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Abstract: In this study, we evaluated the protective effects and potential mechanisms of acidifiers on
intestinal epithelial cells exposure to oxidative stress (OS). IPEC-J2 cells were first pretreated with
5 × 10−5 acidifiers for 4 h before being exposed to the optimal dose of diquat to induce oxidative
stress. The results showed that acidifiers attenuated diquat-induced oxidative stress, which manifests
as the improvement of antioxidant capacity and the reduction in reactive oxygen species (ROS)
accumulation. The acidifier treatment decreased cell permeability and enhanced intestinal epithelial
barrier function through enhancing the expression of claudin-1 and occludin in diquat-induced
cells. Moreover, acidifier treatment attenuated diquat-induced inflammatory responses, which was
confirmed by the decreased secretion and gene expression of pro-inflammatory (TNF-α, IL-8) and
upregulated anti-inflammatory factors (IL-10). In addition, acidifiers significantly reduced the diquat-
induced gene and protein expression levels of COX-2, NF-κB, I-κB-β, ERK1/2, and JNK2, while they
increased I-κB-α expression in IPEC-J2 cells. Furthermore, we discovered that acidifiers promoted
epithelial cell proliferation (increased expression of PCNA and CCND1) and inhibited apoptosis
(decreased expression of BAX, increased expression of BCL-2). Taken together, these results suggest
that acidifiers are potent antioxidants that attenuate diquat-induced inflammation, apoptosis, and
maintain cellular barrier integrity by regulating the NF-κB/MAPK/COX-2 signaling pathways.

Keywords: acidifier; oxidative stress; reactive oxygen species; IPEC-J2; NF-κB/MAPK/COX-2
signaling pathway

1. Introduction

At weaning, piglets are affected by many stress factors, such as the change of feed
and environment, mixing group and so on, which lead to the decline of body immunity
and weaning stress syndrome [1,2]. In the process of early weaning, piglets’ antioxidant
capacity decreases and free radicals increase, forming oxidative stress in the body, which
is considered to be an important reason for “early weaning syndrome”. The intestinal
epithelium comprises monolayer cells and is the primary site of oxidative stress response [3].
At the same time, it also has the functions of nutrient absorption and innate immunity,
which are very important for maintaining intestinal homeostasis [4]. The tight junction
between intestinal epithelial cells is one of the important structural bases for maintaining
the function of the intestinal barrier [5]. Recent studies have shown that oxidative stress
destroys the tight junction between intestinal epithelial cells in a variety of ways, resulting
in intestinal epithelial barrier dysfunction [6,7]. Some oxidative stressors increase the
permeability of the intestinal epithelial barrier by disrupting tight junctions, accompanied
by the disturbance of the NF-kappaB pathway and intestinal inflammation [8]. Therefore,
treatment to maintain the integrity of the intestinal epithelial barrier may be beneficial to
intestinal and host health to reduce inflammatory response and oxidative stress injury.

Antioxidants 2022, 11, 2002. https://doi.org/10.3390/antiox11102002 https://www.mdpi.com/journal/antioxidants

https://doi.org/10.3390/antiox11102002
https://doi.org/10.3390/antiox11102002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0003-2857-8536
https://doi.org/10.3390/antiox11102002
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox11102002?type=check_update&version=1


Antioxidants 2022, 11, 2002 2 of 18

Acidifiers are natural organic acids and salts that have long been considered as the
feed additives to replace antibiotics in weaned pigs [9]. Acidifiers improved growth per-
formance [10], alleviated gut inflammation, and enforced gut barrier integrity in pigs [11].
It was reported that acidifiers had a higher antioxidant capacity under heat stress con-
ditions in pigs [12]. Furthermore, studies have demonstrated that acidifiers exert their
immune regulatory function and inhibit the invasion of enterotoxigenic Escherichia coli F4
in vitro [13,14]. Our previous study also showed that supplementing the drinking water
with acidifiers had the potential as antioxidants, which was reflected in the improvement
of growth performance, immunity, and antioxidant capacity in pigs [15]. However, the
precise molecular mechanism of acidifier action still remains unclear. On the other hand,
most studies have focused on its effects in vivo, and little is known about the underlying
protective mechanisms of acidifiers in porcine small intestinal cells, which are related to
reducing inflammatory responses as well as improving antioxidant capacity. IPEC-J2 cells
were isolated from the middle jejunum of neonatal piglets [16]. In recent years, IPEC-J2
cells have been widely used in studying the intestinal functions associated with immune
response [17], barrier function [18], and antioxidant capacity research in vitro [19].

Diquat (DQ) is a commonly used oxidative stress inducer, which produces reactive
oxygen species (ROS) and reactive nitrogen species (RNS) through redox cycling processes,
and then leads to oxidative stress and cell death [20,21]. Therefore, to clarify the mechanism
of the antioxidant effect of the acidifiers, we explored the protective effect of acidifiers on
intestinal porcine epithelial cells (IPEC-J2) that were exposed to oxidative stress induced by
DQ to prove its effectiveness even when administered in vitro. We also investigated the
potential important role of acidifiers in maintaining the integrity of the intestinal epithelial
barrier and alleviating the inflammatory responses induced by DQ in the IPEC-J2 cells.
Here, we report convincing evidence that acidifiers have antioxidant effects and immune
function and provide key insights into their potential mechanisms of action.

