/.-.%i materials

Article

Enhanced Vibration Isolation with Prestressed Resonant
Auxetic Metamaterial

Adrien Pyskir 1>*(, Manuel Collet !, Zoran Dimitrijevic 2 and Claude-Henri Lamarque

check for

updates
Citation: Pyskir, A.; Collet, M.;
Dimitrijevic, Z.; Lamarque, C.-H.
Enhanced Vibration Isolation with
Prestressed Resonant Auxetic
Metamaterial. Materials 2021, 14, 6743.
https:/ /doi.org/10.3390/ma14226743

Academic Editor: Haim Abramovich

Received: 8 October 2021
Accepted: 31 October 2021
Published: 9 November 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

3

1 LTDS UMR-CNRS 5513, Ficole Centrale de Lyon, 69134 Ecully, France; manuel.collet@ec-lyon.fr

Stellantis, 78140 Vélizy-Villacoublay, France; zoran.dimitrijevic@stellantis.com

3 LTDS UMR-CNRS 5513, Ecole Nationale des Travaux Publics de I'Etat, 69120 Vaulx-en-Velin, France;
Claude-Henri. LAMARQUE@entpe.fr

*  Correspondence: adrien.pyskir@gmail.com

Abstract: Metamaterials designate structures with properties exceeding bulk materials. Since the
end of the 1990s, they have attracted ever-growing attention in many research fields such as elec-
tromagnetics, acoustics, and elastodynamics. This paper presents a numerical and experimental
study on a locally resonant auxetic metamaterial for vibration isolation. The designed materials
combine different mechanisms—such as buckling, local resonances, and auxetism—to generate
enhanced isolation properties. This type of structure could help to improve the isolation for machines,
transportation, and buildings. First, the static properties of the reference and resonant structures
are compared. Dispersion curves are then analysed to describe their periodic dynamic behaviour.
An experimental validation carried out on a specially designed test bench is then presented and
compared to corresponding finite structure simulation. As a result, huge bandgaps are found for the
resonant case and strong isolation properties are also confirmed by the experimental data.

Keywords: metamaterial; vibration isolation; resonance; auxetic; bandgap

1. Introduction

Researchers’ interest for metamaterials has been regurarly increasing for more than
two decades now, with uplifting applications like invisibility cloaks [1] or perfect lens [2].
Their multidisciplinary aspect contributes to the spreading effort to improve these fre-
quently periodic structures, exhibiting properties unobserved in conventional materials [3].

Even though other types of systems can be used and combined to display exotic
properties, the majority of concepts encountered in literature harness resonance phenom-
ena to achieve these properties, whether it is in electromagnetism [4], acoustics [5], or
elastodynamics [6]. More recently, other fields like plasmonics [7] and biosensors [8] have
also seen interesting resonance-based metamaterials enlarge their range of solutions. One
of the main features of resonance is that it can cancel low frequency waves and thus em-
bodies a compact alternative to conventional vibration isolation materials [9]. However, its
effective range is often narrow and requires substantial mass addition to be applied at low
frequencies [10].

Auxetic metamaterials are another class of frequently studied structures, characterised
by a negative Poisson’s ratio. As such, they expand in one or several transverse directions
under axial traction, and, conversely, tend to contract transversally when axially com-
pressed. Such architectures have been known for quite a long time [11,12], but at first only
their static properties—like effective Poisson’s ratio and stiffness modulus—were stud-
ied. Their dynamic characteristics began to gain attraction at the end of the nineties [13].
Just like numerous metamaterials, they can feature frequency bands where no waves can
propagate, called bandgaps. For obvious reasons, bandgaps are extremely interesting
for vibration isolation and to find bandgaps as wide and low frequency possible with a
compact design is a paramount ambition in this study.
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Some auxetic metamaterials also harness buckling to exhibit unique static and dynamic
properties, with promising applications in vibration isolation [14,15].

Other papers tried to combine such structures with resonant inclusions to increase
the isolation performance of the system [16,17]. Such mechanism is sometimes labelled as
hyperdamping [18].

This paper focuses on the performance of such structures for vibration isolation and
studies an enhanced patented design combining buckling and local resonances. In particu-
lar, our structures’ effective frequency range can be tuned by increasing their compression
state, and substantial weight can be withstood without impairing their performance. As a
result, this could lead to applications in vibration isolation where a compact, low-frequency,
and wideband solution is required, such as vibrating machines in industry, silent blocks,
and seismic insulation.

The first part presents the studied geometries then describes the numerical methods
used. The following part deals with the infinite plate assumption, with static compression
computations and dispersion analysis of both geometries. It sets the reference results for
the finite structure study, detailed in the last part. Numerical and experimental stress—
strain compression curves are first compared, after which a frequency domain analysis is
performed to compare both samples and check the coherence between experimental and
numerical data.

