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Abstract

Although vaccines pose the best means of preventing influenza infection, strain selection and optimal implementation
remain difficult due to antigenic drift and a lack of understanding global spread. Detecting viral movement by sequence
analysis is complicated by skewed geographic and seasonal distributions in viral isolates. We propose a probabilistic
method that accounts for sampling bias through spatiotemporal clustering and modeling regional and seasonal
transmission as a binomial process. Analysis of H3N2 not only confirmed East-Southeast Asia as a source of new seasonal
variants, but also increased the resolution of observed transmission to a country level. H1N1 data revealed similar viral
spread from the tropics. Network analysis suggested China and Hong Kong as the origins of new seasonal H3N2 strains and
the United States as a region where increased vaccination would maximally disrupt global spread of the virus. These
techniques provide a promising methodology for the analysis of any seasonal virus, as well as for the continued surveillance
of influenza.
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Introduction

Influenza, a negative-sense RNA orthomyxovirus, is one of the

few diseases that is truly global in scale. It is responsible for

approximately three to five million cases of severe acute

respiratory illness and 250,000 to 500,000 deaths each year

throughout the world [1]. In 2009, the swift isolation of swine-

origin H1N1 strain (S-OIV) from all continents within several

weeks of onset reinforced the idea that influenza is a highly

infectious agent circulating worldwide [2,3].

Although vaccination remains one of the most powerful ways of

combating influenza, choosing a representative strain for vaccine

composition poses a challenging problem. Due to the virus’s high

evolutionary rate, significant resources must be spent to update

vaccines each year in order to match the dominant epitope of the

season. Even with annual strain selection, major antigenic

reassortment can obviate otherwise promising vaccine candidates,

as occurred with the ‘Fujian/411/2002’-like H3N2 strain in 2003

[4,5]. To prevent such vaccine failures, a solid understanding of

the global spread of influenza must inform the design process. If

reservoirs for new viral strains can be identified, surveillance in

these areas can better optimize prediction of seasonal variants in

seeded regions.

Previous papers investigating the global circulation of H3N2,

the major seasonal influenza subtype prior to pandemic H1N1,

focused on transmission within and between climate zones.

Important motivating factors for such analysis include increased

aerosol transmission in cold and dry conditions, as well as

increased indoor crowding and decreased host immunity in cold

and wet conditions [6,7]. In the temperate zones, influenza

exhibits distinct seasonality with flu-related cases spiking in the

winter. However, several papers have confirmed the presence of

viral diversity even between these epidemic peaks [8,9,10],

suggesting two possible scenarios during the inter-epidemic period:

either viral infections locally persist at a low level only to reemerge

as the dominant strains of the epidemic season, or an outside

source introduces new genetic diversity into temperate populations

each year. Although a degree of local persistence may occur,

phylogenetic analysis supports the latter scenario, with few direct

links between strains of the same region but successive seasons

[8,9,10].

For a given temperate zone, these conclusions suggest the

tropics or the opposite temperate zone as plausible external

seeding regions. At first blush, northern-southern temperate

oscillations seem credible. Each year, northern and southern

temperate climates have alternating seasonal influenza epidemics,

lasting from November to April, and May to September

respectively [11]. A possible mechanism of viral spread could

involve transmission from the seasonal peak of one temperate zone

into the season ebb of the other. On the other hand, specific

epidemiological characteristics suggest a tropical origin for

influenza. For example, although both climates share a similar

yearly burden of mortality from influenza, the tropics do not

possess the same consistent seasonal peaks during the winter

months [9,12,13]. With a constant, low-level circulation of viruses

year-round, the tropics represent an ideal epicenter for the

extended transmission of new viruses to the rest of the world

[14,15,16].

Several papers tracking H3N2 across continents have asserted

that this tropical reservoir of influenza strains lies within East-

Southeast Asia [12,14,17]. Russell, et al. analyzed H3N2 data to

identify regions of the world that are antigenically and genetically

leading or trailing. They found that newly emerging strains

appeared in E-SE Asia roughly 6–9 months earlier than in other
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parts of the world, while South America experienced delayed

transmission of roughly 6–9 months following other parts of the

world [8].

However, such studies have been limited by several drawbacks.

