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Abstract: A pivotal role in guiding mesenchymal stem cell (MSC) differentiation has recently been attributed to the primary cilium. 
This solitary, non-motile microtubule-based organelle emerging from the cell surface acts as a sensorial membrane structure reflect-
ing developmental and adaptive processes associated with pathologies including human cystic kidney disease, skeletal malforma-
tions, obesity and cancer. Given that the intrinsic hypoxic adaptation of MSC remains poorly understood within ischemic tissues or 
hypoxic tumours, we questioned whether the hypoxia inducible factor-1α (HIF-1α) might be a downstream effector regulating cilium 
maintenance. We show that murine bone marrow-derived MSC cultured under hypoxic conditions (1.2% O2) lose their primary cilia in a 
time-dependent manner. Gene silencing of HIF-1α prevented cilia loss in hypoxic cultures, and generation of MSC expressing a consti-
tutively active HIF-1α (MSC-HIF) was found to decrease primary cilium formation. A Wnt pathway-related gene expression array was 
also performed on MSC-HIF and indicated that the secreted Frizzled-related proteins (sFRP)-1, -3 and -4 were down-regulated, while 
sFRP-2 was up-regulated. Overexpression of recombinant sFRP-2 or gene silencing of sFRP-1, -3 and -4 in MSC led to primary cilium 
disruption. These results indicate a molecular signalling mechanism for the hypoxic disruption of the primary cilium in MSC involving 
an HIF-1α/sFRP axis. This mechanism contributes to our understanding of the adaptive processes possibly involved in the oncogenic 
transformation and tumour-supporting potential of MSC. Our current observations also open up the possibility for the primary cilia to 
serve as a biomarker in MSC adaptation to low oxygen tension within (patho)physiological microenvironments.
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Introduction
Most commonly isolated from the bone marrow, 
mesenchymal stem cells (MSC) represent a population 
of pluripotent adult stem cells that can differentiate into 
many mesenchymal phenotypes, and that can adapt to 
low oxygen environments such as those encountered 
within ischemic tissues or hypoxic tumours.1,2 This 
adaptive property has been exploited to study the ther-
apeutic efficacy of genetically-modified MSC.3–6

Homing of MSC to tumours was recently reported 
in a mouse model where injected human MSC could 
be found preferentially migrating to implanted human 
melanoma tumours.6 In fact, recruitment of MSC by 
experimental vascularizing tumours also resulted in the 
incorporation of MSC within the tumor architecture6,7 
which, combined with intrinsic immunomodulatory 
mechanisms, suggests that they must also respond to 
tumour-derived growth factor cues.8,9 Consequently, 
their potential contribution to tumour development 
implies that MSC must metabolically adapt to the 
low oxygen environment and nutrient deprivation 
that characterizes hypoxic tumours. Moreover, the 
sum of this evidence, in line with their increased abil-
ity to migrate under an atmosphere of low oxygen,10 
suggests that MSC may be active participants in the 
development of hypoxic solid tumours.

In order to survive within the stressful hypoxic 
microenvironment, cells have developed a coordi-
nated set of responses orchestrating their adaptation 
to hypoxia. In cancer cells, the resultant of such cel-
lular responses to hypoxia is often associated with 
aggressive disease and resistance to therapy.11 A criti-
cal mediator of the hypoxic response is the transcrip-
tion factor hypoxia inducible factor 1 (HIF-1) which 
upregulates expression of proteins that promote 
angiogenesis, anaerobic metabolism, and many other 
survival pathways.12 Regulation of HIF-1α, a com-
ponent of the HIF-1 heterodimer, occurs at multiple 
levels including translation, degradation, and tran-
scriptional activation, and serves as a testimony to the 
central role of HIF-1. More recently, the canonical 
Wnt pathway was shown to be activated in stem cells 
under low oxygen culture conditions via HIF-1α.13 
How such HIF/Wnt signalling affects the MSC adap-
tive mechanisms remains poorly documented.

