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Abstract: The Neuron Restrictive Silencer Factor (NRSF) is the well-known master transcriptional
repressor of the neuronal phenotype. Research to date has shown that it is an important player in the
growth and development of the nervous system. Its role in the maturation of neural precursor cells
to adult neurons has been well characterized in stem cell models. While much has been characterized
from a developmental perspective, research is revealing that NRSF plays a role in various neurological
diseases, ranging from neurodegenerative, neuropsychiatric, to cancer. Dysregulation of NRSF
activity disrupts downstream gene expression that is responsible for neuronal cell homeostasis in
several models that contribute to pathologic states. Interestingly, it is now becoming apparent that the
dysregulation of NRSF contributes to neurological disease through epigenetic mechanisms. Although
NRSF itself is a transcription factor, its major effectors are chromatin modifiers. At the level of
epigenetics, changes in NRSF activity have been well characterized in models of neuropathic pain
and epilepsy. Better understanding of the epigenetic basis of brain diseases has led to design and
use of small molecules that can prevent NRSF from repressing gene expression by neutralizing its
interactions with its chromatin remodelers. This review will address the basic function of NRSF and
its cofactors, investigate their mechanisms, then explore how their dysfunction can cause disease
states. This review will also address research on NRSF as a therapeutic target and delve into new
therapeutic strategies that focus on disrupting NRSF’s ability to recruit chromatin remodelers.
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1. Introduction

The first indication of the existence of a neural repressor came from study of the sodium
voltage-gated channel alpha subunit 2 gene (SCN2A) and a neuron-specific marker, superior cervical
ganglion-10 (SCG10) [1,2]. The characterization of the promoter regions showed that a 21-bp neural
restrictive silencer element (NRSE) was responsible for gene repression and it was bound by nuclear
extracts from non-neural tissue, but not neural tissue. This led to the hypothesis that NRSE binding
proteins existed and they were important for the differential expression of neural genes between
neurons and non-neural cells. This cis-acting element would also be characterized as the RE-1
silencer and it would be characterized in a host of genes specific for neurons. The trans-acting
transcription factor would be isolated and eventually named RE-1 silencing transcription factor (REST),
or alternatively Neuron Restrictive Silencer Factor (NRSF). Further study of NRSF/REST showed
that this transcription factor played a role high in the hierarchy of neuronal gene expression during
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development, and as such served as a master transcriptional regulator [3,4]. Since then, hundreds of
genes have been identified that are regulated by NRSF/REST, and in silico studies suggest that this
number could be in the thousands [5].

In situ hybridization has revealed that NRSF mRNA is expressed in all non-neural tissue in adult
organisms [6,7]. Interestingly, NRSF seems to have a higher function in gene regulatory networks
that maintain pluripotency in embryonic stem cells [8,9]. A high expression of NRSF is also present
in neural stem cells to preserve stemness and prevent differentiation. Downregulation of NRSF in
neural stem cells is enough to drive differentiation [10]. During the early development of the nervous
system, the downregulation of NRSF de-represses gene neural expression long enough to allow for
neurons to differentiate [11]. However, this downregulation during development is transient, and
surprisingly, a basal level of expression in adult neural tissues is maintained throughout the life of an
organism [6]. Despite what appears to be constitutive expression of NRSF, research has shown that
its overall protein level does not always correlate with its activity level. Several factors determine if
NRSF can repress expression of its target genes, including proper nuclear localization, recruitment of
corepressors, and the presence or absence of dominant interfering spliced isoforms.

While much research has focused on NRSF and the development of the nervous system, NRSF
has been increasingly linked to numerous diseases involving the brain. Given the central role that it
plays in neural gene regulation, this is not surprising. NRSF overexpression has been linked to brain
cancers where it appears to maintain stemness of the stem cell populations within tumors [12–15].
Additionally, NRSF appears to play an increasingly important role in neurodegenerative disease
(which has been well reviewed in [16]). More recently, research has implicated NRSF as an effector
in the possible epigenetic basis of neurological disease [17]. Upregulation of NRSF in response
to brain insults, such as ischaemia [18], is believed to be neuroprotective [19] in the short term,
but may leave long term epigenetic changes that underlie neuropathic pain, epilepsy, and contribute
to neurodegeneration. As these molecular mechanisms begin to be resolved, it is becoming apparent
that the use of epigenetic inhibitors to target NRSF and its effector chromatin modifiers opens up the
possibility for new therapeutics.