Most papers focus on H3N2 as a single entity, when in reality, it

co-circulates with several other subtypes, the most important of

which is seasonal H1N1 [11]. Although they possess different

surface antigens, H3N2 and H1N1 share enough genetic similarity

to display cross-immunity. As a result, seasonal H1N1 may

demonstrate transmission patterns distinct from H3N2’s [18,19].

Such codependence between different subtypes is exemplified by

the pandemic years of 1957 and 1968, when H2N2 replaced

preexisting H1N1 and H3N2 replaced preexisting H2N2,

respectively [20,21]. Similarly, the antigenically different pandem-

ic H1N1 strain of 2009 has largely overtaken previously circulating

H1N1 and H3N2 [22]. During the years our dataset took place,

evidence that H3N2 and H1N1 rarely co-dominate in a season

further supports the idea of codependent dynamics [7].

A second shortcoming stems from biases in the number of

sequences from different regions and different seasons [8]. Most

isolates of H3N2 and H1N1 were sampled from North America,

whereas Africa and South America have been largely neglected

[23]. Many sequences were obtained within the last 15 years,

making reliable tracking over long periods of time problematic.

On the level of climate zones, the number of temperate isolates far

outstrips the tropics. Although hemagglutinin (HA), the HA1

domain, and neuraminidase (NA) have the most globally

representative distributions of sequences, even these remain

skewed (Figure S1, Figure S2).

In this paper, we present a novel probabilistic model for

tracking the spread of influenza that employs two strategies to

eliminate regional and seasonal data bias. The first involves

clustering isolates of high sequence similarity by region and season.

Since we would expect highly similar sequences from the same

time and location to be related, we considered seeding events

between clusters to be of greater significance. Consideration of

clusters rather than individual sequences nullifies the over-

representation of a high number of isolates from a single region

and season (Figure 1). As a second strategy for eliminating bias, we

determined statistical significance of inter-cluster seeding events by

modeling transmission as a binomial distribution with prior

probabilities based on the proportion of sequences isolated before

a given time point. To illustrate our methodology, Figure 2 depicts

the 2003–2004 flu season, which was marked by failure to predict

the dominant, tropically-derived Fujian/411/2002-like H3N2

strain. We identified a strong seeding pattern from the tropics to

all three climate zones, supporting the effectiveness of our

methodology.

We applied this model to the H3N2 and H1N1 coding regions

of HA and NA, the most antigenic proteins of the eight viral

segments. Clustering H3N2 sequences confirmed previous findings

that this strain originates in the tropics, specifically E-SE Asia, and

seeds South America by way of North America last. Clustering

H1N1 NA also revealed a similar pattern of circulation beginning

in the tropics. However, similar H1N1 analysis by continent and

country was not possible due to the absence of a larger number of

countries in the dataset.

Applying the same methodology to the H3N2 HA1 domain

increased the geographic diversity enough to enable reconstruction

of the global influenza network prior to the 2009 pandemic strain

at a country level. Our results suggest a possible flu seeding

hierarchy beginning in China and spreading throughout a highly

interconnected E-SE Asian subnetwork. From there, viruses

transmit to an Oceanic subnetwork dominated by interchange

between Australia and New Zealand. Both subnetworks seed into

the USA, which in turn seeds many countries, particularly in

South America.

Expanding upon the sink-source hypothesis of global influenza

dynamics proposed by Rambaut, et al. [15], we applied techniques

of graph theory to identify important source and sink regions in

the global flu network. These techniques better describe the

dynamic nature of influenza movement across the globe, as well as

suggest different vaccination strategies to disrupt maximally viral

flow around the world.

Results

Emergent Strains from the Tropics and Asia
Spatiotemporally clustering the complete H3N2 and H1N1

coding sequences for HA and NA allowed the determination of

multiple statistically significant seeding seasons between 1988 and

2009. For our initial analysis, we clustered sequences into three

climate zones—northern temperate, tropical, and southern

temperate. To determine seasonal boundaries, we defined the

northern temperate season to last from 1st July to the 30th June of

the following year and the southern temperate season to last from

1st January to the 31st December of the same year [11]. Although

the tropics do not have a well-defined seasonal pattern, we

determined a consensus tropical flu season from 1st October to

30th September of the next year (Text S1, Table S1).