2. Materials and Methods
2.1. Design of Periodic Pattern

The geometry taken as reference in this study is derived from the rotating squares
design, a quite classical structure used by numerous authors for more than two decades [19].
The auxetic mechanism governing its deformation is a simple geometric one: each 2D
polygon can rotate with respect to its neighbours. All these rotations change the global size
of the structure in both directions (See Figure 1).

Figure 1. Base mechanism for rotating square structures. Configurations for different angles between
adjacent squares (Respectively from left to right: 45°, 30°, 15°, 0°).

However, such a design requires point contacts between polygons, which is hard
to implement, practically. Some articles present systems really close to it [20], but many
others [14,16,17] rather opt for a simple modification. Indeed, replacing the square holes
between polygons (see the first configuration in Figure 1) with round holes fixes the point
contact problem and the associated stress concentration near sharp angles. The modified
geometry is shown in Figure 2.

(a) x (b)

Figure 2. Reference structure Sp: (a) unit cell and (b) periodic pattern.

Although this geometry exhibits the same auxetic properties as the original one, their
respective mechanical behaviour strongly differs. Instead of linear rotations until complete
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closing as described by Figure 1, the polygons’ rotation now triggers the intermediate thin
ligaments” buckling, which is intrinsically non-linear (See Figure 3).

Figure 3. Mechanical behaviour during compression of periodic pattern Sy. Configurations for
different values of deformation (Respectively from left to right: 0%, 10%, 20%, ~ 30%).

Simplifying this array, it can be seen as an array of masses (the square parts) linked to
their neighbours by springs (the ligaments). Analytical models describing the dynamic
behaviour of such arrays have been known for a long time [21]. Another model, attributed
to Milton and Willis [22], shows that adding locally resonant masses opens a subwavelength
bandgap in the dispersion diagram [23,24]. Based on this result and the many exemples of
locally resonant metamaterials in the literature [5], a new design with resonant inclusions,
referred to here as Sg, has been proposed and patented. Although a similar design was
presented by Cui and Harne [17], it is the first time it is applied to elastodynamics and
harness phemomena such as buckling and resonance.

Practically, the design in Figure 4 is achieved adding a disk centred on the square
shape centre and a second concentric disk inside the first one. The first disk is designed to
optimise the unused space when the material is compressed (see the last step of Figure 3),
while the second acts as the local resonator.

)
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Figure 4. Resonant design Sg with its characteristic dimensions for R; = 3 mm: (a) unit cell,

(b) periodic pattern, and (c) pattern at ~ 30% compression level.

For the sake of comparison, the same initial geometrical parameters will be defined
as follows for both the initial configuration Sg and the resonant one Sg: L = Lx(s =0) =
Ly(e = 0) = 11.2 mm, e = 1.2 mm. The radius r (see Figure 2a) is directly derived from
previous parameters through r = % = 5 mm. Moreover, all the results in this study are
obtained for an out-of-plane thickness /; = 40 mm which corresponds to the experimental
samples’ thickness. Additional parameters for Sk sample are the inner radius R; = 3 mm
and the outer radius R, = 4.2 mm, so as to keep the same thickness e. It should also be
mentioned that the cells dimensions Ly (¢) and Ly(e) vary with the structure deformation
€= W, as they are not equal to each other anymore—though very close—when
e>0. !

Therefore, the unit cells shown here (Figures 2a and 4a) are not periodic anymore
after buckling. Four cells should be considered to obtain the actual periodic pattern. The
characteristic lengths of this pattern along X and Y are respectively Lp,(¢) = 2Ly (¢) and

Lpy(e) = 2Ly(e), as explained by Figures 2b and 4b.

2.2. Design of Finite Structures

For the dispersion curves to be accurate and close to the behaviour of a finite structure,
one would want the latter to have as many cells as possible. For the sake of practicality and
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feasibility, we wanted the samples’ size to be about 100 x 100 mm? in the XY plane. From
the unit cell’s characteristic sizes defined in previous section, we chose to make samples
with 8 x 7 unit cells, as shown in Figure 5. Their length along Z axis is chosen to be 40 mm,
in order to avoid out-of-plane deformations.

0000000

0000000
(a) (b)

Figure 5. Finite structures designed from 8 x 7 (a) Sy cells and (B) Sy cells.

In order to have viable samples, several details had to be considered. First, in order
to prevent the silicone from breaking due to stress concentration, the top and bottom
boundaries run through the centre of the unit cells (instead of through the ligaments
like the left and right boundaries). Secondly, to ensure the clamped—clamped boundary
condition on the top and bottom sides, a 5 mm bulk layer of material is added on these
boundaries. Finally, rigid plates made out of PMMA are then fixed on these layers in order
to prevent any transverse displacements as well as disbonding with the bench plates and to
facilitate the mounting on the bench (the PMMA plate can be screwed to the bench plates).
The final samples are shown in Figure 6.

