasts, HeLa and
HEK293T cells, the results obtained by Kuchay et al. suggest that PTPN13 dephosphorylates the p85
regulatory subunit of PI3K that can then interact with F-box and leucine rich repeat protein (FBXL2).
This leads to its ubiquitylation and degradation by the proteasome. The negative regulation of the
p85 subunit by PTPN13 is important to maintain the insulin receptor substrate-1 (IRS-1)-mediated
activation of the PI3K pathway [96].

Conversely, our group demonstrated that PTPN13 inhibits PI3K in MCF7 breast cancer cells [36,97].
PTPN13 is upregulated by antiestrogen agents and is required for apoptosis induction by this
treatment [98]. Specifically, in PTPN13-expressing MCF7 cells, incubation with the antiestrogen
agent tamoxifen severely reduces IRS-1 and Akt phosphorylation induced by IGF-1 and leads to a
strong increase in apoptosis. These effects are abolished in cells transfected with PTPN13 antisense,
confirming that PTPN13 promotes apoptosis by inhibiting the PI3K survival pathway [97]. In addition,
we showed by in vitro and in cellulo substrate trapping, dephosphorylation, and colocalization
experiments, that PTPN13 specifically dephosphorylates IRS-1. Very recently, it was demonstrated
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that PTPN13 also acts as a tumor suppressor in clear cell renal cell carcinoma (ccRCC) where lower
PTPN13 expression levels predict shorter survival rate. Moreover, in ccRCC cell lines and xenografts,
PTPN13 overexpression restricts cancer cell proliferation and invasion through Akt inactivation [99].

PTPN13 can also regulate the PI3K signaling pathway independently of IRS-1 by interacting with
Phosphatase and TENsin homolog (PTEN). Yeast two-hybrid and GST pull-down assays showed
that the second PDZ domain of PTPN13 can bind to PTEN [28]. Bruurs et al. later demonstrated
that this interaction allows the apical localization of PTEN, resulting in the restriction of the apical
membrane size in a colorectal cancer cell line. These effects were not modified by inhibition of PTPN13
catalytic activity, suggesting that in this context, PTPN13 functions as an anchor protein. Conversely,
PTEN catalytic activity was still required [100].

3. Transcriptionnal, Post-Transcriptional, Genetic, and Epigenetic Regulation of PTPN13

PTPN13 expression and activity can be regulated during transcription, via methylation of the
CpG islands within its promoter, after transcription by microRNAs or alternative splicing, and also
after translation by specific signaling pathways.

3.1. Transcriptional Regulation

3.1.1. Transcriptional Regulation Mediated by Transcription Factors

Chromatin immunoprecipitation of the PTPN13 promoter revealed that STAT3, HDAC5 [101],
and SMYD2 [102] are involved in its transcriptional regulation. The pro-tumor transcription factor
STAT3, in combination with the nuclear co-repressor HDAC5, inhibits PTPN13 transcription in
squamous cell lung carcinoma cell lines (HCC-1588 and SK-MES-1) after stimulation by the pro-tumor
interleukin 6 [101]. The transcription factor SMYD2 is a negative regulator of PTPN13 transcription in
polycystic kidney disease [103]. It also promotes tumorigenesis in mice bearing xenografts of triple
negative breast cancer cells (MDA-MB231 and MDA-MB468). Similar results were obtained upon
PTPN13 silencing by siRNA [102].

More recently, Yan Y. et al. demonstrated that, in HCC, the hepatitis B virus X protein regulates
PTPN13 expression via the DNA methyltransferase 3A, which binds to the PTPN13 promoter and
induces the hypermethylation of its CpG islands. This loss of PTPN13 leads to an increase in c-Myc
levels and signaling through the loss of its competitive interaction with IGFP2B1 that protects c-Myc
mRNA from degradation [104].

On the other hand, the interferon consensus sequence binding protein (ICSBP) transcription
factor is a tumor suppressor involved in myelopoiesis, and its expression is repressed in CML [105].
Eklund’s group reported that ICSBP negatively regulates PTPN13 in CML cell lines, promoting
FAS-mediated apoptosis [106]. They then showed that formation of the Tel-ICSBP-HDAC3 multiprotein
complex is required for ICSBP-induced PTPN13 repression. In addition, the Tel-PGFRβ fusion
protein, which results from a chromosomal translocation associated with leukemia, inhibits binding
of the Tel/ICSBP/HDAC3 complex to the PTPN13 promoter. This restores PTPN13 expression,
causing inhibition of FAS-induced apoptosis in CML [107].

To date, Ewing sarcoma protein-Friend leukemia integration 1 (EWS-FLI1) and homeobox C8
(Hox-C8) are the only known positive regulators of PTPN13 expression. In Ewing’s sarcomas, the t(11;22)
translocation leads to the expression of the EWS-FLI1 fusion protein, an oncogenic transcription factor
that activates PTPN13 transcription, inducing tumor proliferation [108]. The authors then reported a
drastic decrease in cell survival after transfection of the PTPN13-C/S mutant in Ewing sarcoma cells.
Using substrate trapping in vitro and in vivo in the human Ewing sarcoma TC32 cell line, they identified
valosin-containing protein (VCP/p97) as a new PTPN13 substrate. As VCP/p97 phosphorylation is
necessary for PTPN13 midbody localization during cell division, a PTPN13 pro-oncogenic role in
Ewing sarcoma, mediated through regulation of cell division, could be suggested [39].
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Hox-C8 is a transcription factor involved in cell differentiation and tissue migration [109].
PTPN13 is one of the genes commonly co-expressed with Hox-C8, and chromatin immunoprecipitation
assays confirmed that Hox-C8 binds to the PTPN13 promoter. Moreover, Hox-C8 and PTPN13
expression levels are positively correlated. Hox-C8 overexpression in MC3T3-E1 immature osteoblasts,
C3H10T1/2 mesenchymal stem cells, and NIH3T3 fibroblasts positively regulates PTPN13 expression
levels, while Hox-C8 knockdown decreases them [109].

Unlike hematopoietic cancers where PTPN13 negative transcriptional regulation has an anti-tumor
effect by sensitizing cells to FAS-induced apoptosis, PTPN13 negative transcriptional regulation in
solid cancers has a pro-tumor effect through activation of proliferation pathways (Table 3).

Table 3. Transcription factors and co-repressors regulating PTPN13.

Transcription Factors and Co-Repressors Regulating PTPN13

Name Expression/Tumor Type Effect Reference

STAT3/HDAC5
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promoter is methylated in 66% of 12 HCC samples without loss of heterozygosity (LOH) of 

chromosome 4q [104]. Moreover, Wang et al. found that the PTPN13 promoter is methylated in 60% 

of 47 diffuse large B cell lymphoma samples, compared with 6.3% of 16 non-tumor tissue samples 

[112]. 