Results for H3N2 showed that the overwhelming majority of

statistically significant seeding seasons came from the tropics,

confirming previous findings (Figure 3A, Figure S3A). Clustering

H3N2 by the six major continents rendered an even more detailed

picture. For HA, Asia was the primary seeder of Asia, North

America, and Oceania. Prominent transmission from North

America to Europe and South America was also observed (Figure

S3B). Interestingly, this hierarchical seeding structure reflects the

findings of Russell, et al., which identified Asia and South America

as antigenically advanced and lagging continents respectively [8].

This network of hierarchical seeding can be visualized as a

directed graph plotted against the world map (Figure 4A). Analysis

Author Summary

As evidenced by several historic vaccine failures, the
design and implementation of the influenza vaccine
remains an imperfect science. The virus’s rapid rate of
evolution makes the selection of representative strains for
vaccine composition a difficult process. From a global
health viewpoint, how to optimally implement a limited
stockpile of vaccines is another fundamental question that
remains unanswered. An understanding of how influenza
spreads around the world would greatly aid the design
and implementation process, but regional and seasonal
bias in collected virus samples hampers epidemiologic
analysis. Here, we show that it is possible to counter this
data bias through probabilistic modeling and represent
the global viral spread as a network of seeding events
between different regions of the world. On a local scale,
our technique can output the most likely origins of a virus
circulating in a given location. On a global scale, we can
pinpoint regions of the world that would maximally
disrupt viral transmission with an increase in vaccine
implementation. We demonstrate our method on seasonal
H3N2 and H1N1 and foresee similar application to other
seasonal viruses, including swine-origin H1N1, once more
seasonal data is collected.

Network Analysis of Global Influenza Spread
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of NA produced similar findings with the exception of North

America being its own primary seeder (Figure 3B). No complete

HA and NA isolates existed in the NCBI Influenza Virus Resource

database [24] for Africa.

The complete dataset of HA and NA represented only 17 and

21 countries respectively. Despite the sparse number of countries

for analysis, both HA (Figure S3C) and NA (Figure 3C)

consistently identified Hong Kong (considered a country by NCBI

sequence annotation) as the primary external seeder of USA and

New Zealand among others, and New Zealand as the primary

external seeder of Australia.

Due to fewer available sequences, clustering H1N1 did not yield

as many significant seeding events as H3N2; however, our tests

suggest that H1N1 adopts a similar seeding pattern with the

tropics as a source. Of the two segments, NA sequences display a

broader geographical profile than HA. In particular, our HA

dataset for H1N1 contained no sequences from Hong Kong and

only 1 (0.091%) China sequence, while NA contained 9 (0.69%)

Hong Kong and 3 (0.23%) China sequences. Consequently, we

considered NA to be more suitable for comparison between H3N2

and H1N1 and HA to be a background signal to assess the effect of

Hong Kong and China on global influenza transmission. Even so,

the number of these H1N1 Hong Kong and China sequences

remained vastly disproportionate to the 361 (7.42%) Hong Kong

and 133 (2.73%) China sequences of H3N2.

Clustering H1N1 NA by climate zone supported the theory of

global viral spread from the tropics (Figure 5B). Unlike H3N2,

H1N1 analysis by continent and country was inconclusive due to

low (typically fewer than 3 seeding events), homogeneous counts.

Although inconclusive, the fact that a tropical signal could be

detected at all from such few tropical countries, including Hong

Kong and China, suggests that H1N1 adopts a similar seeding

pattern out of the tropics. Due to insufficient sampling, however, a

more detailed transmission pattern could not be discerned.

The Global Seeding Network of H3N2 by Country
Although using the complete HA and NA coding genomes

facilitated differentiation of isolates by Hamming distance, the

absence of data from certain countries limited the information

gained from clustering at this geographic detail, a problem that has

plagued previous studies [8]. To increase the amount of data from

different geographical regions, we clustered H3N2 sequences of

the HA1 epitope, expanding the number of isolates in the dataset

from 2,251 to 4,864, and the number of countries from 17 to 81. A

necessary consequence of expanding geographic coverage was an

increase in the number of non-unique solutions (Text S1).