2. Materials and Methods
2.1. IPEC-J2 Cells Culture

The intestinal porcine enterocyte cell (IPEC-J2) lines were kindly provided by the lab
of Dr Chunmei Li (Nanjing Agricultural University). The IPEC-J2 cells were cultured and
maintained in Dulbecco’s modified Eagle’s medium/nutrient mixture F12 (DMEM/F12)
medium (Gibco, Grand Island, NY, USA) supplemented with 10% fetal bovine serum (FBS,
Gibco, Grand Island, NY, USA) and penicillin-streptomycin (Gibco, Grand Island, NY,
USA). The resuscitated IPEC-J2 cells were cultured in a humidified incubator at 37 ◦C
with a 5% CO2 atmosphere. After 12 h, the culture medium was replaced for the first
time with fresh medium. After that, the medium was replaced every 24 h depending on
the developmental state of the cells. Then, when they reached 80% confluence, the cells
were detached with 0.05% trypsin (Gibco, Grand Island, NY, USA) and subcultured in
culture medium.

2.2. Establishment of Oxidative Stress Model in IPEC-J2 Cells

The DQ-induced oxidative stress model was used to evaluate cell proliferation and
cytotoxicity utilizing an MTT cell assay kit (Jiancheng Bioengineering Institute, Nanjing,
China). The IPEC-J2 cells grown at a logarithmic phase were treated with 0.1% trypsin
to prepare a single cell suspension and then seeded in a 96-well cell culture plate. The
number of seeds was 1 × 104 cells/well. The cells were cultivated in an incubator at
37 ◦C with a constant concentration of 5% CO2 for 24 h. The medium was then discarded,
and the wells were washed with sterile phosphate-buffered saline (PBS, Gibco, Grand
Island, NY, USA) before being filled with medium containing 0, 100, 250, 500, 750, 1000,
1250, and 1500 µmol/L of DQ. Six hours was selected as the treatment time of diquat to
induce the cytotoxicity of IPEC-J2 cells according to a previous report [22]. Then, 50 µL of
MTT assay solution was added into each well, and it was incubated for 4 h. Afterward,
a microplate reader (Tecan, Austria GmbH, Grödig, Austria) was used to determine the
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absorbance of the plate at 570 nm. In order to establish the cellular oxidative stress model
for IPEC-J2 cells, the 50% inhibitory concentration (IC50) was determined as the optimal
DQ concentration, causing a 50% reduction in cell viability based on the MTT assay. MTT
assays were performed with eight replicate wells per dose and repeated twice to confirm
the results.

2.3. Treatment of IPEC-J2 Cells with Acidifiers

The optimal concentration and time of acidifiers were determined using a cell count-
ing kit (CCK-8 kit, Jiancheng Bioengineering Institute, Nanjing, China) according to the
instruction of the manufacturer. The water-soluble liquid acidifiers (Jinlisuan, Yantai Jin-
hai Pharmaceutical Co., Ltd., Yantai, China) consist of 19% formic acid, 19% acetic acid,
15% lactic acid, 3.5% propionic acid, and its organic acid salts. The IPEC-J2 cells were
treated with the medium containing 2 × 10−3, 1.5 × 10−3, 1 × 10−3, 5 × 10−4, 1 × 10−4, or
5 × 10−5 dilutions of acidifiers using the same seeding method as MTT for 2 h, 4 h, or 6 h.
A total of 10 µL of CCK-8 solution was added to each well, and the plate was incubated for
1 h. The optimal acidifier concentration was calculated according to the cell viability based
on the CCK-8 assay. The microplate reader (Tecan, Austria GmbH, Grödig, Austria) was
used to determine the absorbance of the plate at 450 nm.

To estimate the antioxidant effect of acidifiers on IPEC-J2 cells, the cells were further
allocated one of four groups: CON (without any treatments); DQ (DQ treatment, treated
with optimal concentration and incubation time based on the above experiment); AC
(acidifier treatment, treated with optimal concentration based on the above experiment);
and AC + DQ (acidifier pretreatment and then DQ treatment) groups. Before the acidifier
or DQ treatment, each group was washed twice with PBS at the same time.

2.4. Intracellular ROS Assays

A ROS assay kit (Jiancheng Bioengineering Institute, Nanjing, China) was used to
detect the intracellular ROS level of the treated IPEC-J2 cells. The 2′, 7′-dichlorohydro-
fluorescein diacetate (DCFH-DA) is the most sensitive and commonly used probe for
detecting intracellular ROS. The IPEC-J2 cells were cultured in 96-well plates (104 cells per
well, 8 replicates per group) and subjected to their indicated treatments. Next, the cells were
washed twice with PBS and treated with 100 µL of 10 µM DCFH-DA (1:1000 dilution in
serum-free DMEM/F12 medium) at 37 ◦C for 20 min. DCFH is oxidized into a strong green
fluorescence substance, dichlorofluorescein (DCF), in the presence of ROS in cells, and its
optimal excitation wavelength is 488 nm, while the emission wavelength is at 525 nm. Its
fluorescence intensity is proportional to the ROS levels in cells. The fluorescence signals
were monitored using a microplate reader (Tecan, Austria GmbH, Grödig, Austria).