Stem cell differentiation and proliferation are 
among the important processes regulated through 
the Wnt pathway. Its activation in hematopoietic 

stem cells and in MSC enhances cell proliferation, 
maintains pluripotency and prevents induction of 
apoptosis.14–16 Moreover, expression of Dickkopf 
(DKK), a Wnt inhibitor, prevented osteogenic differ-
entiation of cultured human MSC.17 Among the Wnt 
molecular players, secreted Wnt antagonists were 
also found to be important in stem cell homeostasis in 
an in vivo gastro-intestinal cancer model.18 Autocrine 
Wnt signaling also operates in MSC populations to 
regulate mesenchymal lineage specification.19,20 The 
molecular mechanisms that regulate self-renewal, 
lineage-specific differentiation and/or adaptation still 
remain to be linked to specific biomarker expression.

The primary cilium is a sensory membrane struc-
ture which transduces surrounding mechanical and 
chemical signals and which serves as a control center 
for many protein signalling complexes.21 Despite its 
purpose in development where a role in guiding lin-
eage commitment was reported,22 the primary cilium 
mainly serves as a cell surface biomarker associated 
with a growing number of pathologies, including 
human cystic kidney disease, skeletal malformations, 
obesity and cancer.23 Recent evidence links the tumour 
suppressor pVHL, a protein involved in the nuclear 
translocation of HIF-1α, to cilium integrity mainte-
nance in cystic kidney disease.24 We therefore exam-
ined the biomarker potential of the primary cilium, as 
well as the impact of Wnt signalling in MSC adapta-
tion to hypoxic cues.

Experimental Procedures
Materials
Sodium dodecylsulfate (SDS) and bovine serum 
albumin (BSA) were purchased from Sigma 
(Oakville, ON). Cell culture media was obtained from 
Invitrogen (Burlington, ON). All other reagents were 
from Sigma-Aldrich Canada.

Cell culture and experimental  
hypoxic conditions
Bone marrow-derived MSC were isolated from the 
whole femur and tibia bone marrow of C57BL/6 
female mice; cells were cultured and characterized 
as previously described.25 Analysis by flow cytom-
etry, performed at passage 14, revealed that MSC 
expressed CD44 yet were negative for CD45, CD31, 
KDR/flk1 (VEGF-R2), flt-4 (VEGF-R3) and Tie2 
(angiopoietin receptor) (data not shown). Hypoxic 
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culture conditions were attained by incubation of 
65%–80% confluent cells in an anaerobic box. The 
oxygen was maintained at 1%, as described by 
others,26–28 using a compact gas oxygen controller 
Proox model 110 (Reming Bioinstruments Co., Red-
field, NY) with a residual gas mixture composed of 
94% N2 and 5% CO2.

cDNA construct generation  
and transduction of the MSC-HIF-1α
The human full-length HIF-1α cDNA construct 
was generously provided by Dr Gregg L. Semenza 
(Johns Hopkins University, Baltimore, MD, USA), 
and was used as a template for generating an HIF-1α 
mutant which lacked its oxygen-dependent degra-
dation domain (ODD401–603). The deletion mutant 
(HIF-1α ∆ODD) was constructed by overlap exten-
sion using PCR. The deletion was confirmed by 
DNA sequencing, and the 1.95 kb HIF-1α ∆ODD 
cDNA was subcloned into pcDNA3.1. For gen-
eration of retroviral particles, the HIF-1α ∆ODD 
construct was digested out of the pcDNA3.1 vec-
tor using BamHI and HpaI restriction enzymes 
and subcloned into the multiple cloning site of the 
bicistronic retrovector pIRES-GFP. 293-GP2 viral 
packaging cells were transfected with either the 
HIF-1α ∆ODD-pIRES-GFP or null-pIRES-GFP 
plasmids and the viral supernant was collected at 
48 and 72 hours post-transfection. MSC were sub-
jected to 8 rounds of viral transduction. Following 
viral transduction each GFP(+)MSC (AP2-MSC) 
and HIF-1α-∆ODD-GFP(+) MSC population were 
each subjected to high speed cell sorting using a 
BD FacsAria flow cytometer to obtain polyclonal 
pooled clones of retrovirally-transfected MSC that 
were 100% GFP(+) and similar in regards to GFP 
signal intensity.