Importantly, clustering HA1 by climate and continent was

corroborated by findings from the complete HA and NA

sequences, lending credence to the validity of the dataset. Due

to the inclusion of isolates from Africa, which was hitherto not

Figure 1. Methodology for spatiotemporal clustering. (A) We first ordered sequences from NCBI from earliest to latest. Starting with the most
recent virus ‘‘Seq 1,’’ we worked backwards, tracing the most parsimonious evolutionary path of the virus until we reached the oldest sequence ‘‘Seq
10.’’ To accomplish this goal, we defined each virus’s most likely ancestor to have the highest sequence similarity among all older viruses. (B)
Contiguous sequences along the evolutionary path were clustered (grouped) together by common geography and season. (C) The process was
repeated starting with the next most recent virus not yet included in the evolutionary path. (D) The cycle continued until all sequences were
connected in a tree of clustered evolutionary paths.
doi:10.1371/journal.pcbi.1001005.g001

Network Analysis of Global Influenza Spread
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present in our datasets, H3N2 HA1 analysis also revealed Europe

and North America tied for being the primary seeders of Africa.

Country clustering of the HA1 data produced a highly detailed

global network of influenza variants. USA, Hong Kong, Australia,

and China were identified as the four most prominent seeding

countries in that order (Figure 3D, Table S2). From the data, an

inferred seeding hierarchy would begin with China at the

epicenter of an E-SE Asian influenza subnetwork. Our analysis

supports China as the most predictive seeder of many Asian

countries, including Hong Kong. Both China and Hong Kong

then serve as a launching pad for the dispersal of new seasonal

variants to the rest of the world [14,17], in particular USA and an

Oceanic subnetwork dominated by interchange between Australia

and New Zealand. Viruses from USA, the largest seeder of the

entire world, then spread to a number of South American,

European, and African countries. Interestingly, Australia and

Hong Kong are equally probable seeders of the USA (Figure 3D).

Detailed transmission events are enumerated in Table S2. An inset

of the Asian subnetwork is depicted in Figure 4C, a demonstration

of this study’s high geographic resolution.

Figure 2. Methodology for determining significant seasons. As an example, consider the 2003-04 flu season. After clustering, there were a
total of 10 observed seeding events into the northern temperate zone: 1 from the north, 4 from the tropics, and 5 from the south. Up until that year,
the skewed regional distribution of HA sequences included 541 (48.3%) northern temperate, 240 (21.4%) tropical, and 339 (30.2%) southern
temperate isolates. Multiplying these percentages with the 10 observed seeding events yielded expected counts of 4.8, 2.1, and 3.0. Therefore, the
number of seeding events from the north was less than expected, and from the tropics and the south, more than expected. Corresponding binomial
p-values—0.986, 0.043, and 0.049, respectively—indicated that there were two statistically significant events, the most significant of which was
transmission from the tropics into the northern temperate zone. Similar analysis for transmission into the tropics and the southern temperate showed
that only the tropical zone was a significant seeder.
doi:10.1371/journal.pcbi.1001005.g002

Network Analysis of Global Influenza Spread
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High Circulation between Tropical and Asian Countries
with Minimal Local Persistence

As can be seen with the world map plots (Figure 4A,B), a natural

representation of the global influenza network is a directed graph with

each node representing a clustered region (climate, continent, and

country) and each edge representing a seeding event with a weight

equal to the number of significant seeding seasons. To quantify

observed patterns, we employed principles of graph theory to measure

the importance of nodes using four different metrics.

By counting the number of indegrees and outdegrees of each node

for H3N2, we identified that the tropics and the northern temperate

zone (Figure S4A), specifically Asia and North America (Figure Figure

S5A), transmit and receive the most seeding events to and from the rest

of the world, respectively. In a similar manner, we identified USA,

Hong Kong, Australia, and China as the greatest seeders, and USA,

Japan, Australia, and Hong Kong as the most seeded (Figure 6A).

In this analysis, we differentiated between internal (self-seeding) and

external (seeding between nodes) transmission events. Importantly, we

can accurately detect internal events in temperate countries since their

flu seasons are discrete. On the other hand, the specificity for internal

events in the tropics is much lower due to unpronounced seasonal

peaks. To minimize the number of local false positives, we demarcated

Figure 3. Clustering the complete NA coding sequences of H3N2 by (A) climate zone, (B) continent, and (C) country. Top H3N2
seeders were located in the E-SE Asian tropics, particularly in Hong Kong. (D) Clustering the H3N2 HA1 domain by country increased the total number
of sequences and countries under consideration. This analysis identified USA, Hong Kong, Australia, and China as the top H3N2 seeders in that order.
For all country heat maps, only countries transmitting or receiving at least one significant seeding season were included. For each entry, there was a
maximum number of 22 seeding seasons, the range in the date of isolation for all datasets.
doi:10.1371/journal.pcbi.1001005.g003