2.5. Antioxidant Indicators and Cytokine Assay

After the cells were treated as described above, they were gently washed twice with
PBS and lysed using a Radio Immunoprecipitation Assay lysis buffer (RIPA, Biosharp,
Beijing, China) containing 1% phenylmethylsulfonyl fluride (PMSF, Biosharp, Beijing,
China) on ice for 20 min. The cells were centrifuged at 10,000× g for 10 min at 4 ◦C, and the
cell lysates were gathered to determine oxidative stress indicators: methane dicarboxylic
aldehyde (MDA), total anti-oxidation capacity (T-AOC), total superoxide dismutase (T-
SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). Cell culture supernatant was
harvested and determined the secretion of cytokine, including tumor necrosis factor-α
(TNF-α), interleukin-8 (IL-8), and interleukin-10 (IL-10). All antioxidant indicators and
inflammatory factors were determined using enzyme-linked immunosorbent assay (ELISA)
kits (Jiancheng Bioengineering Institute, Nanjing, China) according to the manufacturer’s
guidelines. In brief, we measured the absorbance (OD value) of each well and calculated
the test samples according to the standard curve. For antioxidant indicators, the OD values
of T-AOC, T-SOD, GSH-Px, MDA, and CAT were measured using a microplate reader
(Tecan, Austria GmbH, Grödig, Austria) at 593 nm, 550 nm, 405 nm, 532 nm, and 405 nm,
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respectively. For cytokine, the OD values of TNF-α, IL-8, and IL-10 were measured at
450 nm. Each group had 6 replicates, and each sample was determined three times. The
intra- and inter-assay coefficients of variation were less than 10%.

2.6. Immunofluorescence Analysis

The distribution of the tight-junction protein (claudin-1) in the IPEC-J2 cells was
determined by an immunofluorescence analysis. Briefly, the IPEC–J2 cells were seeded on
cover-slides treated with poly(L-lysine) (Biosharp, Beijing, China) and placed in 12-well
plates for 12 h to reach 70% confluence. The cells were fixed with 4% paraformaldehyde
(Beyotime, Shanghai, China) for 30 min, and then they were permeabilized with 0.5% Triton
X-100 buffer (Beyotime, Shanghai, China) at room temperature for 20 min. Thereafter,
the IPEC–J2 cells were incubated with anti-claudin-1 antibody (dilution 1:500; ABclonal,
Wuhan, China) for 1 h at room temperature and then incubated with fluorescein conjugated
goat anti-rabbit IgG (H + L) antibody (dilution 1:500; Proteintech, Wuhan, China) in the
dark for 1 h. The cell nuclei were stained with 4′,6-Diamidino-2-Phenylindole (DAPI,
Beyotime, Shanghai, China) solution. The slides were visualized under a laser scanning
confocal microscope (Zeiss, LSM 700; Oberkochen, Germany).

2.7. Cell Proliferation Assay

IPEC-J2 cells proliferation was quantified using an ethynyldeoxyuridine (EdU) kit
(RiboBio, Guangzhou, China) according to the manufacturer’s instruction. The cells were
seeded into 12-well plates, as described above. Each well received 300 µL of 50 µM EdU,
and the cells were incubated for an additional 2 h, after which they were washed with
500 µL of PBS and fixed with 4% paraformaldehyde for 30 min. To neutralize the excess
aldehyde groups, 200 µL of 2 mg/mL of glycine was aliquoted per well and incubated with
the cells for 5 min. Subsequently, 500 µL of PBS (0.5% Triton X-100) was added into each
well to incubate with the cells for 10 min. After the cells were washed with PBS, 300 µL
of Apollo reagent was added, and the cells were incubated in the dark for 30 min at room
temperature. The cells were washed with PBS (0.5% Triton X-100) and the nuclei were
stained with Hoechst 33342 reaction solution for 30 min in the dark. The EdU-stained
cells were visualized and quantified using a fluorescence microscope. Three fields were
randomly selected for quantification and statistical analysis.

2.8. Detection of Apoptosis by Flow Cytometry

Cellular apoptosis was assessed using Annexin V-fluorescein isothiocyanate (FITC)
with a propidium iodide (PI) staining assay (Vazyme, Nanjing, China) according to the
manufacturer’s instructions. Briefly, the cells were harvested and incubated with 5 µL of
AnnexinV-FITC and PI for 10 min at room temperature in the dark. After that, the cells
were resuspended in 400 µL 1 × binding buffer and then mixed thoroughly. Subsequently,
the apoptotic cells were immediately measured by a BD FACS Calibur flow cytometer (BD
Biosciences, San Jose, CA, USA) and analyzed with FlowJo software (Tree Star, Stanford
University, CA, USA).

2.9. RNA Extractions and Real-Time Quantitative PCR (qRT-PCR)

Total RNA was extracted utilizing TRIzol Reagent (Invitrogen, Carlsbad, CA, USA)
from IPEC-J2 cells. The Nanodrop spectrophotometer (Thermo Scientific, Waltham, MA,
USA) was used to examine the RNA concentration and quality. We utilized the HiScript ®

III RT SuperMix for qPCR (+gDNA wiper) (Vazyme, Nanjing, China) to synthesize cDNA
according to the manufacturer’s instructions. The qRT-PCR was conducted using ChamQ
Universal SYBR qPCR Master Mix (Vazyme, Nanjing, China) based on the manufacturer’s
manual. All primers were synthesized commercially by TsingKe Biotech Co., Ltd. (Tsingke,
Nanjing, China) and are shown in Table S1. Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) was used as an endogenous control. The relative abundance of each mRNA was
calculated using the 2−∆∆Ct method [23].
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2.10. Western Blotting

