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ABSTRACT
◥

Gene fusions frequently result from rearrangements in cancer
genomes. In many instances, gene fusions play an important role in
oncogenesis; in other instances, they are thought to be passenger
events. Although regulatory element rearrangements and copy
number alterations resulting from these structural variants are
known to lead to transcriptional dysregulation across cancers, the
extent to which these events result in functional dependencies with
an impact on cancer cell survival is variable. Here we used CRISPR-
Cas9 dependency screens to evaluate the fitness impact of 3,277
fusions across 645 cell lines from the Cancer Dependency Map. We
found that 35% of cell lines harbored either a fusion partner

dependency or a collateral dependency on a gene within the same
topologically associating domain as a fusion partner. Fusion-
associated dependencies revealed numerous novel oncogenic dri-
vers and clinically translatable alterations. Broadly, fusions can
result in partner and collateral dependencies that have biological
and clinical relevance across cancer types.

Significance: This study provides insights into how fusions
contribute to fitness in different cancer contexts beyond partner-
gene activation events, identifying partner and collateral depen-
dencies that may have direct implications for clinical care.

Introduction
Structural variants (SV), including insertions, deletions, copy num-

ber alterations, translocations, and other complex rearrangements, play
an integral role in oncogenesis (1–3). These somatic events are partic-
ularly enriched in pediatric cancers, which are classically characterized
by otherwise low mutational burdens; however, their importance to
cancer spans across the spectra of age and histology (4, 5). Prior work
demonstrated that SVs contribute to transcriptional dysregulation
through cis-regulatory element rearrangement (such as “enhancer-

hijacking”), copy number alterations leading to changes in gene dosage,
and other variations on these phenomena (6–11). Changes in RNA
expression within gene sets have been used to interpret SVs relevant for
cancerpathogenesis.However, it is not knownwhether these expression
changes at the level of individual genes create functional dependencies
with an impact on cancer cell survival (12).

Genome-scale CRISPR-Cas9 knockout screening has enabled explo-
ration of the functional importance of individual genes in numerous
cancer contexts, and a collaborative effort has conducted CRISPR-Cas9
loss-of-function screening across established cancer cell lines to develop
the Cancer Dependency Map (DepMap) project (n ¼ 769 cell lines to
date; refs. 13–15). Picco and colleagues previously demonstrated that
CRISPR-Cas9 screening could be applied to understand the functional
impact of partner genes in well-known and some less-well-
characterized fusions across 371 cell lines (16). However, the full extent
to which fusions create (i) functional dependencies on partner genes, or
(ii) “collateral dependencies” on genes within the same topologically
associating domains (TAD) as the fusion partners is unknown. We
hypothesized that a significant number of fusions create dependencies
on fusion partners as well as collateral genes through cis-regulatory
element rearrangement, copy number change, or variations on these
two processes (Fig. 1A). We therefore integrated fusion calls and
dependency data in cell lines from DepMap to characterize the impact
of fusions on cancer cell survival as mediated through partner and
collateral dependencies, reasoning that a subset of these occurrences
would reveal novel insights into cancer biology and therapeutic target
development opportunities with potential for clinical translation.

Materials and Methods
DepMap data source

We used a publicly available collection of annotated cell lines
previously compiled and characterized by the Cancer Cell Line Ency-
clopedia (CCLE), as well as associated fusion calls, genome-scale
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Figure 1.

Hypothesis, approach, and identification of fusion-associated dependencies. A, Conceptual hypothesis illustrating how translocations lead to fusion-associated
dependencies. B, Aggregate ORs and P values for enrichment of partners genes among absolute dependencies, stratified by category of structural variant (Fisher
exact test; FWER < 0.05 to ascertain significance, using a Bonferroni correction results in a significance threshold of P < 0.004). C, Illustration of differential
dependency evaluation for each fusion of interest. D, Left, proportion of all fusions and all cell lines identified as having at least one differential fusion-associated
dependency (partner or collateral). Right, detailed count of cell lines with at least one differential fusion-associated dependency (partner or collateral) relative to
total, broken out by disease type.
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CRISPR knockout screening (dependency data), RNA expression,
copy number alterations, mutation calls, and sgRNA locations from
the following DepMap release (Supplementary Table S1): “DepMap,
Broad (2020): DepMap 20Q2 Public. figshare. Dataset.” https://doi.
org/10.6084/m9.figshare.12280541.v4. All subsequent genomic anal-
yses related to these cell lines were based on alignment to hg38.

Fusion calls and CRISPR–Cas9 dependency data
RNA sequencing (RNA-seq)-based methods have been used exten-

sively for fusion detection (17). The STAR-Fusion pipeline version
1.6.0 was previously used to identify fusions fromRNA-seq data across
cell lines in the CCLE (https://github.com/STAR-Fusion/STAR-
Fusion/wiki). Among 1,299 cell lines, 21,999 unique fusions were
identified after a preliminary filter was applied to remove the following
as described in the DepMap documentation. We applied further
filtering to select for high-confidence fusion calls (18) by focusing
only on fusions with FFPM > 0.1, those with 50 GT and 30 AG
dinucleotide breakpoints associated with canonical splicing (19, 20),
those with >5 junction reads, and those that involved protein-coding
partners or the IgH locus. This produced a list of 5,093 high-confidence
fusions in 1,075 cell lines.

We used dependency data for 18,119 genes across 769 cell lines,
processed as previously described in DepMap documentation to
obtain CERES gene scores (correcting for gene independent
CRISPR-Cas9 cutting in copy number amplified regions), and subse-
quently converted to dependency probability scores intended to infer
the probability that a score represents a true dependency. As per
DepMap documentation, because dependency probability scores take
screening quality into account and may be utilized to identify which
cell lines are more sensitive to CRISPR knockout when stratifying by
the presence of a biomarker, they were used for all analyses. We took
the intersection of cell lines with high-confidence fusion calls and those
with dependency data to arrive at a starting set of 3,277 fusions across
645 cell lines.