Network Analysis of Global Influenza Spread
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seasons within the tropics on a per country basis. We found that for all

climate zones except the tropics (Figure S4A) and all continents except

Asia (Figure S5A), the number of internal seeding events paled in

comparison to the proportion of external seeding events,. The more

numerous internal events in the tropics and Asia indicate a high level of

circulation between tropical countries and between Asian countries.

This pattern is supported by the highly interconnected E-SE Asian

subnetwork depicted in Figure 4C. The small proportion of internal

events for countries supports the notion that local persistence often

plays only a minor role in influenza transmission [8,9,10] (Figure 6A).

Sinks and Sources within the Global Flu Network
Beyond the absolute number of seeding events, a region’s

influence on global viral spread is also dependent on the

topological structure of the graph itself. As an analogy, consider

the influenza network as a system of connected train stations each

representing a single region seeding influenza. In such systems,

trains begin and end their routes at terminal stations. Similarly,

influenza commuters begin their journeys at terminal sources and

end at terminal sinks in each season. These start and end terminals

can represent regions where new influenza variants respectively

originate and ultimately spread to. To quantify the terminal

characteristic, we calculated the outdegree minus the indegree of

each node, which we term ‘‘degree flow.’’ Positive degree flow

indicates terminal sources, while negative indicates terminal sinks.

Countries were also ranked by calculating the proportion of nodes

in a 1,000 randomized networks with a greater, or lesser, degree

flow (Text S1).

Figure 4. Global network of statistically significant seeding seasons for H3N2 after clustering by (A) continent and (B) country. (A)
Seasonal variants emerge from Asia and make their way to North America. A smaller connection from North America to South America is consistent
with the finding that South American isolates are antigenically delayed [8]. (B) Clustering by country showed tropic-centric movement patterns. (C)
H3N2 seeding events in the South-East Asian/Oceanic subnetwork showing China, Hong Kong, and Australia as major hubs. Arrows signify the
direction of the seeding event. Each edge is color-coded according to weight: the number of seeding events represented. For visual simplicity,
arrowheads were omitted for edges of unit weight. Edges connect between the centroids of two continents or countries. World map image taken
from: onearth.jpl.nasa.gov.
doi:10.1371/journal.pcbi.1001005.g004
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For analysis by climate zone, the tropics was identified as the only

terminal source, suggesting that flu spreads from the tropical belt

outward to both temperate zones (Figure S4B). As for continental

clustering, Asia was the only terminal source, indicating that global

circulation begins in Asia and ends in terminal sink continents, of

which North America was the most prominent (Figure S5B). On a

country level, Hong Kong and China were the greatest terminal

sources, corroborating our observations (Figure 3D). Australia was

also a conspicuous terminal source, especially within the Oceanic

subnetwork where it seeded the greatest terminal sink, New

Zealand. Several South American countries, including Chile and

Argentina, figure as terminal sinks too, correlating with such

countries as antigenically delayed [8] (Figure 6B).

Trains also stop at waypoint stations, which can be the junction of a

large number of routes. Correspondingly, certain regions act as

waypoint sources: important intermediate launch pads to other

destinations. Others act as waypoint sinks: important points of

convergence for multiple routes. Eigenvector centrality can gauge this

property on the principle that connections to high-scoring nodes

contribute more to the score of the node in question than equivalent

connections to low-scoring nodes. We used a method akin to

PageRank, Google’s method of assigning importance to web pages [25].

Using this method, the northern temperate zone was the most

important waypoint source and sink (Figure S4C). Similarly, the

predominantly northern temperate continents of North America

and Europe were identified as prominent waypoint sources and

sinks. Asia, however, was the greatest waypoint source but a poor

waypoint sink, correlating with its role as a greater terminal source

than North America or Europe (Figure S5C). Interestingly, USA

was both the greatest waypoint source and sink (Figure 6C).