Proteins were extracted from the IPEC-J2 cells using RIPA lysis buffer (Biosharp, Bei-
jing, China). Protein concentrations were determined by a BCA protein quantification kit
(Vazyme, Nanjing, China) and a microplate reader (Tecan, Austria GmbH, Grödig, Austria).
Equal amounts of proteins were resolved on 4–20% sodium dodecyl sulfate polyacrylamide
gel electrophoresis (SDS–PAGE, Genscript, Nanjing, China), and then transferred onto a
polyvinylidene fluoride (PVDF) membrane (Immobilon Transfer Membranes, Merck Milli-
pore, Merck KGaA, Darmstadt, Germany) with a wet transfer system (Tanon, Shanghai,
China). After being blocked with TBST containing 5% non-fat milk powder (Mulinsen,
Nanjing, China) for 1 h at room temperature, the membranes were incubated in specific pri-
mary antibodies, COX-2, NF-κB, I-κB-α, I-κB-β, ERK1/2, and JNK2 MAPK (1:500, ABclonal,
Wuhan, China) at 4 ◦C overnight. The PVDF membranes were washed with TBST and then
incubated with secondary antibody anti-rabbit (1:8000; Affinity, Changzhou, China) for
1 h at room temperature. Signal densities of the immunoblotting image were determined
using a high-sensitivity chemiluminescence ECL detection kit (Vazyme, Nanjing, China)
on a ChemiDocTM Imaging System (Bio-Rad, Hercules, CA, USA). Protein levels were
normalized to GAPDH, and the densitometric quantification of Western blotting bands
was analyzed using ImageJ software (NIH, Bethesda, MD, USA).

2.11. Statistical Analysis

The data were analyzed using a one-way analysis of variance (ANOVA) and Tukey’s
test to determine the differences between treatments in SAS 9.4 software (SAS Inst. Inc.,
Cary, NC, USA). The results are expressed as means ± standard error of the mean (SEM).
The calculation of median effective dose (IC50) was conducted using GraphPad Prism
software (GraphPad Prism v8.0, GraphPad Software Inc., San Diego, CA, USA). The level of
statistical significance was set at p < 0.05. The figures were also prepared using GraphPad
Prism software.

3. Results
3.1. Establishment of Oxidative Stress Model Induced by DQ in IPEC-J2 Cells

The oxidative stress model of IPEC-J2 cells was established by the induction of DQ.
IC50 represents 50% of the inhibitor concentration required for the inhibition of cell viability
and enzymes activity [24]. The IPEC-J2 cells’ viability was significantly reduced by 100 µM
of DQ and reduced to less than 50% of the control group by DQ of 1250 µM (Figure 1A).
Notably, DQ reduced the IPEC-J2 cells’ viability in a dose-dependent manner. The IC50
of DQ for IPEC-J2 cells was approximately 1127.12 µM. Therefore, the concentration of
1150 µM was used as the optimal dose of DQ for the following experiments.

IPEC-J2 cells were pretreated with acidifiers at different concentrations (0, 5 × 10−5,
1 × 10−4, 5 × 10−4, 1 × 10−3, 1.5 × 10−3, and 2 × 10−3) and incubation times (2 h, 4 h, and
6 h), and then their cell viability was further detected. As shown in Figure 1B, both the
high concentration of acidifier (i.e., 1 × 10−3) and the longer incubation time decreased cell
viability (Figure 1B), while pretreatment with low concentrations of acidifier (e.g., 5 × 10−5)
significantly increased cell viability. Specifically, the cell viability was significantly increased
by pretreatment with acidifiers for 4 h. The cells that were pretreated with 5× 10−5 acidifier
had the greatest cell viability. Hence, the experimental parameters (5 × 10−5 acidifier
concentration and 4 h pretreatment time) were used in the subsequent experiments.
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Figure 1. The establishment of an oxidative stress model induced by diquat. (A) Effects of different
concentrations of diquat on the viability of IPEC-J2 cells for 6 h. The IC50 was calculated using
GraphPad Prism 8 software. Cell cytotoxicity was evaluated utilizing an MTT cell assay kit. (B) Effects
of acidifier pretreatment with different concentrations on the viability of IPEC-J2 cells treated with
optimal dose of diquat at different times. IPEC-J2 cells were incubated with or without acidifiers at
the different concentrations for 2 h, 4 h, or 6 h. Then, the culture medium was replaced with fresh
medium containing 1150 µM of diquat. After incubation for 6 h, cell viability was measured by the
CCK-8 assay kit. CON, IPEC-J2 cells without being treated; DQ, cells were only treated by 1150 µM
diquat. AC + DQ at 0.005%, 0.01% AC + DQ, 0.05% AC + DQ, 0.1% AC + DQ, 0.15% AC + DQ, 0.20%
AC + DQ, cells were pretreated by 0.005%, 0.01%, 0.05%, 0.1%, 0.15%, and 0.20% concentrations
acidifiers for 2, 4, 6 h, respectively, and were then treated by 1150 µM of diquat for 6 h. Data were
presented as mean ± SEM (n = 8). Statistical significance was determined by one-way ANOVA with
Tukey’s post hoc test. Different superscript letters denote a statistically significant difference between
groups (p < 0.05), while same letters denote no significant difference.
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3.2. Effects of Acidifier on ROS Production and Antioxidant Capacity in DQ-Induced
IPEC-J2 Cells