Using fusions as a biomarker to identify associated
dependencies across DepMap through genome-scale
screening

For each of the 3,277 fusions, all cell lines were stratified by the
presence or absence of the fusion of interest, and themean dependency
probability score for each of 18,119 protein-coding genes was calcu-
lated for each group. As 94% of fusions were observed in only a single
cell line, a two-sample t test with the assumption of equal variance was
carried out as a screen to identify genes that were likely to be
dependencies based on the difference in scores between both groups.
We drew upon the assumption that for each fusion, all cell lines were
drawn from the same underlying population with a uniform variance.
Correction for multiple-hypothesis testing was done using the Benja-
mini–Hochbergmethod to arrive atQ values (usingQ< 0.05 to identify
genes having a significant effect on cell survival). Building upon the
consensus a prior threshold for a true dependency in the DepMap data
set of an absolute dependency probability >0.5, we additionally only
focused on differential dependencies for this analysis (those with a
dependency probability score difference > 0.5 between cell lines with
the fusion of interest and those without), to stringently highlight
the genes having the most significant unique impact on cell lines
with the fusion of interest. Q values were�log10 transformed for data
visualization.

To identify associated dependencies for each fusion, we selected
fusion partners and genes in close proximity to fusion partners. Prior
studies have shown that TADboundaries are largely invariant between

cell types (21). Although rearrangements that result in fusions will
inevitably disrupt many TAD boundaries in cancer cells, we used
TAD boundaries from a normal endothelial cell line as a general-
izable approximation of genes in close proximity to fusion part-
ners (22, 23). Genes in close proximity were identified on the basis
of TADs from a Hi-C experiment done on an endometrial micro-
vascular endothelial cell line; we downloaded the BED file with the
identifier ENCFF633ORE from ENCODE and utilized the UCSC
LiftOver tool to convert hg19 coordinates for TAD boundaries to
hg38 coordinates (https://genome.ucsc.edu/cgi-bin/hgLiftOver;
refs. 24, 25). Using gene coordinates from the BioMart package,
SQL queries were carried out to assign each gene to a single TAD,
with the exception of genes falling in TAD boundaries, which were
assigned to upstream and/or downstream TADs within 40 kb of the
starting gene coordinates (Supplementary Tables S2 and S3; ref. 26).
Fusion-associated dependencies that were in close proximity to
fusion partners were defined as collateral dependencies based on
this assignment.

We defined a fusion-dependency pairing as a unique combination
of a partner or collateral dependency with a given fusion. To obtain a
conservative total count of fusion-dependency pairings, we counted
only unidirectional transcripts for fusions that had both forward and
reverse fusion transcripts detected by RNA-seq. Of the 104 fusions
identified to contribute the 112 unique partner fusion-dependency
pairings, STAR-Fusion was able to predict in-frame versus out-of-
frame status for 75;manual curation to includeBCL2-IgH andRUNX1-
IgH as out-of-frame fusions led to a total of 77 fusions for which in-
frame versus out-of-frame status was available. Of the 77 fusions with a
predicted protein coding consequence, 50 (65%) were predicted to
be in-frame whereas 27 (35%) were predicted to be out-of-frame
(Supplementary Table S4). To obtain a count of fusion-dependency
pairings accounting for complex rearrangements within TADs, we
removed instances where a dependency was associated with multiple
fusions in the same cell line (retaining partner dependencies in the rare
cases that a gene was a partner and collateral dependency in the same
cell line); this count was used as a comparator for permutation
schemes.

Structural variant analysis in cell lines
Structural variant calls from WGS data were available for 329 cell

lines using the SvABA structural variant caller as previously
described (1). For the 209 cell lines with dependency data for which
structural variant data were available, we evaluated whether fusions
(those with associated dependencies and those without) were seen as
part of a rearrangement, or if one or both partners were seen as part of
separate rearrangements.

For the 103 fusion-cell contexts with associated dependencies
and concurrent WGS structural variant data, we evaluated whether
fusions appeared to be associated with simple or complex structural
variants. For each fusion-cell context, we quantified the number of
structural variants in the same TAD that did not involve at least one
of the fusion partners. We used the ShatterSeek analysis pack-
age (27) to synthesize copy number and structural variant data in
five different cell lines harboring fusion-associated dependencies
(NCIN87, DU4475, THP1, HCC38, and PANC1) to visualize the
relationship of fusions with simple and complex structural variants
in these cell lines.

For the PANC1 cell line, we utilized ICE-normalized Hi-C data
(Dekker and colleagues 2016) from the ENCODE portal (23) with the
identifiers ENCFF463HGQ and ENCFF358MNA and the 3DGenome
Browser (28) to visualize chromatin interactions.
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Enrichment of SV partner and collateral genes among absolute
dependencies

We analyzed structural variant calls involving at least one coding
partner across 209 cell lines that also had dependency data. For each
cell, we (i) identified genes that were absolute dependencies (thosewith
a dependency probability score > 0.5, consistent with the DepMap
consensus a priori threshold for a true dependency), (ii) identified
genes that were “partners” in a SV in that cell line, and (iii) identified
genes that were “collateral” genes relative to a SV in that cell line, based
on our previous definition of normal TADs.

