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Identification of four gastric cancer subtypes based on genetic analysis of 
cholesterogenic and glycolytic pathways
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ABSTRACT
Warburg phenomenon refers to the development of unique metabolic patterns during the growth of 
tumor cells. This study stratified gastric cancer into prognostic metabolic subgroups according to 
changes in gene expressions related to glycolysis and cholesterol synthesis. The RNA-seq expression 
data, single nucleotide variants (SNV), short insertions and deletions (InDel) mutation data, copy number 
variation (CNV) data and clinical follow-up information data of gastric cancer tissues were downloaded 
from The Cancer Genome Atlas (TCGA) database. ConsensusClusterPlus was used to stratify the meta-
bolic subtypes of gastric cancer. Four metabolic subtypes (Cholesterogenic, Glycolytic, Mixed and 
Quiescent) of gastric cancer were identified, and patients with cholesterogenic tumors had the longest 
disease-specific survival (DSS). Genome-wide analysis showed that aberrant amplification of TP53 and 
MYC in gastric cancer was associated with abnormal cholesterol anabolic metabolism. The mRNA levels 
of mitochondrial pyruvate carriers 1 and 2 (MPC1/2) differed among the four subtypes. Tumors in the 
glycolytic group showed a higher PDCD1. A genomic signature based on tumor metabolism of different 
cancer types was established. This study showed that genes related to glucose and lipid metabolism 
play an important role in gastric cancer and facilitate a personalized treatment of gastric cancer.
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Introduction

Gastric cancer is the fifth most common malignant 
tumor, with the third highest mortality [1]. Studies 
reported that the 5-year survival rate for patients 
with advanced gastric cancer is 5–20%, but that for 
those with early gastric cancer is as high as 85– 
100%, indicating the significance of an early diag-
nosis in reducing mortality and improving prog-
nosis of gastric cancer [2–5]. However, atypical 
and unobvious early symptoms of gastric cancer 
often lead to a late diagnosis of the cancer, which 
is often accompanied by liver metastasis and com-
bined peritoneal metastasis [6]. Therefore, it is 
necessary to better understand the mechanism of 
specific cellular tumor progression pathways in 
promoting the prognostic stratification of gastric 
cancer and developing personalized treatment for 
gastric cancer patients.

Otto Warburg reported that the glycolytic 
activity of liver cancer cells is significantly 
higher than that of normal liver cells, and indi-
cated that aerobic glycolysis supports a rapid 
proliferation of tumor cells [7]. Metabolic remo-
deling is a special metabolic mode of tumor 
cells, which is obviously different from that of 
normal cells [8]. Metabolic reprogramming of 
tumor cells mainly involves overactive glycolysis 
and fatty acid synthesis [9]. Previous evidence 
showed an inverse relationship between total 
body cholesterol level and risk of developing 
gastric cancer [10]. It has been found that 
genes related to metabolism, including isoen-
zymes in specific pathways, show higher muta-
tion in cancer patients and heterogeneity in 
different types of cancers [11,12]. In addition, 
based on the related bases of glucose metabolism 
and cholesterol metabolism, four metabolic sub-
types have been previously found in liver cancer 
and pancreatic cancer [13,14]. However, so far, 
the relationship between abnormal glucose and 
lipid metabolism have not been studied; more-
over, the molecular mechanism in relation to 
prognosis and treatment of gastric cancer should 
be investigated.

Most gastric cancers contain oncogenic 
CTNNB1 and loss-of-function TP53 mutation 
[15]. In addition to general hypoxia, CTNNB1 

and TP53 are inducers of glycolytic pathways in 
cancers [16]. Glycolysis contributes to tumor 
progression and chemotherapy resistance [17]. 
The effect of glycolysis on tumor progression 
can be attenuated by transferring the metabolite 
pyruvate from lactic acid to mitochondria 
through the activity of the mitochondrial pyru-
vate complex (MPC). MPC is composed of pyr-
uvate carriers 1 and 2 (MPC1 and MPC2) [14]. 
Pyruvate is a metabolic intermediate product of 
the tricarboxylic acid cycle, providing the pre-
cursor citrate of lipogenesis, including the bio-
synthesis of cholesterol and free fatty acids.

In this study, our main purpose is to identify 
the metabolic subtypes of gastric cancer with 
prognostic differences. Gastric cancer patients 
were divided into different subtypes based on 
the expression of genes related to glycolysis 
and cholesterol synthesis. We explored the dif-
ferences in patients’ survival and other clinical 
characteristics of different metabolic subtypes of 
gastric cancer, and determined the carcinogenic 
molecular events of different subtypes. This 
study developed a clinically feasible gastric can-
cer classification scheme, which could guide the 
design of targeted therapy of gastric cancer.