Oxidative stress is caused by an imbalance between the production and clearance of
ROS [25]. We first examined the effects of acidifiers on ROS production in DQ-induced
IPEC-J2 cells. DQ increased the generation of ROS compared with the CON group (p < 0.05),
while acidifier markedly inhibited the generation of ROS (p < 0.05) (Figure 2A). At the
same time, DQ increased the concentration of MDA, while acidifier+DQ (AC + DQ group)
decreased the concentration of MDA (Figure 2B). In addition, the activity of CAT was
decreased (p < 0.05) by 34.39% in the DQ group compared with the AC group (Figure 2C).
Moreover, the activities of T-SOD and GSH-Px in the DQ group were lesser (p < 0.05) than
those of the CON group, while those in the AC + DQ group were greater than those of
the DQ group (Figure 2D,E). However, no significant difference in the activity of T-AOC
was observed between the DQ and CON groups, but it was increased in the AC group
compared with the CON group (p < 0.05) (Figure 2F).
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Figure 2. Acidifiers alleviated oxidative stress induced by diquat in IPEC-J2 cells and improved
antioxidant capacity. (A) Intracellular contents of oxygen reactive species (ROS). (B) Cellular MDA
levels. (C) Cellular CAT activity. (D) Cellular T-SOD activity. (E) Cellular GSH-Px activity. (F) Cellular
T-AOC levels. CON, cells without being treated; DQ, cells were only treated by 1150 µM of diquat for
6 h; AC + DQ, cells were pretreated by 0.005% acidifier for 4 h and were then treated by 1150 µM of
diquat for 6 h. AC, cells were only treated by 1150 µM of acidifier for 4 h. All values were represented
as means ± SEM (n = 6). Different superscript letters denote a statistically significant difference
between groups (p < 0.05), while same letters denote no significant difference.

3.3. Protective Effect of Acidifiers on IPEC-J2 Cells Exposure to Oxidative Stress

Intestinal epithelial cells have barrier functions such as tight junctions, preventing the
invasion of certain toxins from penetrating the intestine [26]. Next, we further investigated
the protective potential of acidifiers on the barrier function of small intestinal epithelial
cells after oxidative stress induced by DQ. DQ challenge decreased (p < 0.05) the abundance
of tight-junction proteins (Claudin-1) (Figure 3A,B). DQ decreased the mRNA expression
of claudin-1 in the IPEC-J2 cells compared with the CON treatment (p < 0.05) (Figure 3C),
whereas the acidifiers increased the mRNA expression of claudin-1 in the DQ-induced cells
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(p < 0.05) (Figure 3C). Similarly, the cellular mRNA expression of occludin was also down-
regulated in the DQ group compared with those in the CON group (p < 0.05) (Figure 3D).
The cellular expression of occludin in the AC + DQ group was greater than that in the DQ
group (p < 0.05) (Figure 3D). However, no significant difference was found in the mRNA
level of ZO-1 between treatment groups (Figure 3E).
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IPEC-J2 cells. (A) Localization of the tight-junction protein claudin-1 by immunofluorescence staining.
IPEC-J2 cells were plated in 12-well plates at a density of 1 × 105 cells per well and pretreated by
0.005% acidifiers for 4 h, and the cells were then challenged by diquat (1150 µM) for 6 h. Immunofluo-
rescence staining of IPEC-J2 cells with claudin-1 (red) and DAPI (blue). Magnification 20×, and scale
bars representing 20 µm. (B) Assays of cell viability. (C) The mRNA expression level of claudin-1
(CLDN1). (D) The mRNA expression level of occludin (OCLN). (E) The mRNA expression level of
ZO-1. CON, cells without being treated; DQ, cells were only treated by 1150 µM of diquat for 6 h;
AC + DQ, cells were pretreated by 0.005% acidifier for 4 h and were then treated by 1150 µM of diquat
for 6 h. AC, cells were only treated by 1150 µM of acidifier for 6 h. All values were represented as
means ± SEM (n = 6). Different superscript letters denote a statistically significant difference between
groups (p < 0.05), while same letters denote no significant difference.

3.4. Effects of Acidifiers on the Inflammatory Cytokines in IPEC-J2 Cells

Oxidative stress has been linked to inflammation response and may be a defining
feature of inflammation [27]. We next investigated the secretion and gene expression levels
of cytokines involved in the inflammatory response. As shown in Figure 4A–C, IPEC-J2
cells stimulated with diquat alone secreted greater levels of pro-inflammatory cytokine
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TNF-α and IL-8, and a lower level of anti-inflammatory cytokine IL-10 in comparison
with control group (p < 0.05). However, acidifiers reduced the secretion levels of pro-
inflammatory cytokine TNF-α and IL-8 and increased IL-10 secretion level in the DQ-
induced IPEC-J2 cells culture supernatant (Figure 4A–C). In addition, DQ increased the
mRNA expression levels of TNF-α and IL-8 genes compared with those in the CON group
(p < 0.05) (Figure 4D,E). However, acidifiers downregulated their expression in the DQ-
induced IPEC-J2 cells (p < 0.05) (Figure 4D,E). In contrast, a lower expression level of IL-10
was detected in the DQ group than that in the CON group (p < 0.05). In addition, the IL-10
gene expression level was upregulated in the DQ+AC group compared with that in the DQ
group (p < 0.05) (Figure 4F).
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Figure 4. Effects of acidifiers on the secretion and gene expression level of inflammatory cytokines in
diquat-challenged IPEC-J2 cells. (A) Concentration of TNF-α in the IPEC-J2 cells culture supernatant.
(B) Concentration of IL-8 in the IPEC-J2 cells culture supernatant. (C) Concentration of IL-10 in the
IPEC-J2 cells culture supernatant. (D) The gene expression level of TNF-α. (E) The gene expression
level of IL-8. (F) The gene expression level of IL-10. CON, cells without being treated; DQ, cells were
only treated by 1150 µM of diquat for 6 h; AC + DQ, cells were pretreated by 0.005% acidifier for
4 h and were then treated by 1150 µM of diquat for 6 h. AC, cells were only treated by 1150 µM of
acidifier for 6 h. All values were represented as means ± SEM (n = 6). Different superscript letters
denote a statistically significant difference between groups (p < 0.05), while same letters denote no
significant difference.