Across all cell lines, we observed the total instances where a partner
gene was an absolute dependency (vs. not a dependency) compared
with other genes, calculated ORs, and determined significance using
Fisher exact tests. We repeated this analysis independently for the
collateral genes. We carried out this analysis for structural variants in
aggregate, as well as for fusions, translocations (interchromosomal
rearrangements detected byWGS), inversions, deletions, and duplica-
tions individually. Fusions in this analysis were those identified from
RNA-seq using STAR-Fusion (as previously described) and with
additional evidence in the WGS data of a SV correlate (manifesting
as one or multiple of the other SV categories of deletion, duplication,
inversion, or translocation). Fusion calls meeting these criteria were
identified in 162 of the 209 cell lines with WGS and dependency data.
Desiring a family-wise error rate (FWER) < 0.05, we used a Bonferroni
correction for the 12 hypotheses tested to obtain a threshold of P <
0.004 to ascertain significant associations. Analysis of ORs among
individual cells was focused only on the 162 cell lines with fusion calls,
and distributions were compared using two-sided t tests.

Copy number and mutational analysis in fusion-associated
dependencies

Gene level copy number and mutation data were matched to each
fusion-dependency-cell line context. Mutations identified included
silent, missense, splice site, nonsense, and in-frame deletions. Copy
number data were log2 transformed with a pseudo count of 1.We used
<0.5 as the threshold for copy number loss, and >1.5 as the threshold
for copy number gain.

Identifying COSMIC fusion genes, COSMIC cancer census genes,
and kinases

Known Catalogue of Somatic Mutations in Cancer (COSMIC)
fusions were utilized from the COSMIC fusion census (https://can
cer.sanger.ac.uk/cosmic/fusion). A list of known cancer driver genes
from the COSMIC cancer census (https://cancer.sanger.ac.uk/cosmic/
curation) and a curated list of kinases from a prior study (29) were used
to annotate remaining fusions with potentially interesting biology.

Evaluating FOXR1 overexpression and fusion-calling in clinical
samples

A total of 12,747 clinical tumor samples with log2-normalized TPM
RNA expression data available through the UCSC Treehouse Child-
hood Cancer Project (Treehouse Tumor Compendium V11 Public
PolyA; ref. 30) were screened for significant FOXR1 overexpression,
using a threshold of log2 (TPM þ 1) > 2. The histologies of specific
samples with FOXR1 overexpression were identified, and given the
recurrence of neuroblastoma as a histologic subtype, four neuroblas-
toma samples from the TARGET study were selected for further
evaluation of the presence of a FOXR1 fusion (sample IDs: TAR-
GET-30-PASUCB, TARGET-30-PASPBZ, TARGET-30-PASSWW,
TARGET-30-PARBAJ). Two independent fusion-callers, STAR-
Fusion and FusionCatcher (31), were used to call fusions from

hg19-aligned FASTQ RNA-seq files of these samples available for
controlled access download through dbGaP (phs000218.v22.p8).
WGS-based copy number variant calls from the Complete Genomics
CNV pipeline (https://target-data.nci.nih.gov/Public/NBL/WGS/ L3/
copy_number/CGI/), specifically at the 11q23.3 locus where FOXR1 is
located, were additionally evaluated in these samples.

Experimental validation of FOXR1 fusion dependency in cell
lines

143B (obtained from the Broad Institute; used within 6 months of
collection; authenticated by L. Guenther using STR profiling; no
mycoplasma testing conducted) and CALU6 (obtained from ATCC;
used within 6months of collection; authenticated by ATCC using STR
profiling; mycoplasma testing conducted by ATCC, mycoplasma not
detected) cells were grown in Eagle’s minimum essential medium
(EMEM) supplemented with 10% FBS and penicillin–streptomycin
(Thermo Fisher Scientific, MT30002CI). To validate FOXR1 fusion
dependencies, we used CRISPR-Cas9 sgRNAs targeting FOXR1 to
knockout PAFAH1B2-FOXR1 in 143B cells and RPS25-FOXR1 in
CALU6 cells. The sgRNA sequences are as follows: sgFOXR1–1 50

GAGACCTCCAGCTTTCCAGG 30 ; sgFOXR1–2 50 GGAAGATGC-
CAGCTGCTCAG 30 ; sgFOXR1–3 50 TGAGACCTCCAGCTTTC-
CAG 30. We infected cells with either nontargeting (NT) or
FOXR1-targeting sgRNA, selected cells with puromycin (1 mg/mL),
and assessed growth using CellTiter-Glo according to manufacturers’
instructions. Immunoblot was performed to confirm knockout of the
fusion-oncoproteins using anti-FOXR1 (21942–1-AP; Thermo Fisher
Scientific). Anti-vinculin (13901; Cell Signaling Technology) was used
as a loading control. For crystal violet staining, cells were fixed and
stained using crystal violet solution (1% crystal violet, 20% methanol)
for 20 minutes, washed, and imaged.

Analysis of drug data
AUC values representing sensitivity to compounds and associated

metadata were utilized from the Cancer Therapeutics Response Portal
and available through DepMap (32–34). The AUC for venetoclax for
the B-ALL cell line with the BCL2-IgH fusionwas comparedwith other
B-ALL cell lines without this fusion, as well as all other cell lines. We
took an unbiased approach to screening for compound sensitivity for
multiple myeloma cell lines, stratifying by the presence or absence of
the IgH-NSD2 fusion, and using a two-sample t test with the assump-
tion of equal variance. We corrected for multiple-hypothesis testing
using the Benjamini–Hochberg method to arrive at Q values. We
annotated compounds for the inhibition of kinases to identify com-
pounds of interest.

Analysis of histone ChIP-seq and DNASE-seq data
WedownloadedBigWigfiles fromENCODE for the histonemarks of

interest for theKMS11cell linewith IgH-NSD2 fusion,NCIH929 cell line
with IgH-NSD2 fusion, MM1S cell line without IgH-NSD2 fusion, and
peripheral bloodmononuclear cell lines.Weadditionally utilizedBigWig
files from ENCODE for DNASE-seq analysis of the NCIH929 cell line
with IgH-NSD2 fusion, RPMI8226 cell line without IgH-NSD2 fusion,
and normal B cell lines (Supplementary Table S5). Epigenetic data were
visualized using the integrative genomics viewer (IGV): version 2.8.2.