H1N1 NA clustering by climate zone produced results similar to

that of H3N2 NA. The tropics consistently scored highest by seeding

outdegree, positive degree flow, and PageRank source. In addition,

the tropics possessed a large amount of internal seeding events. These

results emphasize that similar to H3N2, H1N1 circulates within the

tropics across seasons only to spread eventually to the temperate zones.

Disrupting the Global Flow of Influenza
Betweenness measures the number of shortest paths between

any two vertices in a network that lie on a given node. In the

context of influenza, increasing vaccinations in regions of high

betweenness would hypothetically have the greatest effect on

diminishing the spread of infection worldwide. This novel strategy

contrasts with previous studies simulating containment only at the

source of influenza [26,27]. For H3N2, this criteria highlighted

Europe and North America as promising candidates for

vaccination programs (Figure S5D). Clustering by country

revealed USA, Japan, and Australia as sites in the influenza

network vulnerable to disruption (Figure 6D).

Discussion

Using statistical and network theory analysis, we analyzed

H3N2 and H1N1 sequence data to determine the global spread of

influenza. Our novel method employs two main strategies to

eliminate geographic and seasonal bias: 1) Spatiotemporal

clustering of sequence data to count seeding events between

clusters and 2) Use of binomial prior probabilities based on the

regional proportion of viral isolates to screen for significant seeding

events.

Applying these techniques to coding HA and NA segments of

H3N2 by climate zone and continent revealed a seeding pattern

stemming from the tropics, particularly Asia. HA1 analysis

produced a more detailed picture: each year, a wave of seasonal

flu originates in China to feed an E-SE Asian subnetwork. From

there, China and Hong Kong seed two major subnetworks, each

dominated by Australia and USA.

Similar clustering of H1N1 NA sequences by climate zone

reproduced tropical transmission to the rest of the world.

However, due to inadequate geographic coverage, clustering

H1N1 by continent and country proved inconclusive with few

significant seeding events detected. One explanation for these

results is that important seeding countries, such as China and

Hong Kong, were too underrepresented in the dataset. Alterna-

tively, global patterns may be weaker for H1N1 due to cross-

reactivity between the two strains [18,19], a conclusion reflected

by the smaller number of seeding events for the strain.

In our analysis, the total number of seeding seasons for each

region did not necessarily correspond to the total number of

isolates from each region, indicating that our methodology

counters data bias. However, certain confounders may affect

Figure 5. Clustering the H1N1 (A) HA and (B) NA segments by climate. HA counts were noticeably low and homogeneous, compared to NA
counts that reflected a strong signal from the tropics. One explanation is the lack of Hong Kong and China sequences in HA compared to NA. The
difference between HA and NA counts may reflect the impact of including even a marginal number of Hong Kong and China sequences. If H1N1
sequences were more evenly distributed by region, one may anticipate seeding counts more aligned with those of H3N2. For each entry, there was a
maximum number of 22 seeding seasons, the range in the date of isolation for all datasets.
doi:10.1371/journal.pcbi.1001005.g005

Network Analysis of Global Influenza Spread
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results. First, selection bias in sampling remarkable variants, such

as patients suffering severe rather than mild or non-symptomatic

influenza, would poorly represent flu in the general population.

Moreover, many sequences had to be excluded from our dataset

due to poor annotation and lack of date information. Finally,

although our probabilistic methodology accepts regional and

temporal variability, it has low sensitivity for detecting anything

but particularly significant seeding events for regions with very few

sequences. This issue becomes important in analyses with regions

that have no sequences whatsoever, as with near-absent sequences

from Hong Kong and China for H1N1 HA. The persistence of

such bias highlights the continuing need to sequence viruses in

underrepresented areas, especially the tropics.

Each year, the current influenza vaccine is formulated

separately for the Northern and Southern Hemisphere; one can

surmise that two viral strains may not be enough to represent the

entire pool of influenza strains around the world. Although there

are many other economic and political concerns to consider, our

methodology suggests several ways of guiding vaccine strain

selection based on biological and epidemiological principles.

Graph theory metrics—terminal and waypoint sinks and sources,

as well as degree and betweenness centralities—pinpoint potential

regions in which increased vaccinations could stem the transmis-

sion of influenza globally as well as locally. Increased analytical

resolution could optimize vaccine design by choosing the

dominant antigenic strain of a country’s most predictive seeder.