3.5. Acidifiers Alleviated Oxidative Stress-Induced Apoptosis in IPEC-J2 Cells

Oxidative stress triggers apoptosis in different types of cells, including intestinal ep-
ithelial cells [28]. We examined the effect of acidifiers on the apoptosis of IPEC-J2 cells
induced by DQ. We first examined the IPEC-J2 cells apoptosis by Annexin-V staining and a
flow cytometry analysis. The percentages of apoptotic cells in the CON, DQ, AC + DQ, and
AC groups were 5.05 ± 1.31%, 12.95 ± 0.64%, 5.67 ± 0.45%, and 6.48 ± 0.40%, respectively
(Figure 5A). DQ increased the apoptosis rate of IPEC-J2 cells, while acidifiers dramatically
downregulated DQ-induced apoptosis (p < 0.05) (Figure 5B). Then, we detected the expres-
sion levels of apoptosis-related genes. The gene expression level of BAX was increased
in the IPEC-J2 cells treated with DQ compared with those untreated cells, but acidifiers
reversed this increase (p < 0.05) (Figure 5C). In addition, DQ markedly downregulated the
gene expression level of BCL2 compared with the CON group (p < 0.05), while acidifiers
upregulated the gene expression level of BCL2 compared with the DQ group (p < 0.05)
(Figure 5D). In general, these findings suggest that the acidifiers might alleviate apoptosis
triggered by DQ in IPEC-J2 cells.
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Figure 5. Effect of acidifiers on the apoptosis of IPEC-J2 cells induced by diquat. (A) Annexin
V-FITC/PI apoptosis assay. Apoptotic cell rates were detected with a FITC annexin V-FITC/PI
apoptosis kit, and then analyzed by flow cytometry. (B) The cell apoptosis of IPEC-J2 cells. (C) The
mRNA expression level of BAX was determined using a qRT-PCR. (D) The mRNA expression level
of BCL-2 was determined using a qRT-PCR. CON, cells without being treated; DQ, cells were only
treated by 1150 µM of diquat for 6 h; AC + DQ, cells were pretreated by 0.005% acidifier for 4 h
and were then treated by 1150 µM of diquat for 6 h. AC, cells were only treated by 1150 µM of
acidifier for 6 h. All values were represented as means ± SEM (n = 6). Different superscript letters
denote a statistically significant difference between groups (p < 0.05), while same letters denote no
significant difference.

3.6. Effect of Acidifiers on the Proliferation of IPEC-J2 Cells Induced by DQ

At the cellular level, oxidative stress also triggers a wide range of responses, including
cell proliferation [29]. To further demonstrate whether the acidifiers can rescue the DQ-
induced inhibition of proliferation in IPEC-J2 cells, cell proliferation assays were conducted.
The percentage of Edu-positive fluorescent cells in the DQ group was less than that in
the CON group (p < 0.05), while the acidifiers increased the Edu-positive fluorescent cells
(p < 0.05) and rescued the DQ-induced inhibition. (Figure 6A,B). Since the CCND1 and
PCNA genes are related to cell proliferation, we examined the expression levels of these
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genes. DQ decreased the mRNA levels of PCNA and CCND1 genes (p < 0.05), while
the acidifiers increased the mRNA levels (p < 0.05) and rescued DQ-induced inhibition
(Figure 6C,D). The fluorescence intensity of IPEC-J2 cells was reduced after DQ treatment
(p < 0.05) (Figure 6A), indicating that DQ reduced DNA replication activity. All these results
indicate that the acidifiers can protect intestinal cells against DQ-induced oxidative stress
by regulating proliferation and apoptosis-related proteins.
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Figure 6. The effect of acidifiers on the proliferation of IPEC-J2 cells induced by diquat. (A) Edu
staining of IPEC-J2 cells (magnification 10×, scale bar = 50 µm). (B) Statistical results of the proportion
of EdU-positive cells. (C) Relative mRNA level of PCNA gene. (D) Relative mRNA level of CCND1
gene. CON, cells without being treated; DQ, cells were only treated by 1150 µM of diquat for 6 h;
AC + DQ, cells were pretreated by 0.005% acidifier for 4 h and were then treated by 1150 µM of diquat
for 6 h. AC, cells were only treated by 1150 µM of acidifier for 6 h. All values were represented as
means ± SEM (n = 6). Different superscript letters denote a statistically significant difference between
groups (p < 0.05), while same letters denote no significant difference.

3.7. Effects of Acidifiers on the Activation of the NF-κB/MAPK/COX-2 Signaling Pathways in
DQ-Induced IPEC-J2 Cells

To investigate whether the acidifiers can attenuate DQ-induced oxidative stress me-
diated by the NF-κB/MAPK/COX-2 signaling pathways, we determined the mRNA and
protein expression levels of the COX-2, NF-κB, I-κB-α, I-κB-β, ERK1, and JNK2 in IPEC-J2
cells. As shown in Figure 7, we found that DQ upregulated COX-2, NF-κB, I-κB-β, ERK1,
and JNK2 at both the mRNA (Figure 7A,B,G–I) and protein levels (Figure 7D,E,J–L). In
contrast, the mRNA (Figure 7A,B,G–I) and protein (Figure 7D,E,J–L) levels of the COX-2,
NF-κB, I-κB-β, ERK1, and JNK2 in the AC + DQ group were lower than those in the DQ
group (p < 0.05). Moreover, DQ decreased the mRNA and protein expression levels of
I-κB-α (Figure 7C,F). Importantly, the acidifiers rescued the mRNA and protein levels of
I-κB-α in the DQ-induced IPEC-J2 cells (Figure 7C,F).
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Figure 7. Effects of acidifiers on the NF-κB/MAPK/COX-2 signaling pathways in IPEC-J2 cells. The
mRNA levels of COX-2 (A), NF-κB (B), and I-κB-α (C). The protein expression level of COX-2 (D),
NF-κB (E), and I-κB-α (F). The mRNA levels of I-κB-β (G), ERK1 (H), and JNK2 (I). The protein
expression level of I-κB-β (J), ERK1/2 (K), and JNK2 (L). CON, cells without being treated; DQ, cells
were only treated by 1150 µM of diquat for 6 h; AC + DQ, cells were pretreated by 0.005% acidifier
for 4 h and were then treated by 1150 µM of diquat for 6 h. AC, cells were only treated by 1150 µM of
acidifier for 6 h. All values were represented as means ± SEM (n = 3). Different superscript letters
denote a statistically significant difference between groups (p < 0.05), while same letters denote no
significant difference.
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4. Discussion