[

Figure 6. Samples S (left) and Sy (right) used in this study.

These samples have been made by molding a two-phase silicone rubber (Zhermack
Elite Double 32, Badia Polesine, Italy) at room temperature. The Sp mold was in aluminium,
with steel rods embedded in it to make the circular holes in the material. As for the Sg, its
mold was 3D printed out of ABS material, with a set of cylinders and a set of "plus" shaped
rods to make both the inclusions’ locations and the voids, respectively, in the final design.

2.3. Materials

The matrix material chosen for the entire study is a silicone elastomer, exhibiting a
very large yield strength. For the sake of simplicity, a linear elastic material model is used
for the computations. For the resonator, the material should be very stiff and very dense
compared to the silicone, as property contrast is the key point to enhance the resonators’
effect. Steel has thus been chosen, for it is cheap, easily processed and its properties,
detailed in Table 1, fit well these requirements.
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Table 1. Materials’ properties.

Material Silicone Steel
E 0.97 MPa 200 GPa
v 0.499 0.3
P 1150 kg/m3 7850 kg /m3

A Dynamic Mechanical Analysis (DMA) was also performed to evaluate the dynamic
damping coefficient of the silicone. This test is used to characterise the mechanical be-
haviour of a material as a function of temperature and excitation frequency. It is particularly
useful for polymers, which are very sensitive to thermal or frequency variations. Even
though this test has little interest for the static study; it is essential for the dynamic one,
as it gives the mechanical behaviour of the material over a wide frequency range, thanks
to the time-temperature superposition. The frequency range in this study is only a few
thousands hertz but it can be great to check if some properties like the damping coefficient
vary along this range. Figure 7 shows this variation for a temperature of 22 °C. It can be
seen that the damping coefficient, close to 10%, does not vary much in the study frequency
range. Therefore, a constant coefficient # = 10% is input in the dynamic model; results are
showed in Section 3.2.2.

0.16

0.12
tan(J)

0.08

R?=0.8729

0.04 - ' ‘
102 107 10° 10" 102 103
f (Hz)

Figure 7. Damping coefficient master curve of the silicone at 22 °C. e Experimental data and —

quadratic interpolation curve.

2.4. Experimental Setup

A test bench was specially designed to observe the isolation properties of the meta-
materials. As can be seen in Figure 8, the sample is rigidly fixed between two plates. The
bottom plate is bound to the bed table via three ICP® force sensors 208C02 from PCB
Piezotronics. On the top plate, masses can be added to achieve different states of strain.
In our case, the minimum total mass m = 600 g (static mass and top plate) is used for the
measurements. A shaker Briiel & Kjeer type 4809 is suspended above the top plate and
bound to it through a aluminium rod and an ICP® impedance head 288D01 from PCB
Piezotronics. This sensor measures both the input force and acceleration.
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Figure 8. Test bench for vibration isolation measurements.

As indicated in Figure 8, guides can be added to ensure the unidirectionality of the
displacements. However, guides tend to transmit vibrations, sometimes greater than the
vibrations transmitted through the sample, so the results presented here were all obtained
without guides. The drawback is that it can foster out-of-plane modes, unaccounted for
in the computations. Nevertheless, for small deviations like the ones in this study, the
samples are stiff enough for the excitation to be predominantly longitudinal.

2.5. Numerical Methods—Brillouin Zone

For periodic structures, the Brillouin Zone (BZ) is defined as the periodic pattern
transposed in the reciprocal space, that is to say the wavenumber space [21]. Every pattern
in the structure is identical, so that all the eigenmodes can be obtained from the BZ data
only. Moreover, Brillouin showed that symmetries in the BZ can be used to further reduce
the calculation domain and to find a minimal zone called Irreducible Brillouin Zone (IBZ).

In Figure 9, the IBZ is seen to amount to a quarter of the BZ area. In undeformed
configuration, this IBZ could even be reduced by half (i.e., OAB area only), but as hinted
before, as soon as & > 0, the symmetry along OB axis is not valid anymore.

Figure 9. BZ and IBZ depiction for a 2D pattern.
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In the end, the IBZ allows one to determine the dynamic behaviour of the whole
structure with an optimised computational cost, as the waves in the IBZ and in the entire
structure are considered to be the same. Further simplification is achieved by computing
only the IBZ contour—that is to say OA, AB, BC, and OC—visible in Figure 9. The eigen-
modes are then usually presented in graphs plotting the frequency versus the wavenumber,
called band diagrams—or dispersion diagrams. This type of graph is particularly useful to
highlight bandgaps and thus the isolating performance of the metamaterial.