2. Structure and Function of NRSF

The protein structure of NRSF is characterized and it has well defined functional domains. NRSF
is a large, Kruppel-like transcription factor that contains nine zinc finger domains that control its
DNA-binding specificity [3]. Being a transcription factor, the localization of NRSF/REST is important for
its function. Characterization of the NRSF/REST zinc finger domains (ZFDs) revealed that in addition
to DNA-binding, there is also a nuclear localization signal [20]. The generation of several deletion and
truncated mutants of NRSF revealed that a nuclear localization signal (NLS) is present somewhere within
the fifth N-terminal zinc finger domain. While ZFDs 6–8 appear to be most important for DNA binding,
ZFD5 contains an NLS. Shimojo showed by deleting ZFD5 in NRSF/REST that REST4, which contains
the first five ZFDs, is the only variant that is able to localize to the nucleus [21]. It had been suggested
that amino acids 512–522 were an NLS, however, the deletion of this region formed a protein that could
still localize to the nucleus. In addition to a NLS, control of nuclear import of NRSF is also dependent on
the function of REST/NRSF-Interacting LIM Domain Protein, RILP [22,23].

NRSF binds to a conserved 21-bp sequence, termed a Neuron Restrictive Silencer Element
(NRSE). After binding to DNA, NRSF represses gene expression by recruitment of repressive
chromatin modifiers. The N-terminal domain of NRSF recruits the corepressor mSin3 through
its paired amphipathic helix (PAH1) domain [24]. mSin3 in turn recruits histone deacetylases
(HDACs) to nucleosomes to promote a chromatin repressive environment through the deacetylation of
histones [25]. Separately, the C-terminal domain recruits the major corepressor, REST corepressor 1
(CoREST) [26]. CoREST itself recruits chromatin modifying enzymes, including HDACs as well as
histone methyltransferases. Additionally, CoREST contains two SANT domains that allow it to interact
with histones [27]. Interestingly, this can allow for the recruitment of CoREST to areas of the genome
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without NRSF or an NRSE and contribute to long term gene silencing, even in the absence of NRSF.
Lastly, the expression of NRSF can be downregulated post-translationally through ubiquitination by
B-Trcp [28]. Interaction with B-Trcp is mediated by two conserved DpSG sequences. Within this degron
sequence are several critical serine residues (1024, 1027, and 1030), which, when phosphorylated,
increase binding of B-Trcp to NRSF [28].

3. REST-Interacting LIM Domain Protein

While post-translational modifications can serve as quick on-off switches, they often enable
other interactions with binding partners that modulate NRSF/REST. The most studied of these is
the REST-interacting LIM domain protein (RILP). While the NRSF/REST protein levels can remain
constant throughout the life of a cell, its activity is far from being dependent on expression levels. Being
a transcription factor, nuclear localization of NRSF is required for its function. As far as current research
is aware, RILP it is one of the chief nuclear importers of NRSF. RILP directly interacts with ZFD5 of
NRSF and is required for the proper differentiation and maintenance of the neuronal phenotype [23].

RILP is considered a nuclear envelope protein. At least three domains control this association.
RILP contains a CIIS domain required for farnesylation [22,23]. Treatment of cells with farnesyl
transferase inhibitor (FTI) prevents localization to the nuclear envelope. Additionally, RILP contains
two domains that can be phosphorylated by PKA. Point mutations in critical phosphorylated residues
also abolish RILP localization to the nucleus. Finally, RILP contains three separate NLS signals.
The deletion of any single NLS abolishes localization to the nucleus, suggesting that they adapt a
cooperative conformation [23]. It should be noted that one of the NLS motifs also overlaps with the
phosphorylated residue of one of the PKA recognition domains.