Material and methods

Data collection and processing

RNA-Seq expression data, single nucleotide var-
iants (SNV), short insertion and deletion (InDel) 
mutation data, copy number variation (CNV) 
data and clinical follow-up information data of 
tissues derived from gastric cancer patients were 
downloaded from the The Cancer Genome Atlas 
(TCGA) database [18]. For the RNA-Seq data of 
TCGA-gastric cancer, the expression profiles of 
primary solid tumor and solid tissue normal 
samples were retained. Ensembl were converted 
to Gene symbol, median value of expressions 
with multiple gene symbols were taken, and the 
expression spectrum with fragments per kilobase 
of transcript per million mapped reads (FPKM) 
was converted to transcript per million (TPM). 
After data preprocessing, TCGA gastric cancer 
contained a total of 407 samples, which 
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consisted of 375 tumor samples and 32 normal 
samples.

Metabolic subtype classification

Glycolysis and cholesterol-related genes came from 
REACTOME_GLYCOLYSIS (n = 29) and 
REACTOME_CHOLESTEROL_BIOSYNTHESIS 
(n = 24) in the MsigDB database [19]. After remov-
ing the genes with an expression level lower than 1 
and lower than 50% from all the samples, only 43 
glycolysis and cholesterol genes incorporating 23 
GLYCOLYSIS genes and 20 CHOLESTEROL 
genes were obtained. ConsensusClusterPlus [20] 
(V1.48.0; parameters: reps = 100, pItem = 0.8, 
pFeature = 1, distance = ‘spearman’) was used to 
cluster glycolysis and cholesterol genes. D2 and 
Euclidean distance were respectively used as clus-
tering algorithms and distance measures. The med-
ian expression levels of co-expressed glycolysis and 
cholesterol genes were calculated for Z-score [21]. 
The TCGA dataset (n = 375) was divided into four 
subtypes, specifically, the sample with 
GLYCOLYSIS ≤ 0 and CHOLESTEROL ≤ 0 was 
defined as quiescent group (Quiescent); the sample 
with GLYCOLYSIS > 0 and CHOLESTEROL ≤ 0 
were defined as the glycolysis group (Glycolysis); 
the sample with GLYCOLYSIS ≤ 0 and 
CHOLESTEROL> 0 was defined as cholesterol 
group (Cholesterol); the samples with 
GLYCOLYSIS ≥ 0 and CHOLESTEROL ≥ 0 were 
defined as mixed group (Mixed).

Mutant molecular event analysis

Gene sequences were identified and analyzed from 
the human genome conference GRCh37/hg19 
[22]. To determine carcinogenic molecular events 
in the metabolic subtypes of gastric cancer, we 
examined the frequencies of SNV, InDel and 
CNV, and analyzed their relationship with meta-
bolic subtypes. For tumor ploidy, DNA fragments 
with replication status ≥ 3 and ≤ 1 were consid-
ered as amplification (the average value of frag-
ments > 0.2) and deletion (the average value of 
fragments < −0.2), respectively. According to 
a previous research [23], gastric cancer copy num-
ber events with at least 10 supporting probes were 

screened. Bedtools v2.26 [24] was used to map the 
coordinates of the copy number event to gene 
coding region, and SNV and CNV of each gene 
were determined through contingency analysis. 
The selected genes in each subgroup were tested, 
and Fisher’s exact test was performed to detect 
loss-of-function mutations or copy number ampli-
fication/deletion in each subgroup. Benjamini– 
Hochberg (BH) correction was applied in deter-
mining the p-value.

RNA expression analysis of MPC1/2

Gene sets positively or negatively correlated with 
MPC1/2 (calculated by Spearman correlation analy-
sis) were identified by RNA-seq expression analysis, 
and BH [25] correction was performed for multiple 
test corrections. Based on the adjusted p value <0.01, 
a significant correlation between the two genomes 
was established. The correlation coefficient of r > 0 
was used to identify a positive correlation with the 
gene of MPC1/2, whereas the correlation coefficient 
of r < 0 was used to identify a negative correlation. 
A comprehensive gene set enrichment analysis on 
the two sets of genes was conducted to determine 
the pathway enrichment of genes positively or nega-
tively correlated with MPC1/2.