Calculation of phenotypic kill scores in CRISPR spheroidmodels
We normalized CRISPR guide dropout for genes of interest to

nontargeting guides to calculate phenotypic kill scores as described
previously (35). CRISPR sgRNA data from three spheroid models
derived from NCIH23, NCIH1975, and NCIH2009 cell lines was
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analyzed as follows: for each replicate, the count of sgRNAs targeting
coding genes and nontargeting sgRNAs was normalized for two
replicates at day 21 relative to day 0, and log2-fold change values
were calculated. The median and SD of log2-fold change of nontarget-
ing guides for each replicate was calculated, and the log2-fold change
values for targeting sgRNAs were normalized using these values to
yield phenotypic Z (phenotypic kill) scores as described previous-
ly (35). The distribution of phenotypic kill scores for all guides
targeting EML4 in the NCIH23 spheroid model (containing the
THADA-MTA3 fusion) was compared with the distribution of phe-
notypic kills scores for all guides targeting EML4 in theNCIH1975 and
NCIH2009 spheroid models. This analysis was repeated and the mean
of phenotypic kill scores was calculated for all previously defined
nonessential genes, available through DepMap.

Results
Across all SVs, partner and collateral genes demonstrate the
greatest enrichment among dependencies in the context of
fusions

We first aimed to demonstrate that fusion partner genes and
collateral genes, respectively and independently, were significantly
enriched among functional cancer dependencies. Through analysis of
whole-genome sequencing (WGS), RNA-seq-based fusion calls, and
genome-scale dependency data for 209 cancer cell lines, we identified
>26,000 SVs (translocations, inversions, deletions, duplications, and
gene fusions) to assess for enrichment of partner genes (those directly
involved in the SV of interest) and collateral genes (those in the same
TAD as the SV of interest) among absolute dependencies (Supple-
mentary Table S6, Materials andMethods). We found that there was a
significant enrichment of partner genes among dependencies in the
context of fusions, and either no enrichment or depletion of partner
genes among dependencies in the context of all other SV groups
(Fig. 1B; Supplementary Fig. S1A). There was significant enrichment
of collateral genes among dependencies across all SV groups, but this
enrichment was greatest for fusions as compared with all other SVs
(Supplementary Figs. S1B and S1C). For fusions, we additionally
carried out iterative enrichment analyses removing a single cell line
at a time (Supplementary Materials and Methods; Supplementary
Tables S7 and S8), as well as multivariate logistic regression analyses
(Supplementary Tables S9 and S10), and confirmed that these obser-
vations were not driven by any single cell line or disease category
(Supplementary Materials and Methods). These results were robust to
variations in TAD size and definitions (Supplementary Fig. S2A–S2C;
Supplementary Materials and Methods). Thus, the strongest enrich-
ment of partner genes and collateral genes among dependencies
occurred in the context of fusions.

Fusion-associated differential dependencies include partners
and collateral genes, occurringmore thanwouldbeexpectedby
chance

We then developed a statistical framework to identify and nominate
biologically relevant fusion-associated partner and collateral depen-
dencies (Materials andMethods). Specifically, we performed dedicated
analyses to (i) assess for differential dependencies in the context of
fusions, (ii) validate the presence of fusions and associated depen-
dencies through multiple approaches, and (iii) evaluate the relation-
ship of fusions with simple or complex SVs. First, we assessed 3,277
fusions present in 645 cell lines with corresponding genome-scale
dependency data (Materials and Methods, Supplementary Fig. S3A,
range of mean fusions per cell line: 1–20, Supplementary Fig. S3B;

Supplementary Table S11). For each fusion, we carried out a statistical
genome-scale screen to identify genes that had differential dependen-
cies leading to increased fitness in the cell line(s) containing the fusion
(Materials and Methods). On the basis of our preceding enrichment
analysis, we hypothesized that a subset of fusions would lead to
expression changes or activation of proto-oncogenes, creating differ-
ential gene dependencies resulting from the rearrangements them-
selves. Thus, within each fusion-dependency relationship, genes that
were identified as being differential dependencies selectively in cell
lines with the fusion (range 0–260 genes, mean 37 genes) were
evaluated to identify fusion partner dependencies and collateral
dependencies, independently (referred to as fusion-associated depen-
dencies hereafter; Fig. 1C, Materials and Methods).

Across all fusions, 363 (11%) had at least one fusion-associated
dependency. Fusion-associated dependencies were observed in 223 cell
lines (35%) and occurred in greater than half of leukemia, breast
cancer, multiple myeloma, bone cancer, liposarcoma, and other
sarcoma cell lines (Fig. 1D). We identified 659 unique fusion-
dependency pairings in total (112 partner, 547 collateral; Supplemen-
tary Table S12); accounting for complex rearrangements (by removing
instances of dependencies associated withmultiple fusions in the same
cell line), we observed 483 fusion-dependency pairings (100 partner,
383 collateral; Fig. 2A, Materials and Methods). Of 223 cell lines with
fusion-associated dependencies, 207 (93%) had at least one hotspot
driver mutation (range 1–25 driver mutations, mean 2.5 driver
mutations; Supplementary Materials and Methods; Supplementary
Table S13). Cell lines without fusion-associated dependencies had a
significantly increased number of hotspot driver mutations (range 1–
62 driver mutations, mean 3.4 driver mutations; Supplementary
Fig. S4A, P ¼ 0.003, two-sided t test), although the proportion of cell
lines with hotspot driver mutations was comparable (383 of 422 cell
lines, 91%, P ¼ 0.456, Chi-squared test). Fusion-associated depen-
dencies contributed to cancer cell fitness uniquely, even in the presence
of other hotspot driver mutations.