Total RNA isolation, cDNA synthesis  
and real-time quantitative RT-PCR
Total RNA was extracted from cell monolayers 
using TriZol reagent (Invitrogen). For cDNA syn-
thesis, 2 µg of total RNA were reverse-transcribed 
into cDNA using a high capacity cDNA reverse tran-
scription kit (Applied Biosystems, Foster City, CA). 
cDNA was stored at −80  °C prior to PCR. Gene 
expression was quantified by real-time quantitative 
PCR using iQ SYBR Green Supermix (Bio-Rad, 

Hercules, CA). DNA amplification was carried 
out using an iCycler iQ5 (Bio-Rad, Hercules, CA) 
and product detection was performed by measur-
ing binding of the fluorescent dye SYBR Green I 
to double-stranded DNA. The QuantiTect primer 
sets were provided by Qiagen (Valencia, CA): 
sFRP-1, -2, -3, -4 (Mm_Sfrp1_1_SG QT00167153, 
Mm_Sfrp2_1_SG QT00101759, Mm_Frzb_1_SG 
QT00169232, Mm_Sfrp4_1_SG QT00120491) 
and β-actin (Hs_Actb_2_SG QT01680476). The 
relative quantities of target gene mRNA against the 
internal control β-actin RNA were measured by fol-
lowing a ∆CT method employing an amplification 
plot (fluorescence signal vs. cycle number). The dif-
ference (∆CT) between the mean values in the trip-
licate samples of target gene and those of β-actin 
mRNAs were calculated by iQ5 Optical System 
Software version 2.0 (Bio-Rad, Hercules, CA) and 
the relative quantified value (RQV) was expressed 
as 2−∆C

T.

Mouse Wnt signaling pathway  
PCR array
The Mouse Wnt Signaling Pathway RT² Profiler 
PCR Arrays (PAMM-043, SA Biosciences, 
Frederick, MD) were used according to the man-
ufacturer’s protocol. Quantitative RT-PCR was 
performed and relative gene expressions were 
calculated using the 2−∆∆Ct method, in which Ct 
indicates the fractional cycle number where the 
fluorescent signal reaches detection threshold. The 
‘delta–delta’ method uses the normalized ∆Ct value 
of each sample, calculated using a total of five 
endogenous control genes (B2M, HPRT1, RPL13A, 
GAPDH, and ACTB). Fold change values are then 
presented as average fold change = 2 (average∆∆Ct) 
for genes in MSC-HIF relative to control MSC. 
Detectable PCR products were obtained and defined 
as requiring ,35 cycles. Using real-time PCR, we 
reliably analyzed expression of a focused panel 
of genes related to Wnt-mediated signal transduc-
tion with these arrays. The resulting raw data were 
then analyzed using the PCR Array Data Analysis 
Template (http://www.sabiosciences.com/pcrar-
raydataanalysis.php). This integrated web-based 
software package automatically performs all ∆∆Ct 
based fold-change calculations from our uploaded 
raw threshold cycle data.
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Immunofluorescent microscopy
Cells were seeded on 1.5-mm thick glass coverslips 
in 6-well culture plates. After hypoxic treatment, 
media were removed and cells fixed in 10% formalin 
phosphate buffer (Fisher Scientific, Ottawa, ON) 
for 20  min, permeabilized in 0.5% Triton X-100/
PBS for 5 min, then blocked 1 h in 1% BSA/PBS. 
Immunostaining was performed for 1 h with a mono-
clonal anti-acetylated tubulin antibody (clone 6-11B-1) 
1:200 in 1% BSA/PBS (Sigma, St-Louis, MO), fol-
lowed by 1:200 anti-mouse-RedX (Invitrogen). 
Nuclei were stained using 5 µg/mL DAPI and then 
glass coverslips were mounted on slides using Pro-
Long Gold Antifade reagent (Invitrogen, ON) before 
fluorescence was examined by microscopy, using a 
Nikon Eclipse TE2000-U microscope coupled to a 
QImaging Retiga 1300 camera.