Although most articles compute only the IBZ contour, it is interesting to mention that
other papers found that depending on the shape of the IBZ, extrema can exist inside the
domain [25,26]. Thus if preliminary detection of bandgaps can be achieved through the
IBZ contour, validating the exact bandgaps frequency range will require a full sweep of the
IBZ. This study implements five branches whose bounds are defined as follows:

AO
OA: ky € —etk, =
Ly

AB:kleetkyG—

Ly Ly
A° 7T
BC: kxEEetky—fy

AO
Ly

o

A Ly
OB: kx € 7 ethy =kep

where A° = [0, 7] is the sweep range.

2.6. Numerical methods—Wave Finite Element Method

Wave Finite Element Method (or WFEM) is a classical method to compute the dis-
persion diagram of periodic structures. It is a hybrid method combining the analytical
approach to finite elements in order to model complex structures with limited computa-
tional cost. An overview of the method is presented here, while a detailed description
can be found in [27,28]. The method uses the Floquet-Bloch theorem which states that
displacements on the boundaries of an L-periodic pattern (periodic pattern where L is the
space period) are governed by the relation:

u(w, x) = ii(w, x)el* 1)

where 1i is L-periodic. When applied to vibration propagation in a 2D pattern periodic
along X and Y, whose size is Ly x L, and for boundaries only, the equation gives:

{uR = ugelflx

ur = uBé’jkyLy

@

where u, = [itq xUs ylUs z]' is the displacement vector on boundary e € {L, R, T, B}, corre-
sponding respectively to left, right, top, and bottom boundaries. k; (respectively k) is the
wavenumber along X (respectively Y) axis. The dynamic equilibrium is then defined by
the equation:

Du=F (©)]

where D = —w?M + (1 +in)K
with M and K the respective matrices of mass, and stiffness, D the dynamic stiffness matrix,
w the system pulsation, 77 the damping coefficient, and u and F the respective vectors of

nodal displacements and loads. The characteristic dimension of these matrices and vectors
is the number of degrees of freedom (DOFs).
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By applying the Guyan reduction—which differenciates boundary and internal ele-
ments —to Equation (2), the following eigenvalue problem is obtained:

[S — Ailon]®; =0, Ay = efkuilxthuily) (4)
where S depends on D matrix coefficients with differentiated DOFs. For each eigenvalue
u
Ai, ®; = ( FL> , Inn is the identity matrix of size 21, where n is the number of DOFs.
—FL

By solving Equation (3) for Floquet periodic solution (See Equation (2)), one can derive
the dispersion diagram of the structure.

Practically, the direct WFEM is used here in order to get the dispersion curves. That is
to say, the wavenumber A; is fixed, and Equation (4) is solved to find the eigen pulsations
wj, and thus the eigenfrequencies f;. The full dispersion diagram is obtained through
sweeping k and ky along the IBZ.

3. Results
3.1. Infinite Structure

In this section, an infinite plate in the XY plane is considered. Using the Floquet—
Bloch theorem mentioned in Section 2.6, we know that a single periodic pattern is enough
to model the whole structure’s dynamics, with greatly reduced computation cost. The
same pattern will thus be used for statics but with simple periodic boundary conditions
instead. Figures 2b and 4b illustrate the concerned patterns. In the Z direction, plane strain
approximation is assumed.

3.1.1. Static Study

First, we will analyse the static compression of the infinite 2D structures, which gives
the stress—strain curve of the structure. These results also define the different states of
compression used as initial geometries for the dispersion calculations.

3.1.1.1. Boundary Conditions

A uniaxial compression is considered along Y axis. To that end, a displacement is
imposed on the top and bottom boundaries. Since we model a single pattern, periodic
boundary conditions are added:
> Upy = —Ury = M0/2
> URy = ULy

oury _ OURy _
> ox —  ox 0
> Urx = Upx

where u, = [ueiley]' is the displacement vector along the boundary e € {L,R, T,B},
respectively associated with left, right, top, and bottom boundaries. uy is the total com-

pressive displacement imposed along Y axis. The effective strain is thus derived from
o

E= ———.
pr(e = O)

3.1.1.2. Instability

In numerical simulations, symmetric boundary conditions applied to a symmetric
model will always result in a symmetric solution. On the other hand, buckling corresponds
to a loss of symmetry in the tangential stiffness matrix. This implies that in our case, the
computation will give a purely axial compression, and buckling should not appear. In order
to initiate buckling in the structure, an imperfection can be inserted to break the symmetry
by a slight amount. To that end, a linear buckling analysis is first performed to obtain the
first—and thus most likely—buckling mode. A small fraction (less than 1 /00 of Lpy (e=0)
in our case) of this mode’s displacement field is introduced in the initial structure.
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3.1.1.2. Results

The first simulation to run is the static compression study, which gives the stress—strain
curve of the structure. Results for the Sy and Sk configurations are shown in Figure 10.