Next, to demonstrate that this phenomenon of fusion-associated
dependencies was occurring more than would be expected by chance,
we carried out fusion-label permutation testing (breaking the link
between fusions and dependency scores to create a null
distribution, Fig. 2B) and gene-label permutation testing (breaking
the link between genes and dependency scores to create a null
distribution, Supplementary Figs. S4B and S4C) for partner and
collateral dependencies, respectively and independently. Our observed
counts of partner and collateral fusion-dependency pairings were
significantly greater than those expected by chance (P < 0.001,
Supplementary Materials and Methods).

Because of the non-Gaussian distribution of dependency scores
and the small numbers of cell lines with any given fusion, we
performed additional cell line permutation-based FDR estimation
as an approach to fusion-associated dependency discovery, and
found that 459 fusion-dependency pairings (70%) identified by our
genome-scale screen met the FDR threshold < 0.05 by this approach
as well (Fig. 2C, Supplementary Materials and Methods, Supple-
mentary Fig. S5, Supplementary Table S14). The fusion-dependency
pairings identified by both approaches were most likely to have
biological relevance, and we therefore prioritized these pairings for
further study.

Furthermore, for the subset of cell lines with corresponding WGS
(Fig. 2D), there was evidence for the presence of a correlated structural
variant in 86 of 103 fusion-cell contexts (83%,Materials andMethods),
comparable with an evaluation of WGS correlates to fusions detected
by RNA-seq in clinical samples (10). This proportion was not
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significantly different between fusions with associated dependencies
and those without (83% vs. 76%, P ¼ 0.11, Fisher exact test; Supple-
mentary Fig. S6A). We also evaluated whether the fusions with
associated dependencies from cell lines were identified in a prior
study of clinical samples from The Cancer Genome Atlas (TCGA;
ref. 29). Of 363 fusions with associated dependencies, 295 were in cell
lines with the same histology as tumors in the TCGA (Fig. 2E;
Supplementary Fig. S6B; Supplementary Table S15). Of those, 23
(8%) had an exact fusion match in the TCGA, though 291 fusions
(99%) had a partner that was seen as part of a fusion in the TCGA,
supporting the relevance of preclinical dependency analysis to patient
cohorts (Supplementary Materials and Methods). These analyses

provided additional orthogonal validation of the fusions identified
for study.

Finally, we also sought to determine when gene fusions with
associated dependencies were part of simple or larger complex SVs.
Gene fusions varied with regard to their association with other SVs
in close proximity: 37% of fusions had no additional SVs in the
same TAD beyond those involved in the fusion, 41% had 1 to 5
other same-TAD SVs, 13% had 6–10 other same-TAD SVs, and 9%
had >10 other same-TAD SVs (Materials and Methods, Supple-
mentary Fig. S6C). In some cases of collateral dependencies, fusions
could be more directly linked to the dependency in question
(Supplementary Figs. S7A–S7C), whereas in other cases, they were

Figure 2.

Fusion-dependency pairings, permutation testing, and supporting data. A, Summary of unique fusion-dependency pairings across DepMap. Left bar, all fusion-
dependency pairings excluding reciprocal transcripts. Right bar, fusion-dependency pairings with instances of dependencies associated with multiple fusions in the
same cell line removed (conservative estimate).B,Observed conservative count of total fusion-dependency pairings comparedwith the null distribution of expected
fusion-dependency pairings obtained by 1,000 fusion-label permutations for each of 3,277 fusion-dependency relationships. Left, partner fusion-dependency
pairings (P <0.001). Right, collateral fusion-dependency pairings (P <0.001).C,Comparison of fusion-dependency pairings identified by cell line permutation-based
FDR estimation (gray) and genome-scale screen (blue).D, For 103 fusion-cell contexts that had associated dependencies and structural variant calls fromWGS data,
the proportion forwhich therewas orthogonal supporting evidence. Exact fusion seen¼ a single structural variantwas identified to involve the two fusion partners in
WGSdata. At least onegene in SV¼ either both partner genes, the left partner gene, or the right partner genewere independently involved in structural variants.E,Of
the 295 fusions that had associated dependencies and corresponding diseases in the TCGA, the proportion with representation in this clinical data set. Left bar, the
proportion of fusions for which an exact matchwas seen. Right bar, the proportion of fusions for which at least one partner was seen (counted by themost recurrent
partner).
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proxies for larger complex SVs collectively contributing to cis-
regulatory element rearrangement and copy number change (Sup-
plementary Figs. S7D and S8A–S8B). Thus, for fusions with partner
and collateral dependencies in cancer cell lines, there were multiple
lines of evidence for their enrichment and clinical relevance to
support further investigation.

Copy number, mutational, and transcriptional landscapes
intersect with fusion-associated dependencies

We next evaluated copy number alterations and somatic mutations
for their potential to contribute to the development of fusion-
associated dependencies (Materials and Methods). Partner dependen-
cy genes were amplified in 65 of 212 fusion-dependency-cell contexts
(31%), whereas collateral dependency genes were amplified in 405 of
588 fusion-dependency-cell contexts (69%, Fig. 3A). This high rate of
copy number amplification of fusion-associated dependency genes
aligned with prior work showing rearrangements and copy number
alterations are highly inter-related (36). However, mutations involving
fusion-associated dependency genes were relatively infrequent, with
partner dependency genes harboring mutations in 16 of 217 fusion-
dependency-cell contexts (7%), and collateral dependency genes har-
boring mutations in 27 of 589 fusion-dependency-cell contexts
(5%, Fig. 3B).