4. REST4

NRSF/REST is subjected to several splice isoforms [29]. These are driven by multiple promoters
within the gene that begin expression at different exons [30]. Although the mechanism is not entirely
clear, it was shown that nsr100, an important neuronal activator, promotes alternative splicing of
NRSF [31]. Additionally, characterization of the cholinergic gene locus in PC12 cells showed that
PKA activity may also promote REST4 splicing [32], although it is still unclear if this is a pre- or post
transcriptional event. Of these isoforms, REST4 is the most studied due to its ability to antagonize
NRSF function [33]. REST4 contains the first 5 N-terminal ZFDs of full NRSF. These domains, especially
ZFD5, contain enough of the NLS so that REST4 can efficiently localize to the nucleus [20]. REST4
retains some function of the original NRSF protein. Structurally, REST4 is a C-terminally truncated
form of the NRSF full gene. Since the C-terminal end of NRSF is known to recruit CoREST, an
important co-repressor for NRSF, it is easy to imagine how REST4 could competitively inhibit full
NRSF and reduce its repressive function. Indeed, part of its repressive function may be due to its
ability to heterodimerize with NRSF, resulting in a complex with reduced ability to recruit CoREST [34].
However, further work by Shimojo indicates that the sixth to eighth ZFD are critical for DNA-binding.
Deletion of ZFD7 plus either ZFD6 or 8 abolishes DNA-binding, implying that REST4 alone does not
actually bind to DNA [21]. Since the NRSE is a 21-bp sequence and each ZFD should contribute 3bp
worth of specificity, it can be logically concluded that the loss of any ZFD could decrease affinity for
the NRSE. Nonetheless, despite lacking the C-terminal end, REST4 does retain a trace of its repressive
function [35]. This is presumably due to the retention of the N-terminal region, which is still able to
recruit mSin3.

Alternative splicing of NRSF/REST is not comprehensively characterized. While several spliced
forms have been observed, only REST4 seems to play a critical role in neural development. Inhibition
of REST4 splicing leads to impairments of neurite growth and may contribute to Autism Sprectrum
disorders [31]. Additionally, there are several pathologies that REST4 can be implicated in, including
neuropathic pain [36], glioma [37], Parkinson’s Disease [38], and epilepsy [39]. Given the complex
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function of REST4 and its implication in various stages of neural development, it should not be
surprising that the splicing event is also under complex regulation.

5. CoREST

CoREST is a well-known co-repressor that associates with NRSF. CoREST interacts with NRSF
through a single ZFD [26] and mutating this will abrogate gene repression. CoREST expands the
number of gene targets that NRSF/REST regulates by several fold, in part because it is able to
regulate many genes without an NRSE and regulates more genes that are not neuron-specific [40].
Additionally, CoREST contains a SANT2 [41] domain that can directly interact with histones. This
allows for DNA-binding and transcriptional repression, even in the absence of a canonical NRSE/RE-1
silencer element within the gene promoter. However, most of the known CoREST regulation
comprises of gene networks that are involved in neural stem cell pluripotency and its de-repression
occurs during differentiation. Additionally, differential REST/CoREST complexes are involved in
the differentiation of different neuronal subtypes and also control the switch between glial and
oligodendrocyte subtypes [42,43].

CoREST is recruited to the C-terminal of NRSF/REST and it further recruits chromatin modifying
enzymes, mainly HDACs and DNA methyltransferases [41], which repress gene expression. Differential
expression of CoREST and NRSF/REST in the developing brain allows for another level of differential
repression of neural genes [44]. More importantly, it appears that CoREST can form alternative
NRSF/REST complexes that have different gene specificity as compared to NRSF/REST [45].

6. NRSF Recruits Chromatin Remodelers

REST4, RILP, and CoREST play important roles in the regulation of NRSF’s activity. However,
the repressive function of NRSF is mediated by chromatin modifiers that leave repressive covalent
modifications on histones and DNA. These modifications promote the formation of heterochromatin
that obscures important cis-regulatory elements that are involved in gene transcription.