A recent study [62] established four esophageal and Barrett's esophagus adenocarcinoma 

subtypes based on their genome methylation rate. PTPN13 was among the 69 genes in the highly 

methylated subtype. Specifically, it was methylated in 56% of 16 esophageal adenocarcinoma 

samples, and this was associated with decreased mRNA levels in 75% of cases. Conversely, the other 

subtypes did not show any PTPN13 methylation. Moreover, in vitro, shRNA-mediated PTPN13 

silencing significantly increases proliferation and migration of SK-GT-4 esophageal adenocarcinoma 

cells.  

In all studies on PTPN13 promoter methylation, PTPN13 expression and activity were restored 

by incubating cells with 5-azacitidine, a DNA demethylating agent [76,112,113]. 

3.2. Post-Transcriptional Regulation  

3.2.1. Post-Transcriptional Regulation by microRNAs  

MicroRNAs are non-coding RNAs that regulate gene expression through degradation or 

translation inhibition of their target. 

The miR-30 family is composed of five members, a/b/c/d/e (for review: [114]). In tumor samples, 

miR30-e is decreased in bladder [115], breast [116], and rectal cancer [117], while it is overexpressed 

in salivary gland cancer [118] and pulmonary adenocarcinoma [119]. Zhuang’s laboratory confirmed 

that miR30-e is significantly overexpressed in lung adenocarcinoma compared with healthy tissue 

samples. They also showed that PTPN13 is a direct target of miR30-e. Tumor growth is promoted in 

mice xenografted with A549 cells transfected with miR30-e compared with cells transfected with 

vector alone. Moreover, while PTPN13 overexpression can reverse miR30-e effects on A549 cell 

growth, siRNA-mediated PTPN13 silencing enhances cell proliferation. This indicates that miR30-e 

effects are mediated through PTPN13 inhibition [75]. 

Lung cancers
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Unlike hematopoietic cancers where PTPN13 negative transcriptional regulation has an anti-

tumor effect by sensitizing cells to FAS-induced apoptosis, PTPN13 negative transcriptional 

regulation in solid cancers has a pro-tumor effect through activation of proliferation pathways. (Table 

3) 

Table 3. Transcription factors and co-repressors regulating PTPN13. 

Transcription Factors and Co-Repressors Regulating PTPN13 

Name Expression/Tumor Type Effect Reference 

STAT3/HDAC5 Lung cancers  PTPN13 [101] 

SMYD2 
Polycystic kidney disease 

Breast cancer cell lines 

 PTPN13 

 PTPN13 

[103] 

[102] 

HBx/DNMT3A Liver cancer  PTPN13 [104] 

ICSBP Chronic myeloid leukemia  PTPN13 [106] 

EWS-FLI1 Ewing’s sarcomas  PTPN13 [108] 

Hox-C8  Cell differentiation  PTPN13 [109] 

3.1.2. Transcriptional Regulation Mediated by PTPN13 Promoter Methylation 

The PTPN13 and MAPK10 genes share a bi-directional promoter [110] that contains 12 CpG 

islands [111]. Its methylation is consistently associated with decreased PTPN13 expression [103], and 

has been observed in many hematologic (94% of 16 non-Hodgkin lymphoma cell lines, 50% of 6 

Hodgkin lymphoma cell lines) and solid cancer cell lines (67% of 12 HCC cell lines, 60% of 10 gastric 

cancer cell lines, and 30% of 10 breast cancer cell lines). Similarly, Yeh et al. reported that the PTPN13 

promoter is methylated in 66% of 12 HCC samples without loss of heterozygosity (LOH) of 

chromosome 4q [104]. Moreover, Wang et al. found that the PTPN13 promoter is methylated in 60% 

of 47 diffuse large B cell lymphoma samples, compared with 6.3% of 16 non-tumor tissue samples 

[112]. 

A recent study [62] established four esophageal and Barrett's esophagus adenocarcinoma 

subtypes based on their genome methylation rate. PTPN13 was among the 69 genes in the highly 

methylated subtype. Specifically, it was methylated in 56% of 16 esophageal adenocarcinoma 

samples, and this was associated with decreased mRNA levels in 75% of cases. Conversely, the other 

subtypes did not show any PTPN13 methylation. Moreover, in vitro, shRNA-mediated PTPN13 

silencing significantly increases proliferation and migration of SK-GT-4 esophageal adenocarcinoma 

cells.  

In all studies on PTPN13 promoter methylation, PTPN13 expression and activity were restored 

by incubating cells with 5-azacitidine, a DNA demethylating agent [76,112,113]. 

3.2. Post-Transcriptional Regulation  

3.2.1. Post-Transcriptional Regulation by microRNAs  

MicroRNAs are non-coding RNAs that regulate gene expression through degradation or 

translation inhibition of their target. 

The miR-30 family is composed of five members, a/b/c/d/e (for review: [114]). In tumor samples, 

miR30-e is decreased in bladder [115], breast [116], and rectal cancer [117], while it is overexpressed 

in salivary gland cancer [118] and pulmonary adenocarcinoma [119]. Zhuang’s laboratory confirmed 

that miR30-e is significantly overexpressed in lung adenocarcinoma compared with healthy tissue 

samples. They also showed that PTPN13 is a direct target of miR30-e. Tumor growth is promoted in 

mice xenografted with A549 cells transfected with miR30-e compared with cells transfected with 

vector alone. Moreover, while PTPN13 overexpression can reverse miR30-e effects on A549 cell 

growth, siRNA-mediated PTPN13 silencing enhances cell proliferation. This indicates that miR30-e 

effects are mediated through PTPN13 inhibition [75]. 

PTPN13 [101]

SMYD2
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Unlike hematopoietic cancers where PTPN13 negative transcriptional regulation has an anti-

tumor effect by sensitizing cells to FAS-induced apoptosis, PTPN13 negative transcriptional 

regulation in solid cancers has a pro-tumor effect through activation of proliferation pathways. (Table 

3) 

Table 3. Transcription factors and co-repressors regulating PTPN13. 

Transcription Factors and Co-Repressors Regulating PTPN13 

Name Expression/Tumor Type Effect Reference 

STAT3/HDAC5 Lung cancers  PTPN13 [101] 

SMYD2 
Polycystic kidney disease 

Breast cancer cell lines 

 PTPN13 

 PTPN13 

[103] 

[102] 

HBx/DNMT3A Liver cancer  PTPN13 [104] 

ICSBP Chronic myeloid leukemia  PTPN13 [106] 

EWS-FLI1 Ewing’s sarcomas  PTPN13 [108] 

Hox-C8  Cell differentiation  PTPN13 [109] 

3.1.2. Transcriptional Regulation Mediated by PTPN13 Promoter Methylation 

The PTPN13 and MAPK10 genes share a bi-directional promoter [110] that contains 12 CpG 

islands [111]. Its methylation is consistently associated with decreased PTPN13 expression [103], and 

has been observed in many hematologic (94% of 16 non-Hodgkin lymphoma cell lines, 50% of 6 

Hodgkin lymphoma cell lines) and solid cancer cell lines (67% of 12 HCC cell lines, 60% of 10 gastric 

cancer cell lines, and 30% of 10 breast cancer cell lines). Similarly, Yeh et al. reported that the PTPN13 

promoter is methylated in 66% of 12 HCC samples without loss of heterozygosity (LOH) of 

chromosome 4q [104]. Moreover, Wang et al. found that the PTPN13 promoter is methylated in 60% 

of 47 diffuse large B cell lymphoma samples, compared with 6.3% of 16 non-tumor tissue samples 

[112]. 