------- O nmo @108
10.6

104 (M Pa)

10.2

4 6 8 10
e(%)

Figure 10. Static behaviour of Sy (blue) and Sy (red) patterns under axial compression.
= -0 - Effective stress o and =—>— effective Young’s modulus E against compression axis (Y).

At first, the effective stress curves (dashed lines) may look like trivial homogeneous
yielding material traction curves, but the fact that they depict compression curves in the
elastic domain makes them way more interesting. Two distinct trends can be observed on
each curve: an initial slope relatively stiff compared to the second flatter one. To highlight
this behaviour, the effective stiffness moduli E = % (solid lines) are plotted against the
compression axis. These curves feature two stable levels, the first one corresponding
to a pre-buckling state and the second one associated to post-buckling stiffness. The
latter is almost equal to zero, leading to a stress plateau. Though not shown here, this
plateau continues until the cells collide with their neighbours, thus increasing the global
stiffness again.

Now comparing the two designs, it can be seen that the initial stiffness is higher for Sg
than for Sp. This is less linked to the resonators themselves than to the ligaments shortening.
In any case, a stiffer material usually entails a poorer isolation performance, so that any
superior performance of Sg compared to Sy would come from the resonators inclusion.

Even though the Sy design is stiffer, it buckles around 1% strain, before Sy which
does so at 2% strain. In short, the force required to buckle is higher for Sg, but its critical
strain—at which it buckles—is lower. It is finally surprising to notice how both effective
stiffness moduli get almost identical for strains above 3%.

3.1.2. Dynamic Study

3.1.2.1. Computation Parameters

The commercial finite elements software COMSOL Multiphysics® is used in this study.

The software can generate meshes of various refinements automatically, but in order
to reduce the computational cost, some parameters were defined manually. In particular, a
nice mesh in the ligaments is paramount, as they are thin and sustain the greatest strains
in the structure. A convergence study allowed one to determine a good balance between
computational cost and accuracy. In the end, five elements were defined in the thickness
at the thinnest point of the ligaments. The mesh was then generated automatically using
an advancing front algorithm to tesselate triangular elements whose size varied between
1.12 um and 0.3 mm, with a maximum growth rate of 1.2 and a curvature factor of 0.25.
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One can note that the imposed displacement boundary condition implies boundaries,
and thus a finite structure. Although it is incoherent with the infinite periodicity assumed
in dispersion calculations, we suppose the compression to occur very far from the studied
pattern, so that side effects can be disregarded.

It should be finally noted that infinitesimal strain theory being inconsistent here,
geometric non-linearity is assumed in the computations.

3.1.2.2. Dispersion Calculation

By running computations on the five branches mentioned in Section 2.5, we achieve
a good approximation of the bandgap structure of each design. In practice, we mainly
focus on omnidirectional bandgaps under 2 kHz; some particularly large bandgaps led
us to broaden the range up to 4 kHz. In addition, judging by the static curves, it is
interesting to see how precompression affects the dispersion properties of the material.
Such effect is displayed in Figure 11. The results are striking. The bandgaps exhibited by
Sg (bottom graph) are more numerous, wider, and at lower frequency than their Sy (top
graph) counterparts. Almost all frequencies between 500 Hz and 2.8 kHz are part of a
bandgap. A narrow pass band exists around 2 kHz (at low strains) so the isolation is not
perfect, but such a band contains very flat modes, that it to say modes with very low phase
velocities vy = ¢, making them easier to handle via conventional damping material.

Furthermore, the precompression level displays a significant effect on both geometries.
This effect is highlighted by the red curves indicating the first low-frequency bandgap
width wpg,. While its value for S is strongly increased by the buckling (at ¢ = 2%), it does
not change much after 3% strain. A narrow second bandgap appears around 3.35 kHz after
buckling, but does not get much larger with increasing strains. The third one appearing
around 1770 is even thinner. On the other hand, wpg, increases steadily after the buckling
point of Sg, until reaching a width greater than 2 kHz for large precompression levels. An
important feature of the Sg design is the second wide bandgap, slightly above the first
one. It is wideband—between 340 Hz and 930 Hz depending on the strain—and close to
the first bandgap—the difference between them is around 170 Hz. It seems to be bound
to the first bandgap, as its width decreases at almost the same rate as wpg, increases. The
same remarks can be made about the third large bandgap around 3.7 kHz (its wide varies
between 360 Hz and 610 Hz. Narrow bandgaps appear for Sg as well, in particular the one
between the two first wide bandgaps. It makes the passbands even thinner, and could lead
to filtering or wave steering applications.

As a result, the dispersion diagrams show that the locally resonant design seems
to substantially improve the isolation performance of the metamaterial. However, these
results are obtained for an infinite periodic plate. Therefore, to confront them to numerical
and experimental tests of a finite structure is of interest.