Pan-cancer RNA-seq analysis

The ‘per million transcripts’ data of all pan-cancer 
samples were downloaded, and samples were 
screened according to cancer types. After the initial 
screening, there were at least 100 samples and 26 
matching cancer types. Next, RNA expression ana-
lysis was performed for logarithmic conversion, 
batch correction, grouping and cluster analysis. For 
each gene cluster, the ratio of glycolysis genes and 
cholesterol genes in the cluster was calculated. Gene 
clusters containing >90% cholesterol genes or >30% 
glycolytic genes were considered as ‘core’ gene clus-
ters. For cancer types with multiple core clusters in 
the same gene set, the most uniformed cluster was 
regarded as the core cluster. According to the med-
ian value of each core glycolysis gene and cholesterol 
gene, the metabolic subtype of each cancer type was 
determined.
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Statistical analysis

The R software package ‘estimate’ [26] was used to 
calculate the scores of immunity and matrix of 
each sample. Kaplan–Meier diagrams were plotted 
using the R packages ‘survival’. The Limma pack-
age [27] was used to calculate the differential 
expression genes between Cholesterol subtype 
and Glycolysis subtype, according to the threshold 
FDR <0.05 and |FC|> 1.2. Based on the differential 
expression genes between Cholesterol subtype and 
Glycolysis subtype, R software package 
WebGestaltR (v0.4.2) [28] was performed for 
Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis and Gene Ontology 
(GO) function enrichment analysis.

Results

In this study, our main purpose is to identify the 
metabolic subtypes of gastric cancer with prognos-
tic differences. And we stratified gastric cancer 
into prognostic metabolic subgroups 
(Cholesterogenic, Glycolytic, Mixed and 
Quiescent) according to changes in gene expres-
sions related to glycolysis and cholesterol 
synthesis.

Identification of molecular subtypes of gastric 
cancer

ConsensusClusterPlus was first used for consistent 
clustering of glycolysis and cholesterol genes, and 
here we obtained 43 genes. When K = 3, glycolysis 
genes and cholesterol genes were clustered 
together (Figure 1a). Z-score was performed 
using the median expression value of co- 
expressed glycolysis and cholesterol genes, and 
the TCGA-gastric cancer data set (n = 375) was 
divided into four subtypes as previously men-
tioned (Figure 1b). We further analyzed the prog-
nostic relationship of the four groups, and the 
results demonstrated that the prognosis of the 
four subtypes did not show significant differences 
(Figure 1c); however, there was a significant dif-
ference in prognosis between the Cholesterol sub-
type and the Glycolysis subtype (Figure 1d, 
p < 0.05), and that the prognosis of Cholesterol 
subtype was more unfavorable than Glycolysis 

subtype. Cholesterol genes were generally high 
expressed in Cholesterol subtypes and Mixed 
groups but low-expressed in Quiescent and 
Glycolysis groups. Glycolysis genes were high 
expressed in the Glycolysis and Mixed groups but 
low-expressed in the Quiescent and Cholesterol 
groups (Figure 1e). Furthermore, we compared 
the expressions of glycolysis and cholesterol- 
related genes in normal samples with those in 
tumor samples, and observed that lower expres-
sions of glycolysis genes in normal samples than 
the other four metabolic subtypes (figure 1f). 
Similarly, except Quiescent, the expressions of 
cholesterol genes in normal samples were also 
lower than those of the three subtypes 
(Figure 1g). These results indicated that the occur-
rence and development of gastric cancer may be 
accompanied by a higher glycolysis and cholesterol 
gene expression.

MPC complex was copy number variation in 
gastric cancer metabolic subtypes

The amplification of the oncogenic mutation MYC 
and the TP53 mutation could drive the metabolic 
reprogramming of gastric cancer. The carcino-
genic events between different metabolic subtypes 
were determined by studying the frequency of 
frequently mutated genes in gastric cancer on 
SNV/InDel and CNV. The results showed that 
TP53 mutation and ARID1A mutation had 
mutually exclusive behaviors (Figure 2a). 
Subsequently, we analyzed the distribution of 
TP53, CTNNB1 and MYC genes in the four meta-
bolic subtypes (Figure 2b). Although the mutation 
frequency of each gene did not differ significantly 
among different subtypes, we noticed that the 
occurrence of TP53 Loss sample and the propor-
tion of Cholesterol group samples were higher 
than that of Glycolysis group samples, and that 
the proportion of Cholesterol group samples was 
higher than that of Glycolysis group samples in the 
samples with MYC Gain.