A recent study [62] established four esophageal and Barrett's esophagus adenocarcinoma 

subtypes based on their genome methylation rate. PTPN13 was among the 69 genes in the highly 

methylated subtype. Specifically, it was methylated in 56% of 16 esophageal adenocarcinoma 

samples, and this was associated with decreased mRNA levels in 75% of cases. Conversely, the other 

subtypes did not show any PTPN13 methylation. Moreover, in vitro, shRNA-mediated PTPN13 

silencing significantly increases proliferation and migration of SK-GT-4 esophageal adenocarcinoma 

cells.  

In all studies on PTPN13 promoter methylation, PTPN13 expression and activity were restored 

by incubating cells with 5-azacitidine, a DNA demethylating agent [76,112,113]. 

3.2. Post-Transcriptional Regulation  

3.2.1. Post-Transcriptional Regulation by microRNAs  

MicroRNAs are non-coding RNAs that regulate gene expression through degradation or 

translation inhibition of their target. 

The miR-30 family is composed of five members, a/b/c/d/e (for review: [114]). In tumor samples, 

miR30-e is decreased in bladder [115], breast [116], and rectal cancer [117], while it is overexpressed 

in salivary gland cancer [118] and pulmonary adenocarcinoma [119]. Zhuang’s laboratory confirmed 

that miR30-e is significantly overexpressed in lung adenocarcinoma compared with healthy tissue 

samples. They also showed that PTPN13 is a direct target of miR30-e. Tumor growth is promoted in 

mice xenografted with A549 cells transfected with miR30-e compared with cells transfected with 

vector alone. Moreover, while PTPN13 overexpression can reverse miR30-e effects on A549 cell 

growth, siRNA-mediated PTPN13 silencing enhances cell proliferation. This indicates that miR30-e 

effects are mediated through PTPN13 inhibition [75]. 

Polycystic kidney disease
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Unlike hematopoietic cancers where PTPN13 negative transcriptional regulation has an anti-

tumor effect by sensitizing cells to FAS-induced apoptosis, PTPN13 negative transcriptional 

regulation in solid cancers has a pro-tumor effect through activation of proliferation pathways. (Table 

3) 

Table 3. Transcription factors and co-repressors regulating PTPN13. 

Transcription Factors and Co-Repressors Regulating PTPN13 

Name Expression/Tumor Type Effect Reference 

STAT3/HDAC5 Lung cancers  PTPN13 [101] 

SMYD2 
Polycystic kidney disease 

Breast cancer cell lines 

 PTPN13 

 PTPN13 

[103] 

[102] 

HBx/DNMT3A Liver cancer  PTPN13 [104] 

ICSBP Chronic myeloid leukemia  PTPN13 [106] 

EWS-FLI1 Ewing’s sarcomas  PTPN13 [108] 

Hox-C8  Cell differentiation  PTPN13 [109] 

3.1.2. Transcriptional Regulation Mediated by PTPN13 Promoter Methylation 

The PTPN13 and MAPK10 genes share a bi-directional promoter [110] that contains 12 CpG 

islands [111]. Its methylation is consistently associated with decreased PTPN13 expression [103], and 

has been observed in many hematologic (94% of 16 non-Hodgkin lymphoma cell lines, 50% of 6 

Hodgkin lymphoma cell lines) and solid cancer cell lines (67% of 12 HCC cell lines, 60% of 10 gastric 

cancer cell lines, and 30% of 10 breast cancer cell lines). Similarly, Yeh et al. reported that the PTPN13 

promoter is methylated in 66% of 12 HCC samples without loss of heterozygosity (LOH) of 

chromosome 4q [104]. Moreover, Wang et al. found that the PTPN13 promoter is methylated in 60% 

of 47 diffuse large B cell lymphoma samples, compared with 6.3% of 16 non-tumor tissue samples 

[112]. 

A recent study [62] established four esophageal and Barrett's esophagus adenocarcinoma 

subtypes based on their genome methylation rate. PTPN13 was among the 69 genes in the highly 

methylated subtype. Specifically, it was methylated in 56% of 16 esophageal adenocarcinoma 

samples, and this was associated with decreased mRNA levels in 75% of cases. Conversely, the other 

subtypes did not show any PTPN13 methylation. Moreover, in vitro, shRNA-mediated PTPN13 

silencing significantly increases proliferation and migration of SK-GT-4 esophageal adenocarcinoma 

cells.  

In all studies on PTPN13 promoter methylation, PTPN13 expression and activity were restored 

by incubating cells with 5-azacitidine, a DNA demethylating agent [76,112,113]. 

3.2. Post-Transcriptional Regulation  

3.2.1. Post-Transcriptional Regulation by microRNAs  

MicroRNAs are non-coding RNAs that regulate gene expression through degradation or 

translation inhibition of their target. 

The miR-30 family is composed of five members, a/b/c/d/e (for review: [114]). In tumor samples, 

miR30-e is decreased in bladder [115], breast [116], and rectal cancer [117], while it is overexpressed 

in salivary gland cancer [118] and pulmonary adenocarcinoma [119]. Zhuang’s laboratory confirmed 

that miR30-e is significantly overexpressed in lung adenocarcinoma compared with healthy tissue 

samples. They also showed that PTPN13 is a direct target of miR30-e. Tumor growth is promoted in 

mice xenografted with A549 cells transfected with miR30-e compared with cells transfected with 

vector alone. Moreover, while PTPN13 overexpression can reverse miR30-e effects on A549 cell 

growth, siRNA-mediated PTPN13 silencing enhances cell proliferation. This indicates that miR30-e 

effects are mediated through PTPN13 inhibition [75]. 

Breast cancer cell lines
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Unlike hematopoietic cancers where PTPN13 negative transcriptional regulation has an anti-

tumor effect by sensitizing cells to FAS-induced apoptosis, PTPN13 negative transcriptional 

regulation in solid cancers has a pro-tumor effect through activation of proliferation pathways. (Table 

3) 

Table 3. Transcription factors and co-repressors regulating PTPN13. 

Transcription Factors and Co-Repressors Regulating PTPN13 

Name Expression/Tumor Type Effect Reference 

STAT3/HDAC5 Lung cancers  PTPN13 [101] 

SMYD2 
Polycystic kidney disease 

Breast cancer cell lines 

 PTPN13 

 PTPN13 

[103] 

[102] 

HBx/DNMT3A Liver cancer  PTPN13 [104] 

ICSBP Chronic myeloid leukemia  PTPN13 [106] 

EWS-FLI1 Ewing’s sarcomas  PTPN13 [108] 

Hox-C8  Cell differentiation  PTPN13 [109] 

3.1.2. Transcriptional Regulation Mediated by PTPN13 Promoter Methylation 

The PTPN13 and MAPK10 genes share a bi-directional promoter [110] that contains 12 CpG 

islands [111]. Its methylation is consistently associated with decreased PTPN13 expression [103], and 

has been observed in many hematologic (94% of 16 non-Hodgkin lymphoma cell lines, 50% of 6 

Hodgkin lymphoma cell lines) and solid cancer cell lines (67% of 12 HCC cell lines, 60% of 10 gastric 

cancer cell lines, and 30% of 10 breast cancer cell lines). Similarly, Yeh et al. reported that the PTPN13 

promoter is methylated in 66% of 12 HCC samples without loss of heterozygosity (LOH) of 

chromosome 4q [104]. Moreover, Wang et al. found that the PTPN13 promoter is methylated in 60% 

of 47 diffuse large B cell lymphoma samples, compared with 6.3% of 16 non-tumor tissue samples 

[112]. 