To this end, NRSF relies on recruitment of HDACs, histone methyltransferases, and DNA
methylases (Figure 1). NRSF recruits mSin3a to its N-terminal region [25]. From there, mSin3a
itself recruits HDACs that are essential for gene repression [46]. Additionally, NRSF recruits the
histone methyltransferase, G9a [47]. This interaction is indirect and it partly depends on NRSF’s
recruitment of the chromodomain containing protein, chromodomain Y-like (CDYL) [48]. G9a seems
to preferentially demethylate H3K9 [48], and this activity is non-overlapping with HDAC repression
from either mSin3a or CoREST. Lastly, CoREST itself acts as a HDAC recruiter [41]. CoREST, through
interactions with methyl CpG binding protein 2 (MeCP2) [49], may also mediate long-term gene
repression by binding to methylated DNA.

7. NRSF-Related Diseases

7.1. Epilepsy

Epilepsy is a collection of seizure disorders characterized by uncontrolled electrical activity in
the brain leading to confusion, loss of consciousness, and uncontrolled movements [50]. At least one
connection from NRSF has a heritable genetic component. Mutation in RILP causes the mislocalization
of NRSF in Progressive Myoclonus Epilepsy-Ataxia Syndrome [51]. In a study of myoclonus
epilepsy-ataxia syndrome, it was found that several families had a mutation in the NRSF translocator,
RILP (called PRICKLE1 in the study). When this mutation was cloned in vitro, it was found that it
caused mislocalization of NRSF and kept it nuclear instead of cytosolic. Mutations that interfere with
the RILP-NRSF association underlie several brain pathologies. A mutation in RILP (R104Q) across
three families with progressive myoclonus epilepsy (PME) was determined to be a founding mutation
in all cases. This mutation prevents the association of RILP with NRSF allowing NRSF to accumulate
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in the nucleus. The dysregulation of NRSF seems to be implicated in epilepsy, however, specific
mechanisms are still lacking.
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Figure 1. Neuron Restrictive Silencer Factor (NRSF) recruits multiple chromatin modifiers. The major
function of NRSF is to recruit chromatin modifiers to neural genes by recognizing NRSEs throughout
the genome. At the N-terminal end, NRSF recruits mSin3 enabling recruitment of histone deacetylase
activity. Further histone deacetylase activity is conferred through recruitment of the major corepressor,
CoREST, at the C-terminal end. Additionally, REST corepressor 1 (CoREST) recruits the histone
demethylase LSD1. NRSF can also recruit the histone methylation activity of G9a. This is indirect
through recruitment of chromodomain containing protein, chromodomain Y-like (CDYL).

REST4 may have another indirect connection to epilepsy. During seizure, NRSF and REST4
are both upregulated. However, the expression of the proconvulsant gene, TAC3 (neurokinin B
(NKB)) is upregulated [52]. It appears that the increase in REST4 expression may competitively
inhibit the repression of NKB by NRSF. This effect is decreased if the anticonvulsant, carbamezapine,
is administered. Taken together, this suggests that the disruption of the mechanisms that control NRSF
can also underlie pathologies that are associated with NRSF.

The expression of several ion channels and receptors have been identified to contribute to the
aetiology of epilepsy. Not surprisingly, these channels are critical for electrical signaling between
neural cells. In particular, the dysregulation of expression of Na+ and K+ channels is highly associated
with epilepsy. The molecular mechanisms that underlie these changes in gene expression are still
under investigation, but it is clear from some studies that many of the genes can be directly regulated
by NRSF [53]. Dysregulation of the ion channel genes SCN2A, potassium voltage-gated channel
subfamily Q member 2 (KCNQ2), and KCNQ3 contribute to the progression of epilepsy in infants,
but more interestingly, these are known to be repressed by NRSF [3,54]. Adding to this list, mutation
in SCN1A and SCN1B contribute to an inherited form of febrile seizures in early childhood and are
also direct targets for NRSF repression [55]. Another important factor for NRSF induced epilepsy is the
regulation of potassium channels through epigenetic repression. Specifically, the DNA dimethylase
G9a, has been shown to leave the repressive histone mark H3K9me2 on several genes for potassium
channels [56].