Prior studies demonstrated that fusions can contribute to transcrip-
tional dysregulation in patient samples (6, 7, 9). Thus, we next
evaluated RNA expression data for all fusions with orthogonal depen-
dency data to determine the degree of overlap between genome-scale
pan-cancer unbiased overexpression and dependencies for fusion-
associated genes (Fig. 3C; Supplementary Table S16; Supplementary
Materials and Methods). Of 631 fusion-associated overexpressed
partner genes, 40 were also dependencies (6%). Similarly, of 1,400
fusion-associated overexpressed collateral genes, 70 were dependen-
cies (5%). Although many fusions led to overexpression of associated
genes, only a small proportion of these cases were deemed essential to
cell survival through this screening modality.

We noted that 40 of 112 (36%) partner dependencies and 70 of
547 (13%) collateral dependencies were differentially overexpressed
in an unbiased manner. However, we observed at least a log2-fold
change TPM > 1 in 59% of all fusion-associated dependencies without
correcting for genome-scale significance (Supplementary Table S12).
This was significantly greater than the 5% of fusion-associated depen-
dencies with log2-fold change TPM <�1 (Supplementary Fig. S9A and
S9B, P < 0.001, Fisher exact test). Certain well-characterized fusion-
associated dependencies did notmeet these criteria for overexpression.
For instance, BCR andABL1were strong dependencies associated with
the BCR–ABL1 fusion, but did not meet the threshold of log2-fold
change TPM > 1. Similarly, for the KMT2A fusions established as
childhood myeloid and lymphoid leukemia drivers (37, 38), KMT2A
was a dependency but did not demonstrate significant overexpression
in cell lines harboring these fusions comparedwith all cell lineswithout
these fusions (Supplementary Fig. S10A–S10D). Thus, essential
fusions can induce modest expression changes in associated genes
that are context-specific without manifesting as unbiased overexpres-
sion, but these events are still important to cell survival and support
expression dysregulation as the mechanism leading to fusion-
associated dependencies.

COSMIC fusions demonstrate utility of CRISPR-Cas9 for
identifying essential genes

Many kinases and COSMIC Cancer Census genes appear among
other fusions with associated dependencies. To further explore the

biological relevance of fusion-associated dependencies, we examined
whether recurrent biologically established fusions defined byCOSMIC
(“COSMIC fusions”) could be recovered using genome-scale CRISPR-
Cas9 loss-of-function screening (39). Across all high-confidence
fusion calls in cell lines with genome-scale dependency data, we
identified 35 unique COSMIC fusions: 19 fusions had a partner
dependency, 1 was associated with a collateral dependency, and
15 had no associated dependency (Fig. 3D). For fusions such as
BCR–ABL1 and PAX3–FOXO1, both partner genes were differen-
tial dependencies. For EWSR1–FLI1, only FLI1 was a differential
dependency, as EWSR1 is a common essential gene in many
different cell contexts (Fig. 3E; Supplementary Figs. S11A–
S11F). For some fusions resulting from unbalanced rearrange-
ments like EWSR1–ERG, single-guide-RNA (sgRNA) location
could preclude a partner screening as a dependency (Fig. 3F;
Supplementary Figs. S12A and S12B; Supplementary Table S17;
Supplementary Materials and Methods). Using COSMIC fusions as
a positive control for this screening modality, we demonstrated
that CRISPR-Cas9 loss-of-function screening could identify
fusion-associated dependencies in 20 of 35 (57%) cases where we
would have expected them to exist.

We also assessed partner and collateral dependencies that involved
either kinases or COSMIC cancer census genes, with the hypothesis
that many of these would have biological relevance (Supplementary
Fig. S13A). The BCL2–IgH fusion has been previously reported in
various hematologic malignancies (40, 41), and it was observed
concurrently with a BCL2 missense mutation in a B-ALL cell line
(JM1), contributing to a partner dependency on BCL2. Cancer Ther-
apeutics Response Portal compound screening data for JM1 showed it
was highly sensitive to the BCL2 inhibitor venetoclax when compared
with all other cancer cell lines, with median sensitivity in comparison
with other B-ALL cell lines (Supplementary Fig. S13B; refs. 32–34).
Genes that were copy number amplified, such as MDM2 and ERBB2,
were involved in fusions as well, and sometimes associated with
multiple collateral dependencies (Supplementary Fig. S13C; Supple-
mentary Fig. S14A–S14D). A study from the PCAWG consortium
showed that the OE33 esophageal cancer cell line was characterized by
an inversion around ERBB2, disrupting a TAD boundary and leading
to the fusion of two TADs (21). We found that the ERBB2-JUP fusion
in the OE33 cell line was associated with four collateral dependencies
in addition to the partner dependency on JUP. The known formation
of a neo-TAD provides a mechanistic explanation for expression
changes and the consequent presence of multiple dependencies in
close proximity to ERBB2 in this cell line. Therefore, through the
biological priors of COSMIC fusions and other COSMIC genes
involved in known structural variants, we demonstrated that
genome-scale CRISPR-Cas9 loss-of-function screening was effective
in identifying true fusion-associated dependencies.

Transcription factors are recurrent fusion-associated
dependencies

Having established the biological and statistical bases for partner
and collateral dependencies, we next assessed statistically significant
fusion-dependency pairings (those identified by multiple approaches)
for functional relevance (Supplementary Table S12; Materials and
Methods). Among recurrent fusion-associated dependencies, several
Forkhead-box transcription factors (42, 43) were essential to cancer
cell survival. We observed three instances of intrachromosomal
FOXR1 fusions associated with FOXR1 as a differential dependency,
occurring independently in osteosarcoma, lung adenocarcinoma, and
bladder carcinoma cell lines (Fig. 4A). All three fusions preserved the
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active Forkhead domain of FOXR1. There have been previous reports
of intrachromosomal fusions involving FOXR1, a member of the
Forkhead-box family, in rare cases of neuroblastoma. The FOXR1
fusions in cell lines were associated with the overexpression of FOXR1,

which is normally only seen in embryogenesis (Supplementary
Fig. S15A–S15C; refs. 44, 45). Therefore, there was strong statistical
evidence for FOXR1 fusions creating fusion-associated dependencies
with implications for oncogenesis.