A recent study [62] established four esophageal and Barrett's esophagus adenocarcinoma 

subtypes based on their genome methylation rate. PTPN13 was among the 69 genes in the highly 

methylated subtype. Specifically, it was methylated in 56% of 16 esophageal adenocarcinoma 

samples, and this was associated with decreased mRNA levels in 75% of cases. Conversely, the other 

subtypes did not show any PTPN13 methylation. Moreover, in vitro, shRNA-mediated PTPN13 

silencing significantly increases proliferation and migration of SK-GT-4 esophageal adenocarcinoma 

cells.  

In all studies on PTPN13 promoter methylation, PTPN13 expression and activity were restored 

by incubating cells with 5-azacitidine, a DNA demethylating agent [76,112,113]. 

3.2. Post-Transcriptional Regulation  

3.2.1. Post-Transcriptional Regulation by microRNAs  

MicroRNAs are non-coding RNAs that regulate gene expression through degradation or 

translation inhibition of their target. 

The miR-30 family is composed of five members, a/b/c/d/e (for review: [114]). In tumor samples, 

miR30-e is decreased in bladder [115], breast [116], and rectal cancer [117], while it is overexpressed 

in salivary gland cancer [118] and pulmonary adenocarcinoma [119]. Zhuang’s laboratory confirmed 

that miR30-e is significantly overexpressed in lung adenocarcinoma compared with healthy tissue 

samples. They also showed that PTPN13 is a direct target of miR30-e. Tumor growth is promoted in 

mice xenografted with A549 cells transfected with miR30-e compared with cells transfected with 

vector alone. Moreover, while PTPN13 overexpression can reverse miR30-e effects on A549 cell 

growth, siRNA-mediated PTPN13 silencing enhances cell proliferation. This indicates that miR30-e 

effects are mediated through PTPN13 inhibition [75]. 

PTPN13
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Unlike hematopoietic cancers where PTPN13 negative transcriptional regulation has an anti-

tumor effect by sensitizing cells to FAS-induced apoptosis, PTPN13 negative transcriptional 

regulation in solid cancers has a pro-tumor effect through activation of proliferation pathways. (Table 

3) 

Table 3. Transcription factors and co-repressors regulating PTPN13. 

Transcription Factors and Co-Repressors Regulating PTPN13 

Name Expression/Tumor Type Effect Reference 

STAT3/HDAC5 Lung cancers  PTPN13 [101] 

SMYD2 
Polycystic kidney disease 

Breast cancer cell lines 

 PTPN13 

 PTPN13 

[103] 

[102] 

HBx/DNMT3A Liver cancer  PTPN13 [104] 

ICSBP Chronic myeloid leukemia  PTPN13 [106] 

EWS-FLI1 Ewing’s sarcomas  PTPN13 [108] 

Hox-C8  Cell differentiation  PTPN13 [109] 

3.1.2. Transcriptional Regulation Mediated by PTPN13 Promoter Methylation 

The PTPN13 and MAPK10 genes share a bi-directional promoter [110] that contains 12 CpG 

islands [111]. Its methylation is consistently associated with decreased PTPN13 expression [103], and 

has been observed in many hematologic (94% of 16 non-Hodgkin lymphoma cell lines, 50% of 6 

Hodgkin lymphoma cell lines) and solid cancer cell lines (67% of 12 HCC cell lines, 60% of 10 gastric 

cancer cell lines, and 30% of 10 breast cancer cell lines). Similarly, Yeh et al. reported that the PTPN13 

promoter is methylated in 66% of 12 HCC samples without loss of heterozygosity (LOH) of 

chromosome 4q [104]. Moreover, Wang et al. found that the PTPN13 promoter is methylated in 60% 

of 47 diffuse large B cell lymphoma samples, compared with 6.3% of 16 non-tumor tissue samples 

[112]. 

A recent study [62] established four esophageal and Barrett's esophagus adenocarcinoma 

subtypes based on their genome methylation rate. PTPN13 was among the 69 genes in the highly 

methylated subtype. Specifically, it was methylated in 56% of 16 esophageal adenocarcinoma 

samples, and this was associated with decreased mRNA levels in 75% of cases. Conversely, the other 

subtypes did not show any PTPN13 methylation. Moreover, in vitro, shRNA-mediated PTPN13 

silencing significantly increases proliferation and migration of SK-GT-4 esophageal adenocarcinoma 

cells.  

In all studies on PTPN13 promoter methylation, PTPN13 expression and activity were restored 

by incubating cells with 5-azacitidine, a DNA demethylating agent [76,112,113]. 

3.2. Post-Transcriptional Regulation  

3.2.1. Post-Transcriptional Regulation by microRNAs  

MicroRNAs are non-coding RNAs that regulate gene expression through degradation or 

translation inhibition of their target. 

The miR-30 family is composed of five members, a/b/c/d/e (for review: [114]). In tumor samples, 

miR30-e is decreased in bladder [115], breast [116], and rectal cancer [117], while it is overexpressed 

in salivary gland cancer [118] and pulmonary adenocarcinoma [119]. Zhuang’s laboratory confirmed 

that miR30-e is significantly overexpressed in lung adenocarcinoma compared with healthy tissue 

samples. They also showed that PTPN13 is a direct target of miR30-e. Tumor growth is promoted in 

mice xenografted with A549 cells transfected with miR30-e compared with cells transfected with 

vector alone. Moreover, while PTPN13 overexpression can reverse miR30-e effects on A549 cell 

growth, siRNA-mediated PTPN13 silencing enhances cell proliferation. This indicates that miR30-e 

effects are mediated through PTPN13 inhibition [75]. 

PTPN13
[103]
[102]

HBx/DNMT3A
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Unlike hematopoietic cancers where PTPN13 negative transcriptional regulation has an anti-

tumor effect by sensitizing cells to FAS-induced apoptosis, PTPN13 negative transcriptional 

regulation in solid cancers has a pro-tumor effect through activation of proliferation pathways. (Table 

3) 

Table 3. Transcription factors and co-repressors regulating PTPN13. 