Vaccines could be catered to each country, rather than each

hemisphere. At the very least, our analysis advises strain selection

from the tropics, from which seasonal strains are dispersed each

year. On the other hand, local strain selection within a country

should prove comparatively ineffective, as few viruses persist in the

inter-epidemic period to seed the following flu season.

Our analysis of terminal sources resonates with an old

hypothesis that in southern China, zoonotic infection from live-

animals markets [28] selling in particular duck—a natural host of

influenza [29]—combined with a dense population for sustained

viral circulation, could be the main ingredients for the creation of

new seasonal influenza variants. In support, two major acute

Figure 6. Graph theory metrics of significant seeding (left) continents and (right) countries for H3N2. (A) Indegree and outdegree
represent the total number of seeding events into and out of a region, respectively. Internal seeding events (gray bars) play a minor role in overall
seeding except in Asia. (B) Terminal sinks/sources: Degree flow measures the difference between seeding events out of and into a node. (C) Waypoint
sinks/sources: PageRank categorizes nodes based on the number and quality of links pointing into and out of that node. (D) Betweenness measures
the number of shortest paths in a network passing through a given node.
doi:10.1371/journal.pcbi.1001005.g006
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respiratory infections—SARS [30] and H5N1/97 [31,32]—have

been definitively traced back to southern China, with Hong Kong

serving as an important sentinel post for the rest of the world.

Other influenza pandemics, 1968 H3N2 (Hong Kong) [28] and

even as early as 1889 pandemic influenza [33], have suspected

origins in southern China.

It would be interesting to dissect the factors that govern

waypoint sources and sinks. For example, air travel and other

transportation may play a major role in the dispersal of virus

worldwide [8,19,34,35]. Many important hubs of the global flu

network, including USA, Australia, Hong Kong, and China, have

several of the world’s busiest airports [36]. Understanding the

reasons for these seeding patterns may offer other strategies for

arresting the movement of flu.

The advent of 2009 pandemic S-OIV has largely depleted the

number of seasonal H3N2 and H1N1 infections, most likely via

cross-reactivity between novel and seasonal strains [22]. Conse-

quently, the conclusions of this paper may not necessarily apply to

current dynamics of seasonal H3N2 and H1N1. However, the fact

that H1N1 shares a tropic-centric movement pattern with H3N2

despite cross-reactivity suggests that these patterns may still persist

even in the presence of the cross-reactive S-OIV. Moreover, this

paper demonstrates that when more sequence data is deposited in

NCBI, a similar methodology can be applied to predict global

circulation of S-OIV as well.

Materials and Methods

Data
All sequence data used in this study was publicly available from

the National Center for Biotechnology Information database

(NCBI) [37]. For each segment, only protein coding regions were

considered. Furthermore, we only used sequences with full date

(year, month and day) and location information to build

hierarchies. Geographical coordinates of each isolate were

obtained using geolocation information from Google Maps.

Sequences were then aligned using the ClustalW v. 1.83 multiple

sequence alignment package using default parameters for H3N2

and H1N1, respectively. For each segment, sequences were

aligned and those that were poorly aligned compared to the rest

of the dataset were removed until all sequences aligned with a

Hamming distance no greater than 0.15. Given estimated

mutation rates of 6.761023 nucleotide substitutions per site per

year [12,19], Hamming distances over the 20-year span of our

dataset are expected to be no more than 0.15 of the sequence

length. Outlying sequences were most likely incorrectly sequenced

and were discarded from analysis.

Spatiotemporal Clustering
Our methodology aimed to minimize data bias from geospatial

and temporal variability in sequences from NCBI. First, we

determined the most parsimonious evolutionary paths traversed by

the flu virus. To this end, we sorted sequences from earliest to most

recent viral isolates. Working backwards from newest to oldest, we

calculated the sequence similarity of each virus to all earlier

isolates regardless of geography. We defined a virus’s most likely

ancestor to be the sequence with minimum Hamming distance.

From this data we built evolutionary paths for each virus. Related

sequences were clustered (grouped) together by common geogra-

phy and season to simplify the paths. For example, a chain of

related viruses in the same region and season would be collapsed

into a single umbrella node representing all of them. Our analysis

was then based on looking at the transitions between clusters

rather than individual viruses. We counted these ‘‘seeding events,’’

where the closest ancestor of a given cluster of sequences is from a

different region or season [8] (Figure 1). When tallying seeding

events, non-unique solutions were not considered where a given

viral isolate possessed multiple closest ancestors from different

geographical zones or seasons (Text S1, Figure S6).