Figure 3.

Copy number and mutation data; comparison of unbiased RNA overexpression and dependencies associated with fusions; COSMIC fusions demonstrate utility and
limitations ofCRISPR–Cas9 for identifying essential genes.A,Count of instances inwhich a fusion-associateddependency in a cell line is associatedwith copy number
amplification. B, Count of instances in which a fusion-associated dependency in a cell line is associated with a concurrent somatic mutation. C, Comparison of the
count of fusion-overexpressed gene pairings and fusion-dependency pairings. Top, partner genes. Bottom, collateral genes.D, Proportion of all COSMIC fusionswith
corresponding dependency data (n ¼ 35) with at least one partner dependency, at least one collateral dependency, or no associated dependency. E, Left,
dependency space for cell lines with BCR–ABL1 fusion; both BCR and ABL1 are identified as dependencies. Right, dependency space for cell lines with EWSR1–FLI1
fusion; FLI1 is a strong dependency, but EWSR1 is not a strong selective dependency as it is a common essential gene. F,Dependency space for cell lineswith EWSR1–
ERG fusion. ERG does not screen as a dependency because of sgRNA location (red lines) off the EWSR1–ERG fusion transcript, with breakpoint illustrated.
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To demonstrate the clinical relevance of FOXR1 fusions, we used
FOXR1 overexpression in a cohort of >12,000 clinical samples as a
preliminary screen for identifying clinical samples thatmay harbor this
fusion (Materials and Methods; Supplementary Fig. S16A). Among
clinical samples with the highest degree of FOXR1 overexpressionwere
four neuroblastoma samples from the TARGET study (Supplementary
Fig. S16B; ref. 45). We identified FOXR1 fusions in all four

neuroblastoma samples, and demonstrated that in the three cases
of intrachromosomal fusions, there was associated copy number
alteration at the 11q23.3 locus where FOXR1 resides (Supplemen-
tary Table S18).

Having established the clinical relevance of FOXR1 fusions, we next
validated the observed FOXR1 dependencies in two cell linemodels. In
the osteosarcoma cell line 143Bharboring aPAFAH1B2-FOXR1 fusion

Figure 4.

Fusions involving FOXR1 result in recurrent associated partner dependencies.A, FOXR1 fusions are associated with dependency on FOXR1 in three different cell lines.
This is supported by fusion transcripts that preserve the functional domain of FOXR1 (colored regions). DDX6–FOXR1 is seen in bladder cancer cell line 639V,
PAFAH1B2–FOXR1 is seen in osteosarcoma cell line 143B, andRPS25–FOXR1 is seen in lung cancer cell line CALU6.B andC,CRISPR–Cas9 knockout of FOXR1 validates
FOXR1 fusion dependency in osteosarcoma cell line 143B (B) and lung cancer cell line CALU6 (C). Top, immunoblot showing FOXR1 fusion protein expression after
CRISPR-mediated knockout. Middle and bottom, cells infected with either nontargeting or FOXR1 targeting sgRNAwere assessed for cell growth using CellTiter-Glo
(middle) and crystal violet staining (bottom).
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and associated FOXR1 dependency, we found that CRISPR-mediated
knockout of the fusion led to a significant reduction in cell growth
(Fig. 4B). Similarly, in the lung cancer cell line CALU6 harboring a
RPS25-FOXR1 fusion and associated FOXR1 dependency, we dem-
onstrated that CRISPR-mediated knockout of the fusion resulted in
decreased cell growth (Fig. 4C). Thus, FOXR1 fusions created depen-
dency on the fusion partner FOXR1, integral to cancer cell survival
when present.

FOXA1 is another member of the Forkhead-box family, and con-
tributes to oncogenesis in different cancers, playing a central role in
prostate cancer (42). Prior work demonstrated that rearrangement in the
FOXA1 TAD leads to the hijacking of a nearby enhancer known as
FOXMIND and contributes to FOXA1 overexpression in a prostate
cancer cell line, VCAP (46). We observed the presence of a TTC6–
MIPOL1 fusion in twoprostate cancer (includingVCAP) cell lines, aswell
as onecolorectal cancer, breast cancer, and lungcancer cell line.TTC6 and
MIPOL1 flank the FOXA1 locus; for the prostate cancer and colorectal
cancer cell line with the TTC6–MIPOL1 fusion and dependency data
available, FOXA1 was a strong collateral dependency (Supplementary
Fig. S17A). In other cell lineswith the fusionbutwithout dependencydata
available, FOXA1 was highly overexpressed. TTC6–MIPOL1 has been
previously reported as a recurrent adjacent gene rearrangement in breast
cancers (47). Our results suggest that this previously described rear-
rangement contributes to oncogenesis through FOXA1 overexpression
not only in prostate cancer, but other cancers as well.

Finally, among other transcription factors, we observedHNF1A as a
collateral dependency associated with two distinct fusions in gastric
cancer cell lines, and it was associated with a mean log2-fold change
of 4 in expression (Supplementary Fig. S17B). The context specificity
suggests that rearrangements in close proximity to HNF1A may
contribute to its overexpression and resulting essentiality in some
gastric carcinoma cell lines. In summary, we established that fusions
contribute to oncogenesis in several instances by creating partner and
collateral dependencies on transcription factors.