Transcription Factors and Co-Repressors Regulating PTPN13 

Name Expression/Tumor Type Effect Reference 

STAT3/HDAC5 Lung cancers  PTPN13 [101] 

SMYD2 
Polycystic kidney disease 

Breast cancer cell lines 

 PTPN13 

 PTPN13 

[103] 

[102] 

HBx/DNMT3A Liver cancer  PTPN13 [104] 

ICSBP Chronic myeloid leukemia  PTPN13 [106] 

EWS-FLI1 Ewing’s sarcomas  PTPN13 [108] 

Hox-C8  Cell differentiation  PTPN13 [109] 

3.1.2. Transcriptional Regulation Mediated by PTPN13 Promoter Methylation 

The PTPN13 and MAPK10 genes share a bi-directional promoter [110] that contains 12 CpG 

islands [111]. Its methylation is consistently associated with decreased PTPN13 expression [103], and 

has been observed in many hematologic (94% of 16 non-Hodgkin lymphoma cell lines, 50% of 6 

Hodgkin lymphoma cell lines) and solid cancer cell lines (67% of 12 HCC cell lines, 60% of 10 gastric 

cancer cell lines, and 30% of 10 breast cancer cell lines). Similarly, Yeh et al. reported that the PTPN13 

promoter is methylated in 66% of 12 HCC samples without loss of heterozygosity (LOH) of 

chromosome 4q [104]. Moreover, Wang et al. found that the PTPN13 promoter is methylated in 60% 

of 47 diffuse large B cell lymphoma samples, compared with 6.3% of 16 non-tumor tissue samples 

[112]. 

A recent study [62] established four esophageal and Barrett's esophagus adenocarcinoma 

subtypes based on their genome methylation rate. PTPN13 was among the 69 genes in the highly 

methylated subtype. Specifically, it was methylated in 56% of 16 esophageal adenocarcinoma 

samples, and this was associated with decreased mRNA levels in 75% of cases. Conversely, the other 

subtypes did not show any PTPN13 methylation. Moreover, in vitro, shRNA-mediated PTPN13 

silencing significantly increases proliferation and migration of SK-GT-4 esophageal adenocarcinoma 

cells.  

In all studies on PTPN13 promoter methylation, PTPN13 expression and activity were restored 

by incubating cells with 5-azacitidine, a DNA demethylating agent [76,112,113]. 

3.2. Post-Transcriptional Regulation  

3.2.1. Post-Transcriptional Regulation by microRNAs  

MicroRNAs are non-coding RNAs that regulate gene expression through degradation or 

translation inhibition of their target. 

The miR-30 family is composed of five members, a/b/c/d/e (for review: [114]). In tumor samples, 

miR30-e is decreased in bladder [115], breast [116], and rectal cancer [117], while it is overexpressed 

in salivary gland cancer [118] and pulmonary adenocarcinoma [119]. Zhuang’s laboratory confirmed 

that miR30-e is significantly overexpressed in lung adenocarcinoma compared with healthy tissue 

samples. They also showed that PTPN13 is a direct target of miR30-e. Tumor growth is promoted in 

mice xenografted with A549 cells transfected with miR30-e compared with cells transfected with 

vector alone. Moreover, while PTPN13 overexpression can reverse miR30-e effects on A549 cell 

growth, siRNA-mediated PTPN13 silencing enhances cell proliferation. This indicates that miR30-e 

effects are mediated through PTPN13 inhibition [75]. 

Liver cancer
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Unlike hematopoietic cancers where PTPN13 negative transcriptional regulation has an anti-

tumor effect by sensitizing cells to FAS-induced apoptosis, PTPN13 negative transcriptional 

regulation in solid cancers has a pro-tumor effect through activation of proliferation pathways. (Table 

3) 

Table 3. Transcription factors and co-repressors regulating PTPN13. 

Transcription Factors and Co-Repressors Regulating PTPN13 

Name Expression/Tumor Type Effect Reference 

STAT3/HDAC5 Lung cancers  PTPN13 [101] 

SMYD2 
Polycystic kidney disease 

Breast cancer cell lines 

 PTPN13 

 PTPN13 

[103] 

[102] 

HBx/DNMT3A Liver cancer  PTPN13 [104] 

ICSBP Chronic myeloid leukemia  PTPN13 [106] 

EWS-FLI1 Ewing’s sarcomas  PTPN13 [108] 

Hox-C8  Cell differentiation  PTPN13 [109] 

3.1.2. Transcriptional Regulation Mediated by PTPN13 Promoter Methylation 

The PTPN13 and MAPK10 genes share a bi-directional promoter [110] that contains 12 CpG 

islands [111]. Its methylation is consistently associated with decreased PTPN13 expression [103], and 

has been observed in many hematologic (94% of 16 non-Hodgkin lymphoma cell lines, 50% of 6 

Hodgkin lymphoma cell lines) and solid cancer cell lines (67% of 12 HCC cell lines, 60% of 10 gastric 

cancer cell lines, and 30% of 10 breast cancer cell lines). Similarly, Yeh et al. reported that the PTPN13 

promoter is methylated in 66% of 12 HCC samples without loss of heterozygosity (LOH) of 

chromosome 4q [104]. Moreover, Wang et al. found that the PTPN13 promoter is methylated in 60% 

of 47 diffuse large B cell lymphoma samples, compared with 6.3% of 16 non-tumor tissue samples 

[112]. 

A recent study [62] established four esophageal and Barrett's esophagus adenocarcinoma 

subtypes based on their genome methylation rate. PTPN13 was among the 69 genes in the highly 

methylated subtype. Specifically, it was methylated in 56% of 16 esophageal adenocarcinoma 

samples, and this was associated with decreased mRNA levels in 75% of cases. Conversely, the other 

subtypes did not show any PTPN13 methylation. Moreover, in vitro, shRNA-mediated PTPN13 

silencing significantly increases proliferation and migration of SK-GT-4 esophageal adenocarcinoma 

cells.  

In all studies on PTPN13 promoter methylation, PTPN13 expression and activity were restored 

by incubating cells with 5-azacitidine, a DNA demethylating agent [76,112,113]. 

3.2. Post-Transcriptional Regulation  

3.2.1. Post-Transcriptional Regulation by microRNAs  

MicroRNAs are non-coding RNAs that regulate gene expression through degradation or 

translation inhibition of their target. 

The miR-30 family is composed of five members, a/b/c/d/e (for review: [114]). In tumor samples, 

miR30-e is decreased in bladder [115], breast [116], and rectal cancer [117], while it is overexpressed 

in salivary gland cancer [118] and pulmonary adenocarcinoma [119]. Zhuang’s laboratory confirmed 

that miR30-e is significantly overexpressed in lung adenocarcinoma compared with healthy tissue 

samples. They also showed that PTPN13 is a direct target of miR30-e. Tumor growth is promoted in 

mice xenografted with A549 cells transfected with miR30-e compared with cells transfected with 

vector alone. Moreover, while PTPN13 overexpression can reverse miR30-e effects on A549 cell 

growth, siRNA-mediated PTPN13 silencing enhances cell proliferation. This indicates that miR30-e 

effects are mediated through PTPN13 inhibition [75]. 

PTPN13 [104]

ICSBP
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Unlike hematopoietic cancers where PTPN13 negative transcriptional regulation has an anti-

tumor effect by sensitizing cells to FAS-induced apoptosis, PTPN13 negative transcriptional 

regulation in solid cancers has a pro-tumor effect through activation of proliferation pathways. (Table 

3) 

Table 3. Transcription factors and co-repressors regulating PTPN13. 