3.2. Finite Structures

This section deals with the finite structures tests. The designs described in Section 2.2
are modelled to validate the results obtained in Section 3.2. Tridimensional models are com-
puted with a Z depth of 40 mm, just like the experimental samples. Finally, experimental
results are compared to computations.

3.2.1. Static Study

Just like the infinite plate case, we first compute the stress—strain curve of the structure.
Note that imperfections are still introduced in the symmetric model, as described in
Section 3.1.1.2.
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Figure 11. Evolution of omnidirectional bandgap ranges as function of imposed static strain for both
geometries. M Bandgaps and — width wpg, of the main bandgap.

3.2.1.1. Boundary Conditions
The finite size of the structure entails major changes in the boundary conditions:

>  Left and right boundaries are not constrained anymore, that is to say: Fg y = F, » =
Fry="Fy =0

> As the top and bottom boundaries of the samples are clamped to rigid material, their
X component is now null: ury = upy =0

>  Mimicking the experimental setup, the bottom boundary is also clamped along the Y
direction : up, = 0, and the whole displacement is now imposed on the top boundary:
uT,y = 2u0

where u is identical to the previous one (Section 3.1.1.1).

3.2.1.2. Results

Figures 12 and 13 summarise all the quasi-static compression results for Sy and for
SR, respectively. Infinite plates computations, finite structures computations, and finite
structures experimental measurements are respectively depicted by dashed lines with
circles, dashed lines with squares, and solid lines with crosses.
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Figure 12. Static behaviour of Sy pattern under axial compression. Effective stresses o against com-
pression axis (Y) for = -0 = infinite plates computations, finite 8 x 7 structures computations,
and === experimental 8 x 7 samples.
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Figure 13. Static behaviour of Sk pattern under axial compression. Effective stresses ¢ against
compression axis (Y) for =0 = 2D infinite plates computations, =& 3D finite 8 x 7 structures
computations, and === experimental 8 x 7 samples.

By first comparing numerical data (circle-dashed lines and square-solid lines), it can
be seen that transition from infinite to finite size significantly affects the structure behaviour.
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First the pre-buckling stiffness is slightly higher for infinite case, due to constraint difference
along the Z axis. In 2D, the plane strain hypothesis prevents all deformation along Z axis,
thus resulting in a stiffer material. On the contrary, the finite depth in the 3D computation
allows some deformation, though small, along this axis.

Another difference between the both computed curves is the height of the zero stiffness
plateau. In this case, it is caused by the difference in the top and bottom boundary
conditions. By definition, the cells close to the clamped—clamped boundary conditions
imposed on these boundaries (for the finite structures) are more constrained than in the
periodic boundary condition imposed in the infinite plates. In finite case, these cells cannot
deform freely and as a consequence, the deformation is not the same for all cells in the
structure: the cells closer to the middle (regarding Y axis) of the structure are relatively less
constrained, so that they are the first to buckle (See Figure 14). Overall, these additional
constraints hinder the rotation of the top and bottom cells and thus increase the height of
the zero stiffness plateau.

Figure 14. Computed deformed state of a finite 8 x 7 structure. The middle cells are much more
deformed than the top and bottom ones.

After buckling, the stiffness is virtually the same for both finite and infinite calculations,
as they are very close to zero. The plateau of zero stiffness could be beneficial to the
isolation performance, since a zero stiffness material could deform with no transmitted
force. However, on the other hand, practical vibration sources excitation is usually an
applied force. From an imposed force point of view, the plateau is invisible, and the
structure strain state would simply “jump” from one side of it to the other, and zero
stiffness would never be achieved. A logical solution would be to reach a strain state close
to the plateau but slightly below it, so that the stiffness would have a finite value but be
really small.

The experimental measurements shown in Figures 12 and 13 differ from their nu-
merical counterpart, but common features can be observed. First of all, the curves do not
depict a simple compression (solid lines with crosses) but also the traction phase (solid
lines without crosses) back to the initial point. For simulations, these two curves would be
identical because the material model is purely elastic, but here a difference is observed. It
is caused by the viscoelasticity of the silicone: during traction, it takes the material some
time to revert to its initial state. However, this effect is very light in silicone, so that the
linear material model is assumed satisfactory.

For Sy (Figure 12), both the initial slope and the zero stiffness plateau are well captured
by the 3D simulations, especially by the traction phase.

On the other hand, the results for Sg (Figure 13) present much larger differences, as the
initial stiffness is slightly lower than computations, but its plateau is higher. The reason
for this gap might be the fabrication uncertainties associated with 3D printing. In this
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respect, dimensions of machined molds such as the Sy mold are much more accurate than
3D printed ones.