Transfection method and RNA  
interference
Cells were transiently transfected with 20 nM siRNA 
(Qiagen) against HIF-1α (Mm_Hif1a_2 Flexitube 
siRNA, SI00193018), sFRP-1, -2, -3, -4 (Mm_
Sfrp1_1 SI01415855, Mm_Sfrp2_1 SI00182567, 
Mm_Frzb_1 SI01005991, Mm_Sfrp4_1 SI00209818) 
or scrambled sequences (AllStar Negative Control 
siRNA, 1027281) using Lipofectamine 2000 (Invit-
rogen, ON). Specific gene knockdown was evaluated 
by qRT-PCR as described above. Small interfering 
RNA and mismatch siRNA were synthesized by Qia-
gen and annealed to form duplexes.

Morphological analysis of apoptotic  
and necrotic cells
To visualize nuclear morphology and chromatin con-
densation by fluorescence microscopy, cells were 
stained with 0.06 mg/mL Hoechst (33258, blue fluo-
rescence) for apoptotic cells or with 50 µg/mL pro-
pidium iodide (red fluorescence) for necrotic cells.25

Statistical data analysis
Data are representative of three or more independent 
experiments. Statistical significance was assessed 
using Student’s unpaired t-test. Probability values 
were considered significant when an asterisk identi-
fies such significance in the figures. * = P ,  0.05; 
** = P , 0.01; and *** = P , 0.001.

Results
The primary cilium is expressed in MSC 
and hypoxic culture conditions diminish 
ciliogenesis
We first wished to monitor whether any primary 
cilia were expressed in MSC. MSC were seeded 
into petri dishes and cultured under normoxic con-
ditions. Immunofluorescent staining was perfomed 
as described in the Methods section with the anti-
acetylated tubulin antibody. We found that approxi-
mately 70% of the cells expressed a single plasma 
membrane protrusion attributable to the primary 
cilium (Fig. 1A). When MSC were cultured under 
hypoxic conditions for 24 and 48 hours, ciliogenesis 
was time-dependently and significantly decreased in 
hypoxic MSC cultures (Fig. 1B, closed circles) when 
compared to normoxic MSC cultures (Fig. 1B, open 
circles). Hoechst-33258 and propidium iodide stain-
ing only revealed basal levels of respective apoptotic 
and necrotic cells (,10%, data not shown) in accor-
dance to previous studies,25 and suggests that the 
effects observed were not due to hypoxia-increased 
cell death. Significant decrease in ciliogenesis was 
also observed at 48  hours under normoxic culture 
conditions and may, although speculative, be attribut-
able to low nutrient supply. Collectively, these obser-
vations still confirm that MSC express the primary 
cilium and support some hypoxia-mediated signal-
ling events that would regulate such expression.

Hypoxia inducible factor-1α expression 
is crucial in the hypoxic downregulation 
of ciliogenesis
In order to assess the impact of the hypoxia inducible 
factor-1α (HIF-1α) in the hypoxia-mediated decrease 
in MSC ciliogenesis, MSC were transiently transfected 
with a scrambled siRNA sequence (Fig. 2A, upper pan-
els; Mock) or with an siRNA designed to downregulate 
HIF-1α (Fig. 2A, lower panels; siHIF-1α) as described 
in the Methods section, then put in culture under nor-
moxic (white bars) or hypoxic (black bars) conditions 
for 24  hours. Typical knockdown in HIF-1α gene 
expression was over 80% (not shown) and in accor-
dance with our previous studies.29 Cilium staining was 
performed for each experimental condition and cilia 
were decreased, in agreement with the data in Figure 1, 
in hypoxic Mock-transfected cells (Fig. 2B, black bars). 
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This decrease in cilium expression in hypoxic MSC was 
prevented from diminishing in siHIF-1α-transfected 
cells (Fig. 2B, black bars). These observations prompt 
for a crucial involvement of HIF-1α-mediated regula-
tion of MSC ciliogenesis.

HIF-1α stable expression dowregulates 
ciliogenesis
In order to rule out the sole effect of hypoxia and to 
firmly establish the direct HIF-1α’s impact on MSC 
ciliogenesis, cells were engineered to stably express 
a ∆ODD HIF-1α mutant (MSC-HIF) as described in 
the Methods section. MSC and MSC-HIF were then 
cultured under normoxic conditions for 24 hours and 
cilia staining was performed (Fig. 3A). Cilium staining 

quantification confirmed the significant decrease in 
primary cilia expression in the MSC-HIF, therefore 
establishing HIF-1α as a major molecular actor in 
cilia downregulation.