Transcription Factors and Co-Repressors Regulating PTPN13 

Name Expression/Tumor Type Effect Reference 

STAT3/HDAC5 Lung cancers  PTPN13 [101] 

SMYD2 
Polycystic kidney disease 

Breast cancer cell lines 

 PTPN13 

 PTPN13 

[103] 

[102] 

HBx/DNMT3A Liver cancer  PTPN13 [104] 

ICSBP Chronic myeloid leukemia  PTPN13 [106] 

EWS-FLI1 Ewing’s sarcomas  PTPN13 [108] 

Hox-C8  Cell differentiation  PTPN13 [109] 

3.1.2. Transcriptional Regulation Mediated by PTPN13 Promoter Methylation 

The PTPN13 and MAPK10 genes share a bi-directional promoter [110] that contains 12 CpG 

islands [111]. Its methylation is consistently associated with decreased PTPN13 expression [103], and 

has been observed in many hematologic (94% of 16 non-Hodgkin lymphoma cell lines, 50% of 6 

Hodgkin lymphoma cell lines) and solid cancer cell lines (67% of 12 HCC cell lines, 60% of 10 gastric 

cancer cell lines, and 30% of 10 breast cancer cell lines). Similarly, Yeh et al. reported that the PTPN13 

promoter is methylated in 66% of 12 HCC samples without loss of heterozygosity (LOH) of 

chromosome 4q [104]. Moreover, Wang et al. found that the PTPN13 promoter is methylated in 60% 

of 47 diffuse large B cell lymphoma samples, compared with 6.3% of 16 non-tumor tissue samples 

[112]. 

A recent study [62] established four esophageal and Barrett's esophagus adenocarcinoma 

subtypes based on their genome methylation rate. PTPN13 was among the 69 genes in the highly 

methylated subtype. Specifically, it was methylated in 56% of 16 esophageal adenocarcinoma 

samples, and this was associated with decreased mRNA levels in 75% of cases. Conversely, the other 

subtypes did not show any PTPN13 methylation. Moreover, in vitro, shRNA-mediated PTPN13 

silencing significantly increases proliferation and migration of SK-GT-4 esophageal adenocarcinoma 

cells.  

In all studies on PTPN13 promoter methylation, PTPN13 expression and activity were restored 

by incubating cells with 5-azacitidine, a DNA demethylating agent [76,112,113]. 

3.2. Post-Transcriptional Regulation  

3.2.1. Post-Transcriptional Regulation by microRNAs  

MicroRNAs are non-coding RNAs that regulate gene expression through degradation or 

translation inhibition of their target. 

The miR-30 family is composed of five members, a/b/c/d/e (for review: [114]). In tumor samples, 

miR30-e is decreased in bladder [115], breast [116], and rectal cancer [117], while it is overexpressed 

in salivary gland cancer [118] and pulmonary adenocarcinoma [119]. Zhuang’s laboratory confirmed 

that miR30-e is significantly overexpressed in lung adenocarcinoma compared with healthy tissue 

samples. They also showed that PTPN13 is a direct target of miR30-e. Tumor growth is promoted in 

mice xenografted with A549 cells transfected with miR30-e compared with cells transfected with 

vector alone. Moreover, while PTPN13 overexpression can reverse miR30-e effects on A549 cell 

growth, siRNA-mediated PTPN13 silencing enhances cell proliferation. This indicates that miR30-e 

effects are mediated through PTPN13 inhibition [75]. 

Chronic myeloid
leukemia
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Unlike hematopoietic cancers where PTPN13 negative transcriptional regulation has an anti-

tumor effect by sensitizing cells to FAS-induced apoptosis, PTPN13 negative transcriptional 
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PTPN13 [109]

3.1.2. Transcriptional Regulation Mediated by PTPN13 Promoter Methylation

The PTPN13 and MAPK10 genes share a bi-directional promoter [110] that contains 12 CpG
islands [111]. Its methylation is consistently associated with decreased PTPN13 expression [103],
and has been observed in many hematologic (94% of 16 non-Hodgkin lymphoma cell lines, 50% of
6 Hodgkin lymphoma cell lines) and solid cancer cell lines (67% of 12 HCC cell lines, 60% of 10
gastric cancer cell lines, and 30% of 10 breast cancer cell lines). Similarly, Yeh et al. reported that the
PTPN13 promoter is methylated in 66% of 12 HCC samples without loss of heterozygosity (LOH) of
chromosome 4q [104]. Moreover, Wang et al. found that the PTPN13 promoter is methylated in 60% of
47 diffuse large B cell lymphoma samples, compared with 6.3% of 16 non-tumor tissue samples [112].

A recent study [62] established four esophageal and Barrett’s esophagus adenocarcinoma subtypes
based on their genome methylation rate. PTPN13 was among the 69 genes in the highly methylated
subtype. Specifically, it was methylated in 56% of 16 esophageal adenocarcinoma samples, and this
was associated with decreased mRNA levels in 75% of cases. Conversely, the other subtypes did not
show any PTPN13 methylation. Moreover, in vitro, shRNA-mediated PTPN13 silencing significantly
increases proliferation and migration of SK-GT-4 esophageal adenocarcinoma cells.

In all studies on PTPN13 promoter methylation, PTPN13 expression and activity were restored by
incubating cells with 5-azacitidine, a DNA demethylating agent [76,112,113].

3.2. Post-Transcriptional Regulation

3.2.1. Post-Transcriptional Regulation by microRNAs

MicroRNAs are non-coding RNAs that regulate gene expression through degradation or translation
inhibition of their target.

The miR-30 family is composed of five members, a/b/c/d/e (for review: [114]). In tumor samples,
miR30-e is decreased in bladder [115], breast [116], and rectal cancer [117], while it is overexpressed in
salivary gland cancer [118] and pulmonary adenocarcinoma [119]. Zhuang’s laboratory confirmed
that miR30-e is significantly overexpressed in lung adenocarcinoma compared with healthy tissue
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samples. They also showed that PTPN13 is a direct target of miR30-e. Tumor growth is promoted
in mice xenografted with A549 cells transfected with miR30-e compared with cells transfected with
vector alone. Moreover, while PTPN13 overexpression can reverse miR30-e effects on A549 cell growth,
siRNA-mediated PTPN13 silencing enhances cell proliferation. This indicates that miR30-e effects are
mediated through PTPN13 inhibition [75].

The miR-26 family includes three subtypes with altered expression in various tumors. Xu et al.
showed that PTPN13 is a direct target of miR-26a in bronchial adenocarcinoma. Indeed, miR-26a
overexpression leads to wild-type PTPN13 protein level reduction, but has no effect on the expression
of a PTPN13 variant harboring a mutation in the putative miR-26a binding site. In the SPCA-1
lung adenocarcinoma cell line, siRNA-mediated PTPN13 knockdown mimics the effect of miR26-a,
promoting phosphorylation of SRC, Akt, and ERK [74], supporting miR26a oncogenic role in
bronchial adenocarcinoma.