Overall, the static results are satisfactory, as the dual stiffness behaviour—initial slope
and plateau—is well captured.

3.2.2. Dynamic Study

Lastly, we analyse the finite structures dynamic results.

Frequency Domain Analysis

To obtain the frequency response functions (FRF) of the finite structures, the compu-
tation parameters are the same as described in Section 3.1.2.1. The numerical boundary
conditions are also identical to the static case (see Section 3.2.1.1), except for the top bound-
ary, where a harmonic perturbation is now imposed. By sweeping the frequency range—
from 0 Hz to 2 kHz in our case—the whole transfer function can be plotted. Figure 15
displays the transfer function TF = F,;;/F;, for both geometries (dashed lines) along
with the omnidirectional bandgaps obtained in the dispersion calculation (Section 3.1.2.2)
(coloured areas).
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Figure 15. Computed FRF of -- Spand--- Sg 3D structures. Omnidirectional bandgap ranges

under 2 kHz for @ Sy and M Sg, as found in the dispersion analysis.

A first observation is that the Sg curve is way below the Sy on the major part of the
frequency range. The mean TF value for Sg is slightly higher in the low frequency modes’
range [0 Hz, 375 Hz|, but beyond that point, the Sg transfer function drops rapidly until a
minimum (—242 dB) is reached for f = 1.77 kHz. A similar drop is observed on the Sy but
mainly above 0.9 kHz and the minimum value is —130 dB obtained at f = 1.23 kHz.

The other main result from Figure 15 is that the bandgaps seem to fit particularly low
transfer function values. For instance, drawing a line at an arbitrary value of TF = —100 dB
(green dashed line), it crosses the experimental curves at 590 Hz for Sg, and [1.05 kHz,
1.35 Hz] for 5¢. Given that the corresponding bandgaps’ frequencies obtained by dispersion
analysis are [0.58 kHz, 2.26 kHz] for Sg, and [1.05 kHz, 1.45 kHz] for Sy, the experimental
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data fit quite well—although slightly too high—for three values out of four. As for the
upper limit of the Sk bandgap, it is out of the scope.

To summarise the numerical results, a great correlation is found between the infinite
plate and the finite structure dynamic computations, even if small differences remain. The
final step is now to ascertain the actual performance of such materials through experimen-
tal measurements.

Experimental Validation

The measurements were realised with successive frequency sweep excitations. Even
though it takes more time than a white noise excitation, it gives better coherence and allows
one to easily tune the signal amplitude depending on the frequency. In particular, high
amplitude at low frequencies can result in huge displacements at resonances. Therefore, a
width of 100 Hz is chosen for each sweep, and all steps put together allow one to plot all
the transfer functions, along with the phases and coherences.

The results for Sy, Sg, and both, are respectively displayed in Figures 16-18. The
frequency range is kept to [0,2] kHz, except for Sg. The previous results indeed showed
that the upper limit of the first bandgap is above 2 kHz, so the range is extended to
[0,4] kHz in this case.

Figure 16 shows that there is a good correlation of the first modes between exper-
imental and numerical results, even though a small offset is noticeable, especially for
higher frequency anti-resonances. For instance, the computation shows anti-resonances at
460 Hz and 1230 Hz, while the same anti-resonances occur at 500 Hz and 1370 Hz. This
phenomenon could be caused by a difference between the material elasticity modulus in
the numerical model and the real one, since the modes’ frequencies are directly propor-
tional to the root square of the elasticity modulus. The levels of transfer function are quite
similar until 900 Hz, but a great gap arises after this frequency: while the computation
displays a sudden drop, shortly before the bandgap predicted by the dispersion analysis,
the experimental curve keeps a steady level at that point.

Another remarkable aspect is highlighted by the coherence curve: the coherence level
drops abruptly around certain frequencies. Experimentally, low coherence generally corre-
sponds to a very weak response, such that the transmitted vibrations—that are coherent
with the harmonic excitation—are hard to distinguish amid the measurement’s background
noise. In Figure 16, the first and third drops perfectly match the anti-resonances mentioned
above. As for the second one, its range is much wider, extending from 550 Hz to 1200 Hz.
An anti-resonance is also predicted by the computations at around 720 Hz but that alone
does not explain the considerable width of the phenomenon. A possible explanation is that
this low coherence zone actually corresponds to the predicted bandgap but down-shifted.
As to the reason why this shift occurs, it has yet to be fully understood. Future work will
focus on answering this problem.