Gene array analysis reveals  
involvement of members from the 
secreted frizzled-related proteins  
in the hypoxic adaptation of MSC 
Given that the Wnt signalling pathway has been 
reported to regulate ciliogenesis,30,31 we performed 
a Wnt pathway-related gene expression array. Total 
RNA was isolated from MSC and from MSC-HIF, 
and cDNA was synthesized as described in the 
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Figure 1. Hypoxic culture conditions diminish ciliogenesis in MSC. Mesenchymal stem cells (MSC) were cultured under normoxic or hypoxic conditions 
as described in the Methods section for 24 and 48 hours. (A) Cells were fixed and cilia staining was performed. (B) Quantification of ciliogenesis in MSC 
cultured under normoxic (open circles) or hypoxic (black circles) conditions. Data are representative of three independent experiments. Three independent 
fields were quantified per experiment. Probability values of less than 0.05 were considered significant in hypoxic cultures, and an asterisk (*) identifies such 
significance relative to the normoxic culture condition.

http://www.la-press.com


Proulx-Bonneau and Annabi

112	 Biomarker Insights 2011:6

Methods section. A schematic representation of the 
genes which were up-regulated and downregulated 
(threshold in dotted lines) is depicted (Fig. 4A). 
A value between −3.00 and 3.00 was considered not 
significant. While most of the Wnt family gene mem-
bers were unaffected (Wnt-1 to -16; Fig. 4B), Wnt-9a 
gene expression was the only one to be upregulated 
in MSC-HIF. Interestingly, gene expression of four 
members of the secreted Frizzled-related proteins 

(sFRP) were found modulated. While sFRP-2 was 
upregulated, the expression of sFRP-1, -3, and -4 was 
significantly downregulated (Fig. 4B). Collectively, 
these observations prompted us to explore whether 
sFRP transcriptional regulation may effectively 
occur within MSC.

sFRP family members possess putative 
hypoxia responsive elements within their 
promoter region and are downregulated 
in hypoxic MSC
We next needed to validate the gene expression array 
data obtained previously. The data from Figure 4B 
were first used to generate a representative histogram 
of the sFRP-1, -3, and -4 gene down-regulation and 
of the sFRP-2 gene up-regulation (Fig. 5A). Specific 
involvement of HIF-1α in directing sFRP-1 to -4 gene 
regulation was next explored through sequence pro-
moter analysis. 9,000 bp sequences upstream of the 
ATG coding sequence of the murine sFRP-1, -2, -3, 
and -4  gene promoter sequences was analyzed for 
HIF putative transcription factor binding sites with 
PROMO 3.0 (http://alggen.lsi.upc.es/) using version 
8.3 of the TRANSFAC database. Several core con-
sensus sequences of the hypoxia responsive elements 
(HRE) (A_G)CGT(G_C)C were found in the murine 
sFRP sequences analyzed (Fig. 5B). Quantitative 
qRT-PCR validation of the sFRP gene expression lev-
els was finally performed in order to validate the gene 
array data and confirmed those gene expression data 
characterizing sFRP levels in MSC-HIF compared to 
MSC (Fig. 5C).

Overexpression of sFRP-2 or gene 
silencing of sFRP-1, -3, -4 family 
members dowregulates ciliogenesis
We next proceeded to validate the gene expression 
array significance of sFRP-2 gene upregulation and 
of sFRP-1, -3, and -4 gene dowregulation in MSC-
HIF. We performed transient gene silencing of all 
sFRP members (Fig. 6A), and transiently trans-
fected sFRP-2 cDNA (Fig. 6B) in MSC. We next 
went on to immunostain and assess the primary 
cilium expression in each of these conditions. We 
found that overexpression of recombinant sFRP-2 
led to a significant decrease in transfected MSC 
(Fig. 6C). In parallel experiments, gene silencing 
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Figure 2. Hypoxia inducible factor-1α expression is crucial in the hypoxic 
downregulation of ciliogenesis. MSC were transiently transfected with a 
scrambled siRNA sequence (Mock) or an siRNA designed to downregu-
late HIF-1α (siHIF-1α) as described in the Methods section. (A) Cells 
were then cultured either under normoxic or hypoxic conditions for 
24 hours and cilia staining was performed. (B) Quantification of ciliogen-
esis in MSC cultured under normoxic (open bars) or hypoxic (black bars) 
conditions. Data are representative of three independent experiments. 
Probability values of less than 0.05 were considered significant, and an 
asterisk (*) identifies such significance relative to the respective control 
treatment.
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of sFRP-1, -3, or -4 led to decreased ciliogenesis, 
while that of sFRP-2 did not change primary cilium 
expression (Fig. 6D).