The miR-200 family contains five subtypes (miR-200a/b/c, miR-141, and miR-429), and is involved
in maintaining the epithelial phenotype [120]. Schickel et al. demonstrated that miR-200c decreases
PTPN13 transcription by 60% in HEK293 cells. Furthermore, PTPN13 repression mediated by miR-200
increases sensitivity to FAS-induced apoptosis in tumor cell lines with mesenchymal features [56]
(see chapter A).

The miR-185 family is overexpressed in bladder and kidney cancers and targets the PTPN13 and
PTEN genes. However, their effects have not been studied in vivo yet [121] (Table 4).

Table 4. miRNA targeting PTPN13.

miRNA Targeting PTPN13

Name Tumor Type miRNA Expression Reference

miR-26-a Lung cancers Overexpression [74]

miR30-e Lung cancers Overexpression [75]

miR-200c Various cancers Loss of expression [56]

miR-185 Bladder and Kidney Cancers Overexpression [121]

3.2.2. Post-Transcriptional Regulation by Alternative Splicing

Although there are four PTPN13 isoforms [122], the regulation and consequences of PTPN13
alternative splicing have been rarely explored. In the only published study, the consequences of
hypoxia on the genome of prostate adenocarcinoma cells were analyzed by next generation sequencing.
They found a decrease of more than 25% in PTPN13 exon inclusion rate, but the functions of its spliced
isoforms remain unknown [123].

3.3. Post-Translational Regulation

Similarly, PTPN13 post-translational regulation remains largely unexplored. To our knowledge,
only one study has been published. Wang et al found that in a mouse brain after traumatic brain
injury, calpain-2 inhibits PTPN13 activity by upstream cleavage of its catalytic domain, leading to
ABL-mediated phosphorylation of the microtubule-associated tau protein [30].

It would be of particular interest to study the role of the large number of PTPN13 post-translationally
modified residues found in global proteomic studies, as illustrated in the www.phosphosite.org
database, but their function and significance remain to be elucidated.

4. Medical Implication of PTPN13

4.1. Prognostic Marker of Survival

Several retrospective clinical studies analyzed PTPN13 prognostic value in different diseases.

www.phosphosite.org
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In ovarian cancer, a first study of 95 specimens with different histological subtypes found no
association between PTPN13 expression and survival at 2, 3, and 5 years [124]. However, two studies
only on HGSOC, the most frequent ovarian cancer subtype, highlighted a correlation between high
PTPN13 protein and mRNA expression and better prognosis in 97 and 58 HGSOC samples, respectively
(p = 0.042 and p = 0.03) [89,125]. They also observed that PTPN13 expression levels are reduced in
tumor tissues compared with normal tissues.

In breast cancer (n = 291 samples), we showed that high PTPN13 expression, measured by RT/PCR,
is associated with better prognosis (p = 0.01 and RR = 0.48 in multivariate analysis) [126]. In a second
study, in which we analyzed 24 breast cancer samples by immunohistochemistry (IHC), we observed a
progressive decrease in PTPN13 expression from normal to metastatic tissue samples [38].

In prostate cancer samples (n = 76), PTPN13 expression, estimated by IHC, was inversely correlated
with the Gleason score (p < 0.05). PTPN13 was overexpressed in well-differentiated tumors (low
Gleason score), and downregulated in high-grade prostate tumors [62].

Three of four studies on lung cancer [squamous lung cell carcinoma (LSCC) [127],
adenocarcinoma [75], and non-small-cell lung carcinoma (NSCLC) [67]] found a significant decrease
in PTPN13 expression in tumors compared with normal tissues. Two of these studies also evaluated
PTPN13 prognostic value, and found that RNA expression is associated with improved survival in
27 patients (HR = 0.28 p = 0.02) [128], and its protein expression with a lower aggressiveness in 91
primary LSCC samples (negative correlation with size, grade, and lymph node metastases, p < 0.001
for all three criteria) [127]. The fourth study [128] did not find any significant difference in PTPN13
expression between adenocarcinoma samples from non-smoking patients and adjacent normal tissues.

A study on 282 HCC samples demonstrated that elevated PTPN13 expression (by IHC) is associated
with better prognosis (p = 0.034) [90].

In primary Ewing sarcoma (n = 144), PTPN13 was detected by IHC in 80% of tumor specimens,
but its level was not associated with survival [129]. Interestingly, it was not reported in normal human
bone samples.

In glioblastoma, PTPN13 RNA level was increased compared with normal brain, but this finding
was based only on three samples and should be confirmed [130].

In conclusion, compared with healthy tissues, PTPN13 expression is decreased in all tumor
types that have been studied, except for glioblastoma. As PTPN13 expression is not detectable in
bone, its relative variation in Ewing sarcoma cannot be assessed. Overall, PTPN13 expression is
linked to less aggressive tumors and better patient survival. PTPN13 is considered an independent
biomarker of good prognosis in several solid tumor types, such as breast cancer [126], HGSOC [89,125],
and HCC [90]. However, all these results are from retrospective studies, and should be confirmed in
prospective studies.

Noteworthy, many mechanistic studies that indicate a negative role of PTPN13 in FAS-induced
apoptosis and suggest a pro-tumor function were performed in hematopoietic cancers. To our
knowledge, no clinical study investigated the prognostic role of PTPN13 expression in these cancers.

4.2. PTPN13 and Drug Sensitivity

As PTPN13 induces resistance to FAS-mediated apoptosis, several studies evaluated whether
resistance to cancer treatment is associated with PTPN13 expression (see chapter 2.1). It is important
to note that the results presented below were all obtained in vitro. In colon cancer cells, where FAS
receptor is strongly expressed [131], a study showed that oxaliplatin induces PTPN13 expression,
thereby protecting cells from apoptosis. PTPN13 silencing by siRNA combined with oxaliplatin
improves sensitivity to chemotherapy by increasing FAS-induced apoptosis [55]. In line with these data,
inhibition of the PTPN13/FAS interaction with the SLV peptide in PTPN13-overexpressing CD133+

colon cancer stem cells increases their sensitivity to oxaliplatin, restoring FAS-induced apoptosis [51].
Similar observations have been made using CML stem cells that overexpress PTPN13 and exhibit

resistance to tyrosine kinase inhibitors (TKI). The combination of TKI against BCR/ABL and FAS
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inhibition with the SLV peptide restores sensitivity to FAS-induced apoptosis and to TKIs in such
cells [61].

On the other hand, in NSCLC cell lines (SPCA1 and PC-9), PTPN13 increases the sensitivity to an
anti-EGFR TKI (gefitinib). Indeed, PTPN13 inhibition by miR-26a has been associated with resistance
to gefitinib in vitro and in vivo, implying in this case the ability of PTPN13 to inhibit SRC [74].