Modeling Transmission as a Binomial Process
The observed frequencies of seeding events between clusters

were compared to expected frequencies based on the prior

probability of randomly choosing a sequence from a given

geographical zone in the past. Using the binomial distribution

with the proportion of prior NCBI sequences as a binomial

probability, a p-value was calculated for observing more seeding

events than expected. The best predictor of a seeding region for

each season had the greatest ratio of observed to expected seeding

events with a p-value smaller than 0.05 (Figure 2).

Supporting Information

Figure S1 Number of H3N2 and H1N1 sequences from the

NCBI Influenza Virus Resource sampled from (A) each climate

zone and (B) each continent for complete coding segments and the

HA1 domain. HA, HA1, and NA possess the greatest geographic

coverage of sequences.

Found at: doi:10.1371/journal.pcbi.1001005.s001 (0.61 MB EPS)

Figure S2 Distribution of top ten countries of isolation for NA,

HA, and HA1 sequences of H3N2 and H1N1.

Found at: doi:10.1371/journal.pcbi.1001005.s002 (0.26 MB TIF)

Figure S3 Clustering the complete NA coding sequences of

H3N2 by (A) climate zone (B) continent, and (C) country.

Found at: doi:10.1371/journal.pcbi.1001005.s003 (0.80 MB EPS)

Figure S4 Rankings of significant seeding and seeded climate

zones for H3N2 and H1N1 using different graph theory metrics.

(A) The indegree and outdegree of a node represent the total

number of seeding events into and out of a region, respectively.

Local seeding events depicted in gray play little role in overall

seeding except in the tropics. (B) Degree flow measures the

difference between seeding events out of and into a node and

determines whether it is a terminal sink or source. (C) PageRank

uses an algorithm similar to that employed by Google to categorize

nodes based on the number and quality of links pointing to that

node.

Found at: doi:10.1371/journal.pcbi.1001005.s004 (0.88 MB EPS)

Figure S5 Rankings of significant seeding and seeded continents

for H3N2 using different graph theory metrics. (A) The indegree

and outdegree of a node represent the total number of seeding

events into and out of a region, respectively. Local seeding events

depicted in gray play little role in overall seeding except in Asia. (B)

Degree flow measures the difference between seeding events out of

and into a node and determines whether it is a terminal sink or

source. (C) PageRank uses an algorithm similar to that employed

by Google to categorize nodes based on the number and quality of

links pointing to that node. (D) Betweenness measures the number

of shortest paths in a network passing through a given node.

Found at: doi:10.1371/journal.pcbi.1001005.s005 (0.63 MB EPS)

Figure S6 Non-unique solutions per segment for H3N2 and

H1N1 clustering by (A) climate zone, (B) continent, and (C)

country. The number of these non-unique solutions increases with

sequence length, conservation, and geographic coverage. Due to

greater genetic diversity, H1N1 has fewer non-unique solutions in

all segments apart from M1 and M2.

Found at: doi:10.1371/journal.pcbi.1001005.s006 (0.31 MB EPS)
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Table S1 Timing of tropical flu seasons used in the dataset. This

data was used to create a consensus tropical season for clustering

by climate zone, starting from October 1st to September 30th of

the next year. For clustering by country, a unique season was

assigned to each tropical country that encompasses both the

annual and semi-annual peaks.

Found at: doi:10.1371/journal.pcbi.1001005.s007 (0.07 MB

DOC)

Table S2 Top seeding countries after clustering by country for

the H3N2 HA1 domain. A distinction is made between externally

and locally seeding countries. Note that the total number of

significant seeding events does not necessarily correlate with the

number of sequences used in the dataset.

Found at: doi:10.1371/journal.pcbi.1001005.s008 (0.30 MB

DOC)

Text S1 Detailed description of the methodology, including

evaluation of clustering, determining flu seasons, timing of

observed seeding events, and network randomization. Detailed

description of the methodology, including evaluation of clustering,

determining flu seasons, timing of observed seeding events, and

network randomization.

Found at: doi:10.1371/journal.pcbi.1001005.s009 (0.02 MB

DOCX)
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