Discussion
Hypoxia is thought to be a tissue-specific condition that 
could promote oncogenic processes. In this study we 
have demonstrated that hypoxia significantly impacts 

ciliogenesis via a HIF-1α/Wnt signalling axis. While 
the Wnt family of proteins is known to influence the 
MSC phenotype through both canonical and non-
canonical signalling pathways,20,32 our data support 
the importance of the Wnt pathway in the maintenance 
of cilium integrity. Accordingly, we also identified 
the crucial joint action of several sFRP members on 
MSC ciliogenesis. Our current observations also open 
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Figure 3. HIF-1α overexpression dowregulates ciliogenesis. MSC stably expressing a ∆ODD HIF-1α mutant (MSC-HIF) were generated as described in 
the Methods section. (A) Cells were then cultured under normoxic conditions for 24 hours and cilia staining performed. (B) Quantification of ciliogenesis in 
MSC (open bars) or MSC-HIF (black bars) was performed. Data are representative of three independent cell cultures. Probability values of less than 0.05 
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up the possibility for the primary cilia to serve as a 
biomarker for MSC adaptation to low oxygen tension 
within (patho)physiological microenvironments.

The complex nature of the hypoxic tumor 
microenvironment may result in pro-oncogenic 
conditions for MSC. As such, mobilization and 
migration of MSC to the peripheral blood,33 and to 
tumors34,35 in response to hypoxic cues have recently 
been evidenced. These events are in part explained 
by the fact that hypoxic cancer cells secrete vari-
ous cytokines including IL-6, VEGF, PDGF and 
FGF, that attract and promote MSC proliferation 
and differentiation into tumor-supporting cells.36,37 

Recently, chemosensory response to PDGF-AA in 
fibroblasts was shown to require the primary cilium.38 
In contrast, in the bone marrow, the hypoxic niche is 
important for maintaining stemness, cell cycle, cell 
survival and metabolism of MSC and HSC.39 The 
function of MSC in tumors is likely to parallel the 
role of MSC in wound healing.40,41 Accordingly, MSC 
derived from bone marrow are thought to endog-
enously support wound healing and hematopoiesis, 
but many of their native functions under hypoxic 
conditions remain poorly understood. Under such 
conditions the low oxygen tension is believed to pro-
tect the genomic integrity of stem cell populations by 
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limiting the production of reactive oxygen species 
by mitochondrial respiration.42

Primary cilium identification as a biomarker may 
allow efficient monitoring of hypoxic MSC adaptation 
processes and help increase our understanding of the 
mechanisms involved in their oncogenic regulation. 
In combination with other MSC cell surface markers, 
hypoxic disruption of the primary cilium may also 
represent a usefull marker for clinical purposes. In 
support of this, the recent discovery of the importance 
of primary cilia in a variety of cell functions raises 
the possibility that this structure may indeed have a 
role in a variety of cancers. Recently, the formation 
of the primary cilium was disrupted in cells derived 
from astrocytoma/glioblastoma tumors.43 This obser-
vation is among the first evidence that altered pri-
mary cilium expression and function may be part 
of some malignant phenotypes.44,45 MSC were also 
shown to integrate, engraft and differentiate within 

hypoxic brain tumors,46 which further highlights the 
fact that the primary cilia could serve as a diagnostic 
tool and provide new insights into the mechanism of 
tumorigenesis.