Ephrin B1 also is implicated in the response to anti-tumor treatments. Indeed,
when dephosphorylated, ephrin B1 can bind to mitotic spindle microtubules, thus increasing the
sensitivity to paclitaxel in head and neck squamous cell carcinoma and breast cancer cell lines [132].
Conversely, when phosphorylated, ephrin B1 is excluded from the spindle and is associated with
resistance to paclitaxel in epithelial cancer cell lines. Ephrin B1 dephosphorylation is directly
regulated by PTPN13, and this may explain why tumors with low PTPN13 expression are resistant to
paclitaxel [132].

Another study showed that the newly identified ephrin B1/ErbB/PTPN13 signaling pathway [71]
is implicated in the resistance to a monoclonal antibody against ERBB1 (cetuximab) in HNSCC.
Cetuximab blocks ERBB1, but does not prevent ephrin B1 activation or ERK phosphorylation. This new
signaling pathway, regulated by PTPN13, allows cells to escape treatment-induced pressure by shifting
from ERBB1 to ephrinB1 signaling [71]. This suggests a potential role for the ephrinB1/ErbB/PTPN13
axis in HNSCC resistance to some EGF-R inhibitors.

A recent study demonstrated PTPN13 involvement in cisplatin sensitivity of HNSCC cell lines
(WSU-HN6 and CAL-27) where cancer-derived IgG inhibition upregulates PTPN13, resulting in the
inhibition of the SRC/PKD1/AKT pathway [133].

In summary, depending on the tumor type, PTPN13 may regulate resistance to anti-cancer
therapies through its anti-apoptotic role via the FAS pathway, or through regulation of secondary
EGFR pathways (ephrinB1/ErbB and SRC/PKD1/AKT), or through an indirect action on microtubules
mediated by ephrinB1.

4.3. PTPN13 Gene Alterations

4.3.1. Loss of Heterozygosity (LOH)

PTPN13 gene deletion has been observed in 37% of NSCLC [67], with higher prevalence in
metastatic than non-metastatic lung cancer [134]. Similarly, PTPN13 LOH has been reported in 67% of
HGSOC [135], and PTPN13 bi-allelic loss in 26% of NSCLC samples [67].

4.3.2. Single Nucleotide Polymorphisms (SNP)

Besides LOH, other genetic variations may be relevant to the residual allele, particularly SNPs [136].
The Y2081D Tyr2081Asp (T > G), rs989902 (rs for SNP reference), in exon 39, near the PTPN13

phosphatase domain [137], is associated with colorectal cancer in Polish patients (relative risk compared
to the “wild-type” genotype: 2.087) [138], and with HNSCC in American patients (Odds Ratio,
OR, =1.26) [139]. A meta-analysis of data from Caucasian and Asian patients confirmed its association
with HNSCC (OR = 1.23), but a protective role was attributed to PTPN13 in colorectal cancer (OR = 0.51).
These apparently contradictory results might be explained by the different populations. In breast
cancer, this meta-analysis found a protective role for this SNP (OR = 0.63), as well as a Chinese study
on the C/A and G/C genotypes of this SNP (OR = 0.63 and OR= 0.66) [140].

The I1522M Ile1522Met (A > G), rs2230600, in exon 29 within the third PTPN13 PDZ domain,
has been associated with HNSCC occurrence (OR = 1.89) [137]. Mita et al. [137] found an increased risk
of lung, head, and neck cancer, and colorectal cancer when at least one of these two SNPs is present
(adjusted OR = 3.36–13.75). Conversely, esophageal cancer was not associated with any of them.

The effects of these two SNPs on PTPN13 protein expression remain unknown. Conversely,
the tE2455D and Y2260WX SNPs in the catalytic domain of PTPN13 that have been identified in
colorectal cancer induce a loss of 50 to almost 100%, respectively, of the phosphatase activity [37].
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In addition, the nonsense Tyr1758*** (T > A) and missense Glu745Gln mutations have been
found in hepatitis B virus-induced HCC samples, and the L1424P false-sense mutation, which is
located in a protein-interacting PDZ domain (genomic position 87687597), may affect PTPN13 function.
Around 6% of TCGA gastric cancer samples harbor PTPN13 mutations that have been associated with
poor prognosis [141].

In 262 patients with familial lung cancer, a non-synonymous PTPN13 exon variant (rs115836094)
at 4q21.3-28.3 could be involved in carcinogenesis [142]. Moreover, 8% of NSCLC samples harbored
false-sense PTPN13 mutations with unknown functions (e.g., A808C leading to N270H in exon 7,
and G1925A, leading to R482Q in exon 10) [50]. Conversely, sequencing of PTPN13 exon 7, which could
be involved in the regulation of FAS-related apoptosis, in 103 colorectal cancer samples did not reveal
any mutation [143].

Overall, approximately 7–8% of lung cancer [67,128] and 20% of HPV-negative HNSCC [144]
samples harbor PTPN13 mutations. A mutational analysis of data from a tyrosine phosphatome-wide
study of 157 CRC samples showed that PTPN13 is the second most commonly mutated phosphatase in
these cancers (n = 15 tumors with a mutation; 9% of the entire sample) [145].

PTPN13 genetic polymorphisms need to be better investigated. Nevertheless, all analyzed
mutations have an inhibitory effect on PTPN13 activity, and their presence appears to be associated
with poor prognosis in lung cancer (p = 0.02) [128] and possibly in gastric cancer [141].

4.4. Bio-Informatic Analysis of the PTPN13 Gene Regulatory Network

In 2015, Yu et al. [146] created a gene regulatory network using an innovative modeling technique
(statistical completion of a partially identified graph), that is based on classical statistical data and
that integrates already known mechanistic data, such as protein interactions and transcription factor
binding sites. They identified PTPN13 as a new lung cancer pivotal gene and validated its prognostic
importance retrospectively in four independent lung cancer datasets (n = 529 patients). The decrease
in PTPN13 expression was associated with poorer prognosis.

Finally, genetic studies support the notion of PTPN13 loss of expression/function in cancer,
through LOH and/or SNPs. The previously described epigenetic mechanisms have the same negative
consequences on its expression.

Altogether, these data bring weight to the hypothesis of a primary tumor suppressor role for the
PTPN13 phosphatase.

5. Conclusions

The work of the last 25 years on PTPN13 reveals that this phosphatase is involved in many
physiological mechanisms, with a variable importance depending on the cell type.

In solid tumors, PTPN13 tumor suppressor role, via inhibition of pathways involved in cell
proliferation and migration, seems to be confirmed by clinical studies. Conversely, its potential
pro-oncogenic role in hematologic malignancies, via resistance to FAS-induced apoptosis, needs to be
investigated at the clinical level.

Interestingly, recent studies on PTPN13 highlight its function as a stabilizer of epithelial cell
junctions, a role that in epithelial tissues, places PTPN13 at the interface between cell migration and
cell death and should be better assessed in the future [30,83,84].

Finally, although PTPN13 is primarily studied in cancer, its roles in multiple signaling pathways
suggest its implication also in other pathologies, for instance, neurodegenerative diseases where recent
studies pointed to a potential role in tau phosphorylation [147].
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138. Laczmanska, I.; Karpiński, P.; Gil, J.; Laczmanski, L.; Makowska, I.; Bebenek, M.; Ramsey, D.; Sąsiadek, M.M.
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