To examine the relationship of MPC1/MPC2, 
glycolysis and cholesterol production phenotypes, 
we compared the mutation frequency and expres-
sion of the two genes in metabolic subgroups. The 
data revealed that MPC1 mainly showed CNV 
deletion in metabolic subtypes, while MPC2 
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mainly showed CNV amplification in metabolic 
subtypes (Figure 3a). Compared with the other 
groups, the expressions of MPC1 and MPC2 in 
the Mixed group were significantly higher than 
the other three metabolic groups (Figure 3b). The 
cellular pathways related to the expression of 
MPC1/2 were also detected, and Spearman corre-
lation coefficient analysis showed that 1178 and 

905 genes were positively and negatively correlated 
with MPC1/2, respectively (Figure 3c).

Analysis of clinical features and immune score

In the TCGA data set, the distribution of clinical 
characteristics in the four metabolic subtypes was 
analyzed, and we found differences in the four 

Figure 1. Identification of molecular subtypes of gastric cancer. A: Consistent clustering of glycolysis and cholesterol genes. B: 
Samples were classified into four subtypes according to glycolysis and cholesterol gene expression levels (Quiescent, Glycolysis, 
Cholesterol and Mixed). C: Disease-specific survival time prognostic survival curves of the four molecular subtypes. D: Disease-specific 
survival time prognostic survival curves of the Cholesterol and Glycolysis subtypes. E: Heatmaps of 24 Cholesterol- and Glycolysis- 
related genes. F: Glycolysis Genes expression levels in four subtypes and normal groups in the TCGA dataset. G: Cholesterol Genes 
expression levels in four subtypes and normal groups in the TCGA dataset.
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Figure 2. Mutant molecular events in four subtypes. A: Heat map analysis of mutations of 13 molecules in four subtypes. B: CNV 
distribution of TP53, CTNNB1 and MYC in four subtypes.

Figure 3. MPC complex as a potential regulator of tumor glycolysis-cholesterol synthesis axis. A: MPC1 is mainly CNV deletion 
in metabolic subtypes, while MPC2 is mainly CNV amplification in metabolic subtypes. B: The expressions of MPC1 and MPC2 in the 
four subtypes. C: Spearman correlation coefficient analysis showed positive and negative correlation with MPC1/2 genes, 
respectively.
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metabolic subtypes in terms of age, Grade, T Stage, 
and Stage (Figure 4a, C, D, G); however, no dif-
ference was detected in terms of gender, N Stage 
and M Stage (Figure 4b, E, F). Matrix and immune 
scores of each sample results demonstrated that 
the StromalScore and ImmuneScore of Glycolysis 
subtype were higher than that of Cholesterol sub-
type samples (Figure 5a, b). After comparing the 
expressions of immunotherapy-related genes 
PDCD1 and CTLA4 in the four metabolic sub-
types, we observed that the expressions of the 
two were significantly higher in the Glycolysis 
subtypes than in the Cholesterol subtype 
(Figure 5c, d).

Identification of differentially expressed genes 
and functional enrichment analysis

Limma package was used to calculate the differ-
entially expressed genes between Cholesterol 
subtypes and Glycolysis subtypes in the TCGA 
dataset. There were a total of 1966 differentially 

expressed genes, of which 302 were up- 
regulated, while the rest 1664 were down- 
regulated (Figure 6a). The top 100 the most 
differentially expressed genes were selected for 
constructing a heat map (Figure 6b). 
Furthermore, the R software package 
WebGestaltR (v0.4.2) was performed on these 
up-regulated and down-regulated genes for 
KEGG pathway and GO function enrichment 
analyses. Up-regulated genes and down- 
regulated genes were respectively annotated to 
238 and 1197 BP pathways (P < 0.05) 
(Figure 7a, e), 29 and 147 MF pathways 
(P < 0.05) (Figure 7b, f), 14 and 155 CC path-
ways (Figure 7c, g). KEGG pathway enrichment 
data indicated that the up-regulated and down- 
regulated genes were annotated to 9 and 74 
KEGG pathways, respectively (Figure 7d, h). 
Finally, GSEA was used in the TCGA data set 
to analyze the significantly enriched KEGG 
pathway in the Cholesterol and Glycolysis 
groups. The results showed that Glycolysis 

Figure 4. Analysis of clinical features in subtypes. A: Analysis of Age in four subtypes. B: Analysis of Gender in four subtypes. C: 
Analysis of Grade in four subtypes. D: Analysis of T stage in four subtypes. E: Analysis of N stage in four subtypes. F: Analysis of 
M stage in four subtypes.
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subtypes were associated with immune-related 
T_CELL_RECEPTOR_SIGNALING_PATHWA-
Y, B_CELL_RECEPTOR_SIGNALING_PATHW-
AY, NATURAL_KILLER_CELL_MEDIATED_C-
YTOTOXICITY and PRIMARY_IMMUNODEFI-
CIENCY pathways (Figure 8). The data 
indicated that the high expressions of glycoly-
sis-related genes were significantly related to 
a favorable prognosis of gastric cancer.