Figure 17 describes the same results for Sg. Like Sy, experimental low frequency
modes seem to fit quite well the numerical ones. A transfer function drop is observed on
both curves at 500 Hz, but while the numerical curve drops rapidly down to —200 dB, the
experimental results stay around —60 dB. Instead, the coherence suddenly drops at that
point. All indications are that the background noise is around —60 dB, so that any result
theoretically below would be lost in the noise. Focusing on the coherence, one can see that
some sudden changes match quite well bandgaps’ limits, in particular the lower limit of the
first bandgap (0.58 kHz) and both limits of the third one (3.57 kHz and 3.93 kHz). However,
other bandgaps’ limits do not follow this trend (for instance at 2.26 kHz and 2.45 kHz), and
reciprocally, some frequencies theoretically included in a bandgap do not correspond to a
low coherence level (see for instance at 1.3 kHz and 3 kHz). These incoherences could be
linked to boundary conditions” effects or material considerations such as rubber saturation
and will be investigated in future work.

Finally, Figure 18 allows for the comparison of both Sy and Sg experimental results.
First of all, one can notice much less difference than expected between Sy and Sy curves.
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Except for some features like low frequency modes and a few anti-resonances in the Sy
curve, both are quite similar.
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Figure 16. Transfer function (top), phase (middle), and coherence (bottom) of Sy. — Experimental
and -- computed results. @ Omnidirectional bandgaps under 2 kHz, as found in the disper-
sion analysis.
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Figure 17. Transfer function (top), phase (middle), and coherence (bottom) of Sg. — Experimental
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Figure 18. Experimental transfer functions (top), phases (middle), and coherences (bottom) of — Sy
and — Sg, compared to their computed counterpart -- Spand -- Sgr. Omnidirectional bandgap
ranges under 2 kHz for B Sy and M Sg, as found in the dispersion analysis.

The real difference between them is highlighted by the coherence curves. When
looking at Sy results, one can see that the coherence increases above 0.9 at 540 Hz, after
the first drop at 500 Hz. On the other hand, Sk coherence sticks to very low levels in that
range and stays broadly below 0.5 until 1100 Hz, which represents a 600 Hz wide isolation
band. Comparatively, the largest continuous isolation zone with coherence below 0.5
extends from 600 Hz to 900 Hz, that is to say a 300 Hz wide band. Therefore, the isolation
gain obtained with Sk geometry can be considered efficient on a large frequency band,
compared to reference geometry.
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Even though further measurements should be performed to confirm these results,
what can be observed from these curves is that the experimental Sy bandgap is wider than
expected whereas the Sk one is narrower, to the point that the improvement from the local
resonators is not as great as expected. Nevertheless, the Sg bandgap is twice as large as
its counterpart, extending in particular near the low frequencies, thus achieving better
isolation performance in this frequency range.

4. Discussion

To summarise, this article studies the isolation performance of two metamaterials,
a classic auxetic one Sy and a enhanced one S with resonant inclusions. For these two
geometries, static and dynamic computations have been carried out for both infinite plate
assumption and 8 x 7 cells finite geometry, along with static and dynamic measurements
on molded samples. The static study has shown that edge effects due to finite size entail
substantial modification of the effective stress—strain curve for axial compression. A plateau
of zero stiffness appears after buckling. The initial slope is also the same for both cases as
well as for the experimental test, to a certain extent. The material model is not sufficient
to capture the measured plateau levels, at least in the Sk case. In any case, the static
curves exhibit a deep stiffness drop triggered by buckling. This feature could be used
to mechanically tune the structure properties and possibly greatly improve the isolation
properties. The dispersion analysis has confirmed that the bandgaps are strongly affected
by the precompression state of the metamaterial. In particular, their overall width and
number tend to increase with strain. Compared to Sy, the resonant design exhibits huge
improvement of the bandgaps, whether it be their width, number, or minimum frequency.
Such bandgap widths have seldom been reported in literature.

Finite structures’ calculations confirm that such behaviour can also be observed in
finite sized structures. Great transmission loss is seen at the bandgaps’ frequency ranges,
and the Sg design exhibits a much deeper transmission loss that Sg. Finally, vibration
isolation tests have been performed on experimental samples. Although the difference
between both samples is not as great as expected, the Sg design does extend the bandgap
near the low frequencies. Substantial isolation is achieved with a 600 Hz wide continuous
bandgap reaching frequencies as low as 500 Hz. This study highlights the great isolation
performance of auxetic metamaterials harnessing buckling and resonance effects. This
could lead to better isolation systems, with advantages such as compacity, low frequency
efficiency, broadband application, lightweight, and passivity (no external energy required).
Vibrating machine isolation in industry, passengers’ and drivers’ comfort in transportation,
or seismic protection of buildings are a few applications which could benefit from these
types of metamaterials.

As prospects, the bandgap analysis could first be validated by a finer sweep in the
IBZ and then broadened with unidirectional bandgap analysis and extended calculations
for three-dimensional propagation. The stress levels inside the structure could also be
compared to failure stress, in particular fatigue failure stress. Further work will also aim at
solving the bandgaps shift observed in the dynamic study.
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