Acidifiers, as vital feed additives in newly weaned piglets, play a critical role in the
improvement of growth performance and the intestinal microbiota in pigs [30]. Our previ-
ous study found that supplementing a type of acidifier called Jinlisuan in drinking water
increased the antioxidant capacity and immunity of weaned pigs [15]. However, its poten-
tial protective effects on intestinal epithelial cells and underlying molecular mechanism are
not clear, especially after intestinal epithelial cells suffer from oxidative stress and present
an inflammatory response [31]. Understanding the protective effects of acidifiers on small
intestinal epithelial cells and their potential antioxidant mechanisms is important for their
application in pig-feed additives. The IPEC-J2 cell line was isolated from the mid-jejunum
of newborn piglets. IPEC-J2 cells have the ability to differentiate and are similar to primary
intestinal epithelial cells [32]. DQ is a classic oxidative stress inducer that causes oxidative
stress and cell dysfunction by producing reactive oxygen species and reactive nitrogen [33].
In this study, the IPEC-J2 cell line was used as a model cell line to investigate the antiox-
idative activity of acidifiers, and diquat was used as a stimulant to construct an intestinal
epithelial exogenous oxidative stress model. Therefore, we established a DQ-induced ox-
idative stress model in the IPEC-J2 cells and evaluated the protective effects of the acidifiers
on reducing the oxidative stress and inflammatory response in the IPEC-J2 cells.

The acidifier used in this study is a water-soluble liquid acidifier. The acidifier is
composed of a mixture of organic acids such as formic acid, acetic acid, propionic acid,
lactic acid and their salts in this study. The doses of liquid-type organic acid mixture are
generally expressed by weight percentage in water [34]. In this study, we used the culture
medium to dilute the liquid acidifier to analyze the optimal dosage in vitro. In the previous
animal experiment, the purpose of diluting the acidifier was also achieved by adding liquid
acidifier to drinking water [15]. Therefore, the effectiveness of an acidifier is determined by
the dilution ratio. Previous studies have shown that acidifiers protected intestinal epithelial
cells against damage and improved cell viability and proliferation [35]. Consistent with
these results, the present study showed that the final dilution ratio of acidifiers of 1:2 × 105

can improve cell viability in DQ-treated IPEC-J2 cells.
Importantly, we also found that high concentrations of acidifiers inhibited the cell

viability of IPEC-J2 cells, while low concentrations of acidifiers increased cell viability.
It was reported that low concentrations of organic acid promoted the differentiation of
IPEC-J2 cells, while a higher concentration of organic acid impaired cell viability and
inhibited cell proliferation in a dose-dependent manner [36]. The acidifiers used in the
present study were weak organic acids, including formic acid, acetic acid, propionic acid,
and lactic acid [37]. Therefore, we hypothesized that acidifiers improve cell viability at
appropriate concentrations, but they can also cause severe damage to cells at excessive con-
centrations. Our experiment demonstrated that treatment of the acidifiers with appropriate
concentrations and time enhanced the viability of IPEC-J2 cells.

ROS are important markers of oxidative stress, which are usually used to evaluate
oxidative stress [38]. MDA is a lipid peroxidation biomarker that reflects oxidative dam-
age [39]. To protect cells against ROS-induced oxidative damage, antioxidant systems
including CAT, SOD, and GSH-Px are subsequently activated [40]. Importantly, total
antioxidant capacity (T-AOC) refers to the total antioxidant level composed of various
antioxidant substances and antioxidant enzymes, which help to protect cells and the body
from oxidative stress damage caused by reactive oxygen free radicals [41]. Therefore, total
antioxidant capacity is of great significance to scientifically evaluate the antioxidant capac-
ity of antioxidant substances. In the present study, DQ increased ROS and MDA levels in
IPEC-J2 cells, while the acidifiers decreased the levels of ROS and MDA by reversing the
decrease in T-SOD and GSH-Px, suggesting that the acidifiers have potential antioxidant
effects under cellular oxidative stress, which is consistent with previous studies [42,43].

Oxidative damage caused by oxidative stress increases the permeability of intestinal
epithelial cells [44]. The increase in intestinal permeability impaired the integrity of the
intestinal epithelial barrier [45]. Cell permeability is determined by the tight-junction
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proteins, including claudins, occludin, and ZO-1, which separate the internal environment
from the external environment and block harmful substances [46]. A previous study
revealed that sodium butyrate decreased the permeability and selectively increased the
expression level of tight-junction proteins in IPEC-J2 cells [47]. Indole-3-propionic acid
improved the expression of tight-junction proteins (claudin-1, occludin, and ZO-1) and the
intestinal epithelial barrier [48]. Our present study is consistent with these findings, which
suggest that the acidifiers can maintain epithelial integrity by preventing the increase in
cell permeability caused by oxidative stress.