Correlation analysis of glycolysis and cholesterol 
gene clusters with pan-cancer types

To determine the correlation between glycolysis 
and cholesterol gene expression subtypes in other 
cancer types, we repeated the consistent cluster-
ing of glycolysis and cholesterol gene expressions 
in 24 TCGA cancer types (sample size > 100, solid 
tumors). We found discrete clusters of co- 
expression pathway-specific genes in seven cancer 

Figure 5. Analysis of and immune score in subtypes. A: Distribution of StromalScore in four subtypes. B: Distribution of 
ImmuneScore in four subtypes. C: PDCD1 expression of in four subtypes. D: CTLA4 expression of in four subtypes.
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types (OV, ESCA, CESE, LGG, LUSC, PAAD, and 
SARC). Although many genes were uniformly co- 
expressed in most tumor types, in the co- 
expressed glycolysis and cholesterol production 
pathways, certain genes were specific to a small 
number of cancers, indicating that these genes 
were cell-specific to the metabolic processes of 
a particular cancer (Figure 9a). According to the 
clustering glycolysis and cholesterol gene expres-
sions, the seven cancer types were also classified 
into four metabolic subtypes using the same 
method (Figure 9b). The DSS time KM curves 
of the four metabolic subtypes were significantly 
different in CESE (log rank p = 0.02, Figure 9c) 
and LGG (p = 0.036, Figure 9d). These results 
indicated that according to the specificities of 
different genomic characteristics and tumor 
microenvironmental factors to particular cancer 
types, tumor metabolism dependence may be 
different.

Discussion

In this research, four metabolic subtypes of gastric 
cancer were identified, namely, Cholesterogenic, 
Glycolytic, Mixed and Quiescent, noticeably, 
patients with Cholesterogenic tumors showed the 
longest DSS. Genome-wide analysis demonstrated 
that aberrant amplification of TP53 and MYC in 
gastric cancer was associated with abnormal 

cholesterol anabolic metabolism. The mRNA levels 
of MPC1 and 2 differed among the gastric cancer 
metabolic subtypes. Tumors in the glycolytic 
group had a higher level of PDCD1. Genomic 
signature of tumor metabolism between different 
cancer types was established.

Otto Warburg indicated that even in the presence 
of sufficient oxygen, cancer cells will produce more 
lactic acid than normal tissues, suggesting that these 
cells are transporting glucose through glycolytic fer-
mentation. A relatively high proportion of malignant 
tumor tissues, including gastric cancer tissues, exhi-
bit increased glycolytic properties [29]. Weichun 
Chang showed that lipoprotein-mediated cholesterol 
entry and steroid production are the biological char-
acteristics of gastric cancer progression [30]. Higher 
levels of metabolic genes promote the growth of 
gastric cancer and inhibit tumor cell apoptosis [31]. 
At present, four metabolic subtypes have been iden-
tified in pancreatic cancer and liver cancer based on 
genes related to glucose metabolism and cholesterol 
metabolism [13,14]. Here we compared the prognos-
tic correlation of other metabolic pathways in gastric 
cancer with REACTOME_GLYCOLYSIS and 
REACTOME_CHOLESTEROL_BIOSYNTHESIS 
pathways, and evaluated the metabolic pathway 
enrichment scores for each patient using a single- 
sample enrichment analysis to analyze the relation-
ship between each metabolic pathway enrichment 
score and prognosis. The data showed that 12 