Aside from traumatic brain injury, seizure itself can promote epilepsy in adults. In both cases,
injury causes the downregulation of expression of important genes that are implicated in epilepsy,
of note, the hyperpolarization-activated cyclic nucleotide-gated ion channel gene, HCN [57,58].
This relationship between NRSF and epilepsy has also been established in in vivo models of epilepsy.
Therapeutic targeting of NRSF to restore HCN expression can slow down the progression of epilepsy
after injury [57] in mouse models.
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Interestingly, NRSF may play a role in diet-based resistance of epilepsy. In a dietary model of
epilepsy treatment, the deprivation of glucose leads to reduced NADH activation of the chromatin
modifier CtBP [59]. The effect reduced NRSF repression specifically of the BDNF gene.

7.2. Neuropathic Pain

Injury to nerves in the form of ischemia, crushing/mechanical, and inflammation often leave
lasting symptoms. Nerve damage can result in neuropathic pain, a condition where pain thresholds to
common stimuli are lowered and analgesic effects are attenuated [60]. Neuropathic pain decreases the
quality of life of the injured and can lead to disability. At the cell biology level, neuropathic pain is
linked to aberrant expression of ion channels and G-protein coupled receptors. Interestingly, many of
these channels that are dysregulated in neuropathic pain are the same channels that are dysregulated
in epilepsy [61–64], in particular, sodium and potassium channels. However, the expression pattern
of these genes is very different as many of the changes occur in the peripheral nervous system.
Additionally, some changes in gene expression are directly responsible for mediating the analgesic
response. Most notably are changes in the mu-opioid receptor (MOR) [65,66]. Given the roles of these
channels in nerve signaling and analgesia, respectively, these are logical targets for treatment. Common
treatments for neuropathic pain are often tricyclic antidepressants, serotonin and norepinephrine
reuptake inhibitors, gapabentin, and less commonly, opioids. These can lose their effectiveness over
time as the user builds a tolerance and can carry a high risk for addiction.

Downregulation of several types of ion channels that are commonly seen during nerve damage
is confirmed in in vitro models. Additionally, other genes involved in maintaining analgesia, mainly
the µ-opioid receptor are also affected and can contribute to pain. Expression of NRSF is upregulated
during the same injuries that cause neuropathic pain [67]. Given its master role in regulating neural
expression, it is not surprising that other laboratories have shown that the repressive effect of NRSF
may be responsible for the downregulation of ion channels and analgesic promoting genes that underlie
neuropathic pain. Work by Uchida et al. has shown that the sodium and potassium channels, sodium
channel protein type 7 subunit alpha (SCN7A, aka Nav)2.1, and potassium voltage-gated channel
subfamily D member 3 (Kv4.)3 [68] are downregulated in dorsal root ganglia after injury, possibly
lowering the firing threshold for pain, while MOR expression can be directly repressed by NRSF [69,70],
removing important analgesic relief. Damage to the C-fiber nerves is highly implicated in neuropathic
pain and is attributed to NRSF repression of Nav1.8 and MOR genes. G9a also contributes to long-term
pain through downregulation of potassium channels by methylation of histones [56]. Logically, NRSF
itself can be recognized as a therapeutic target and in some pain models, since the direct inhibition of its
activity has been shown to reduce symptoms [71]. Further study into the epigenetic mechanisms that
are perturbed in neuropathic pain can provide more finely resolved targets. In particular, targeting the
co-repressors and epigenetic effectors that NRSF recruits during injury could better treat neuropathic
pain and limit off target effects.