The inflammatory response is a defining feature of oxidative stress caused by ROS [49]
because inflammatory factors are involved in biochemical reactions that produce ROS [50].
IL-8, IL-10, and TNF-α are inflammatory response markers [51]. Diquat is used as a model
inducer of oxidative stress and induces an inflammatory response, which manifests as a
decrease in the mRNA expression of IL-10 and an increase in TNF-α mRNA expression in
weaned piglets [52]. In the present study, DQ induced an inflammatory response in IPEC-
J2 cells by stimulating the production of proinflammatory cytokines such as TNF-α and
IL-8, while inhibiting the production of anti-inflammatory cytokine IL-10. The acidifiers,
on the other hand, downregulated the expression of TNF-α and IL-8 genes in the DQ-
induced IPEC-J2 cells. Previous research has shown that the supplementation of organic
acids reduces the concentration of pro-inflammatory cytokines IL-12 and IL-16, as well as
inflammatory biomarker Pentraxin-3 in serum [53], which is consistent with our present
study. These results suggest that the acidifiers can attenuate the DQ-induced cellular
inflammatory response by decreasing the production of pro-inflammatory cytokines and
increasing the production of anti-inflammatory cytokines.

Oxidative stress triggers apoptosis of the intestinal epithelial cells [54]. BCL-2 family
members are apoptosis markers, in which BAX promotes apoptosis while BCL-2 inhibits
apoptosis [55]. A previous study reported DQ-induced hepatic apoptosis and mitochon-
drial dysfunction in piglets [56]. In our present study, we found that IPEC-J2 cells treated
with diquat increased the mRNA expression of BAX and decreased the mRNA expression
of BCL-2, indicating that DQ induced IPEC-J2 cell apoptosis. IPEC-J2 cells pretreated with
the acidifiers significantly increased the mRNA expression of BCL-2 compared with the
DQ-treated group. Similarly, acidifiers markedly upregulated the mRNA level of BCL-2
compared with untreated cells, while no significant changes were found compared with the
acidifiers pre-treatment (AC + DQ) group. These results indicated that pretreatment with
acidifiers could reduce the apoptosis of IPEC-J2 cells via upregulating BCL-2 expression.
Thus, the acidifiers rescued the apoptosis of IPEC-J2 cells by regulating the expression
of apoptosis-related genes. In addition, oxidative stress is closely related to cell prolifer-
ation [57]. In mice, for example, hydrogen treatment preserved intestinal epithelial cell
proliferation while reducing oxidative stress damage and the systemic inflammatory re-
sponse [58]. As expected, our present study revealed that DQ decreased the percentage of
Edu-positive fluorescent cells while the acidifiers rescued them. Similarly, the expression
levels of genes (PCNA and CCND1) related to proliferation were decreased in the DQ
group compared with those in the CON group, while the acidifiers rescued the mRNA
expression levels of the PCNA and CCND1 genes. Taken together, these results suggest that
the acidifiers can increase DNA replication activity and are capable of promoting IPEC-J2
cells proliferation.

Organic acid reduces oxidative stress damage and inflammation by modulating the
activity of oxidative stress signaling pathways [59]. For example, oxidative stress activates
the inflammatory response via redox regulation of the inhibitor(I)-κB/nuclear factor (NF)-
κB signaling pathway [60]. In the present study, DQ increased the mRNA and protein
expression levels of NF-κB and IκB in the IPEC-J2 cells, whereas the acidifiers decreased
them. This indicated that DQ activated the NF-κB signaling pathway in the IPEC-J2 cells,
while acidifiers led to the inhibition of the NF-B pathway, as well as a decrease in NF-κB-
mediated transcription. On the other hand, inhibition of the NF-κB pathway leads to the
reduction in proinflammatory cytokines [61], which may be the reason for the changes in
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cytokine levels in the present study. It has been reported that the activation of the mitogen-
activated protein kinase (MAPK) pathway is highly correlated with the NF-κB pathway [62].
The MAPK signal pathway (ERK, JNK, p38) is involved in the regulation of cell growth,
environmental adaptation to stress, and inflammatory reactions [63], which is also closely
associated with oxidative stress [64]. In the present study, the acidifiers attenuated DQ-
induced oxidative stress by downregulating the expression levels of proteins (ERK1/2 and
JNK2) related to the MAPK signaling pathway. In addition, the COX-2 signaling pathway is
considered to be the most important way to regulate oxidative stress. The activation of this
signaling pathway leads to the release of free radicals and the transcription repression of
genes encoding antioxidant enzymes [65]. In the present study, the acidifiers downregulated
the expression of CoX-2 in the DQ-induced IPEC-J2 cells. It is reported that the inhibition of
COX-2 expression reduced the production of ROS and prevented DNA damage [66], which
implies that the decrease in COX-2 may be one of the reasons for the downregulation of
ROS in the AC + DQ group. Taken together, these results suggest that the acidifiers can
attenuate the DQ-induced oxidative stress and inflammatory responses by regulating the
NF-κB/MAPK/COX-2 signaling pathways.

5. Conclusions

In the present study, DQ induced intestinal epithelial cells oxidative stress and in-
flammation and increased the apoptosis and permeability of the intestinal epithelial cells.
However, the acidifiers not only reduced intracellular ROS, but also attenuated the DQ-
induced inflammation and modulated the activities of antioxidant enzymes by regulating
the NF-κB/MAPK/COX-2 signaling pathways, indicating the prominent antioxidative
capacity of the acidifiers.
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