Whether MSC are pro- or anti-tumorigenic is 
a subject of controversial reports that is in part 
explained by the complexity of their homing, 
engraftment, and differentiation mechanisms within 
the tumor microenvironement.47 The differentiation 
of MSC into lineage-specific cells is controlled 
by external factors in the environment, including 
cell–cell and cell–ECM adhesion and cytokine, 
chemokine, and growth factor availability.48,49 
Several signalling pathways have recently been 
identified in MSC proliferation and differentiation 
control including canonical and non-canonical Wnt, 
RhoA/ROK, and Erk.50–52 Our current study high-
lights the increased levels of sFRP-2  in hypoxic 
MSC. Accordingly, while sFRP-1 and sFRP-2 are 
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Figure 6. Overexpression of sFRP-2 or gene silencing of sFRP-1, -3, -4 family members dowregulates ciliogenesis. (A) Gene silencing was performed 
using specific siRNA for each of the sFRP-1, -2, -3, or -4 members as described in the Methods section. Total RNA was extracted and qRT-PCR performed 
in order to evaluate efficiency and validate gene expression. (B) Cells were transfected with Mock or sFRP-2 cDNA plasmid, and sFRP-2 gene expression 
validated by qRT-PCR. (C) Primary cilium staining was performed in Mock- (white bars) and in sFRP-2- (black bars) transfected cells. (D) Gene silencing 
was performed with a scrambled sequence (siScr; Mock), or with the respective sFRP-1, -2, -3, -4 siRNA sequences. Primary cilium staining was per-
formed in Mock- (white bars) and in si-sFRP-transfected cells (black bars).
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produced by the majority of longterm and ex vivo 
malignant glioma cell lines, only sFRP-2 was 
shown to strongly promote the growth of intrac-
ranial glioma xenografts in nude mice.53 We also 
report that sFRP-1, -3, and -4 downregulation cor-
relates with the hypoxic MSC phenotype that leads 
to decreased ciliogenesis. Intracellular Wnt effec-
tors, such as Fuzzy and Inturned, were found to 
disrupt the primary cilium structure in Drosophila 
melanogaster embryos.54 Interestingly, sFRP-1 is 
frequently silenced in many types of cancer leading 
to aberrant activation of Wnt signaling.55 Given they 
all possess HRE in their promoter region, it remains 
to be clarified how different sFRPs may have oppos-
ing effects on the same process and how they affect 
cell cycle progression and/or cell differentiation.56 
Of note, primary cilia are coupled to the cell cycle 
and, in vertebrates, cilia believed to only present 
on non-proliferating cells, and resorbed during cell 

cycle progression to release the centrosome from 
the ciliary basal body, which makes it available for 
duplication and organization of the mitotic spindle.

Our current observations may also impact on the 
potential of MSC to promote tissue repair in a diverse 
array of diseases, including ischemic heart disease, 
diabetes, and Parkinson’s disease.57 When engrafted at 
sites of tissue injury, MSC differentiate into connective 
tissue elements, support vasculogenesis, and secrete 
cytokines and growth factors that facilitate healing. 
Accordingly, MSC were confirmed as promising tools 
for cell therapy, as proven effective in US FDA-approved 
clinical trials for myocardial infarction, stroke, meniscus 
injury, limb ischemia, graft-versus-host disease and 
autoimmune disorders.58 The hypoxia/ischemia alter-
ation of MSC within these pathological states still 
remains poorly understood. Clinical trials for MSC 
injection into the CNS to treat traumatic brain injury 
and stroke are also ongoing. One may envision that 
ischemic/hypoxic regulation of primary cilium expres-
sion may help monitor intravenous infusion of MSC 
to in vivo cerebral ischemia tissues.59 Neuroprotective, 
trophic support and therapeutic efficacy through MSC 
mobilization was also demonstrated in several isch-
emia/reperfusion models.60–62 In conclusion, our study 
enabled us to identify secreted Wnt-related proteins 
that contribute to hypoxic regulation of ciliogenesis in 
MSC. A schematic summary of the hypoxia-mediated 
regulation of ciliogenesis in MSC under (patho) 
physiological conditions is provided (Fig. 7). Alto-
gether, we also provide new insight into stem cells 
biology and stem cell adaptation to hypoxia.
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