Figure 6. Identification of differentially expressed genes. A: A total of 1966 differentially expressed genes, of which 302 are up- 
regulated and 1664 are down-regulated. B: 100 most expressed genes were selected for heatmap.
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Figure 7. Functional enrichment analysis of differentially expressed genes. A: Pathways annotated on BP for up-regulated 
expressed genes. B: Pathways annotated on CC for up-regulated expressed genes. C: Pathways annotated on MF for up-regulated 
expressed genes. D: Pathways annotated on KEGG for up-regulated expressed genes. E: Pathways annotated on BP for down- 
regulated expressed genes. F: Pathways annotated on CC for down-regulated expressed genes. G: Pathways annotated on MF for 
down-regulated expressed genes. H: Pathways annotated on KEGG for down-regulated expressed genes.
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pathways were significantly associated with prog-
nosis, with REACTOME_GLYCOLYSIS and 
REACTOME_VALOL_BIOSYNTHESIS being the 
most significant predictors, as expected (Figure S1), 
which indicated that REACTOME_GLYCOLYSIS 
and REACTOME_DEMENTIA BIOSYNTHESIS 
are key prognostic pathways in gastric cancer. 
Understanding impaired metabolic pathways in can-
cer facilitates the prediction of cause of cancer, 
thereby promoting the development of novel and 
effective therapeutic targets. In this study, four spe-
cific subgroups of gastric cancer were determined 
based on cholesterogenic and glycolytic pathways, 
which significantly affected the survival of gastric 
cancer patients.

Up-regulation MYC expression is associated 
with a more invasive phenotype in gastric cancer 
cell lines. MYC amplification is a common 
mechanism of MYC mutation in gastric cancer 
[32]. MYC amplification in human plasma sam-
ples of gastric cancer has been previously 
reported [33]. TP53 mRNA expression is mark-
edly low in gastric cancer than in paired non- 
neoplastic specimens [34]. Some studies have 
shown that most missense mutations in TP53 
could cause changes in protein conformation, 
thereby prolonging its half-life and leading to 
tumor accumulation in the nucleus includes gas-
tric cancer [35]. In our study, compared with 
Glycolysis group samples, patients in the 

Figure 8. GSEA enrichment analysis in the Cholesterol and Glycolysis group.
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Cholesterol group were more likely to have TP53 
Loss or MYC amplification. The results sug-
gested that abnormal expression of TP53 and 
MYC could promote malignant procession of 
gastric cancer through enhancing cholesterol 
synthesis and affecting the use of cholesterol. 
In addition, the detection of mutant genes in 
the metabolic pathway showed that the MPC 
complex regulating pyruvate flux was 

abnormally expressed in gastric cancer, indicat-
ing that the changes in MPC were related to the 
progression of gastric cancer.

This study still had certain limitations. Firstly, 
this research was based on retrospective public 
data set; therefore, the performance of subtypes 
should be verified by future clinical studies. 
Secondly, the current diagnostic model was only 
based on RNA expression as a single set of data, 

Figure 9. Correlation analysis of glycolysis and cholesterol gene clusters with pan-cancer types. A: Clusters of co-expression 
pathway-specific genes in seven cancer types (OV, ESCA, CESE, LGG, LUSC, PAAD, SARC). B: The seven cancer types are also classified 
into four metabolic subtypes according to the clustering glycolysis and cholesterol gene expression levels. C: Disease-specific survival 
time prognostic survival curves of the four molecular subtypes in CESE. D: Disease-specific survival time prognostic survival curves of 
the four molecular subtypes in LGG.
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which also require the combination of more mole-
cular omics data, such as ncRNA expression, CpG 
methylation, and genomic information, to further 
improve model accuracy. Finally, more in-depth 
functional studies could be performed in the 
future.

Conclusion

To our knowledge, this is the first time that meta-
bolic genes in gastric cancer have been genotyped. 
Different tumors have similar metabolic subtypes, 
but the prognosis of these metabolic subtypes is 
not exactly the same. The Cholesterol subtype has 
the worst prognosis in gastric cancer, and the 
mixed subtype has the worst prognosis in pancrea-
tic cancer, suggesting the differences in the meta-
bolic changes that occur in different cancers, 
which indicated the difference in the metabolic 
changes that occur in different cancers. In addi-
tion, we have also observed that the Glycolysis 
subtype has higher immune infiltration and could 
benefit from immunotherapy. The current find-
ings showed that mutations in different metabolic 
genes and expressions of specific enzymes resulted 
in unique metabolic profiles and clinical prognosis 
specific to gastric cancer. Metabolic profiling of 
gastric cancer based on metabolic reprogramming 
may provide an important guide for deciding 
treatment options, predicting potential responses, 
treatment resistance, and potential treatment 
outcomes.

Highlights

1. Four metabolic subtypes of gastric cancer were identified.
2.Aberrant amplification of TP53 and MYC was associated 

with metabolic subtypes.
3.MPC complex was copy number variation metabolic 

subtypes.
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