8. Epigenetic Inhibitors

Epigenetic treatments for disease are increasingly being investigated for a range of diseases.
Valproic acid, an organic acid with pan-HDAC inhibiting function, is currently in use to treat
seizure [72] and bipolar disorder [73]. However, due to its broad range, pan-HDAC inhibitors are
associated with many side effects. Interestingly, HDAC inhibitors are being put forth as a new potential
treatment for neuropathic pain [74]. These can effectively ameliorate symptoms of pain and show
distinct epigenetic changes in gene regulation. Given the known regulation of ion channels and other
pain receptors by HDAC recruitment of NRSF, one could hypothesize that the global use of HDAC
inhibitors could be narrowed down to a subset of NRSF regulated genes. In order for this to be tested,
further research should establish a more direct link between the HDAC recruitment ability of NRSF
and neuropathic pain itself. The possibility that epigenetic changes specific to neuropathic pain and
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NRSF could help to narrow down therapeutic options from that of global HDAC inhibition to more
targeted NRSF regulated genes is exciting and it could result in therapies with less off-target effects.

Research on the mechanisms that show NRSF and its relationship to disease may offer the
possibility to create better drugs that more precisely target the epigenetics in neural cells (Figure 2).
Mimetics against NRSF are being constructed and tested in pain models. In particular, two mimetics
that compete with the N-terminal end of NRSF have been synthesized under the PRISM model in
Japan and tested in animals. Both mS-11 and C737 have been made to outcompete mSin3 and attenuate
the repression of gene expression. In a mouse pain model for sciatic nerve injury, the administration
of mS-11 was able to restore C-fiber pain stimulation threshold to basal levels [75]. In a cold stress
model, shrews were subjected to depression via exposure to cold temperature. Administration of C737
therapeutically protected against cold stress-induced weight loss and performed even better when
compared against the antidepressant agomelatine [76]. These mimetics highlight a new strategy where
specific epigenetic effectors that associate with transcription factor activity can be inhibited. Although
both seem promising, much more work with mimetics such as these needs to be performed to show
that mimetics can restore homeostasis of gene expression underlying neuropathic pain. In addition
to mimetics, the small quinolone-like compound 91 (C91) was tested and revealed to inhibit the
NRSF-mSin3b interaction [77]. This was tested in a Huntingtin Disease model, where it was shown to
restore expression of BDNF among other neural genes [77].
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Figure 2. Inhibiting the Chromatin Modifying Effectors of NRSF. Inhibition of mSin3 recruitment by
NRSF at the N-terminal end has been shown using molecules that mimic the helix structure of NRSF
that recruits mSin3. At the C-terminal end of NRSF, small molecules against the major corepressor of
NRSF, CoREST, can inhibit both deacetylase and demethylase activity.

While mimetics have been synthesized that target the N-terminal domain of NRSF, small
molecules have also been tested against the C-terminal domain’s interaction with CoREST.
The small molecules 4SC-202 and SP2509 were able to inhibit the deacetylase and demethylase
activity of the NRSF/REST-CoREST complex in medullablastoma cells, and they negatively
affected cell viability [78]. The synthetic HDAC inhibitor, corin, was also shown to have dual
inhibitory activity against the deacetylase and demethylase activity of the CoREST complex [79].
Interestingly, although each molecule inhibits HDAC1, they have differential affinity towards different
HDAC1-containing complexes.
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9. Conclusions

Decades of study of the master transcriptional regulator, NRSF, has highlighted its importance in
neural development. NRSF controls one of the most complex expression programs in development.
The number of binding partners and effectors that have been characterized as essential for its function
speaks to its complexity. Its implication in a range of neurological diseases underscores how critical its
tight regulation is for cellular homeostasis.

However, the study of this transcriptional repressor is still incomplete and further elucidation
of its functional mechanisms could provide new therapeutic windows into neural dysfunction and
disease. Targeting NRSF activity with siRNA has been shown to induce differentiation and reduce
tumor progression in glioblastoma models, however, this approach may be too broad for use under
physiological conditions. Therefore, the study of the epigenetic regulators and co-repressors that NRSF
utilizes could provide a higher level of resolution for more targeted treatments.
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