Clinical applicability of fusion-associated dependencies
We finally examined whether highly recurrent clinically observed

fusions created potential clinically actionable collateral dependencies.
Approximately 15% of patients with multiple myeloma have a trans-
location (4;14), which is associated with poor prognosis (48). In this
translocation, the IgH enhancer is juxtaposed with NSD2 and FGFR3,
leading to aberrant expression of both genes located in close proximity
to each other. Because FGFR3 overexpression is not universal in t(4;14)
cases, there have been different reported conclusions about the gene
that is most relevant to oncogenesis in the presence of this
rearrangement (49–52). Here, five t(4;14) multiple myeloma cell lines
with dependency data were identified as having an IgH–NSD2 fusion.
Compared with multiple myeloma cell lines without this fusion, both
FGFR3 and NSD2 were overexpressed (Fig. 5A; Supplementary Figs.
S18A–S18C). However, only FGFR3 was a strong dependency in these
cell lines (Fig. 5B; Supplementary Table S19). Concurrent FGFR3
mutations were seen in three of the five cell lines (missense in KMS18
andOPM2, silent inKMS11). FGFR3 remained a dependency in two of
the cell lines without concurrent FGFR3missense mutations (KMS26
and KMS34), supporting IgH–NSD2 as the primary molecular lesion
driving this dependency.

A multiple myeloma cell line with the fusion (KMS11) was char-
acterized by increased H3K27ac and H3K9ac, and relatively decreased
H3K27me3, at FGFR3 reflective of an active transcriptional state in the
presence of the fusion (Fig. 5C; Supplementary Figs. S19A and S19B;
refs. 22, 23). In addition, the top two statistically significant therapies in

this context were cediranib and lenvatinib, which are multikinase
inhibitors that also have established anti-FGFR activity (Fig. 5D; refs.
53–55). Although not statistically significant for an unbiased screen,
FGFR3 inhibitors AZD4547 and nintedanib also demonstrated
increased activity against multiple cell lines with the IgH–NSD2 fusion
(Fig. 5D). Integrating collateral dependencies with matching epige-
netic and therapeutic data, we found FGFR3 to be the targetable
dependency in t(4;14) multiple myeloma cell lines.

Finally, given the patient-specific nature of many fusion-associated
dependencies, we evaluated whether such events could be translated to
spheroid models, which have demonstrated utility for patient-derived
prospective precision cancer medicine studies (56). Han and collea-
gues performed genome-scale CRISPR screening for dependencies in
multiple spheroidmodels, one of which was derived from the NCIH23
lung cancer cell line with a THADA–MTA3 fusion (35). In addition to
being a partner dependency in DepMap cancer cell lines (C10,
NCIH3122) with the EML4–ALK COSMIC fusion (57), we observed
EML4 to be a collateral dependency in the NCIH23 cell line with the
THADA–MTA3 fusion. There was strong evidence for the presence of
the THADA–MTA3 fusion in the NCIH23 cell line from RNA-seq and
WGS data (Fig. 6A).

In evaluating phenotypic kill scores for sgRNAs targeting EML4,
there was increased dependency on EML4 in the spheroid model
derived from the NCIH23 cell line in comparison with the spheroid
models derived from cell lines without theTHADA–MTA3 fusion (P¼
0.013, two-sided t test; Fig. 6B; Supplementary Fig. S20A). To ensure
that this was not the case for all genes, we evaluated mean phenotypic
kill scores for sgRNAs targeting nonessential genes as defined by Hart
and colleagues, and observed a similar distribution in spheroidmodels
with and without the THADA–MTA3 fusion (Fig. 6B; Supplementary
Fig. S20B; ref. 58). EML4 as a fusion-associated dependency appeared
to be relevant in three-dimensional cancer models, establishing rel-
evance for discovering potentially actionable fusion-associated depen-
dencies from clinical cancer samples.

Discussion
In this study, we demonstrated that many fusions contribute to

cancer cell survival by creating partner and collateral dependencies.
We also showed that while fusions frequently lead to transcriptional
dysregulation, which is the likely intermediate mechanism for creating
fusion-associated dependencies when they exist, there is only modest
overlap between the unbiased overexpression and dependency spaces.
Not all transcriptional dysregulation resulting from structural varia-
tion contributes directly to cancer cell survival, and CRISPR–Cas9
dependency provides significantly more insight into essential gene
expression changes that often do not manifest as pan-cancer genome-
scale overexpression, but still confer a fitness advantage.

We leveragedWGSdata to demonstrate that fusions could arise from
simple structural variants directly contributing to collateral dependen-
cies, or alternatively be proxies for more complex rearrangements
contributing to the development of collateral dependencies. Although
in the latter case, the precise role of the fusion in the development of the
collateral dependency was more difficult to define, we reasoned that
fusions still contributed meaningfully to cancer cell survival in many of
these instances because the enrichment of collateral genes among
dependencies was greatest for fusions as compared with other SVs.

We showed that specific fusion-associated dependencies had bio-
logical and clinical relevance. The FOXR1 fusions were associated with
dependency on FOXR1 in different cancer cell contexts; we validated
these dependencies in cell lines and demonstrated that FOXR1 fusions
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also occur in a subset of clinical samples. Similarly FGFR3, a targetable
kinase, was the key dependency in t(4;14) multiple myeloma cell
lines that harbored an IgH–NSD2 fusion. We also showed that the
implications of fusion-associated dependencies extended beyond two-
dimensional cell line space, exemplified by dependency onEML4 in the
context of a THADA–MTA3 fusion persisting in spheroid models.

There were limitations in our methodology. By focusing our
analysis on fusions, applying standardized TAD boundaries to

account for variability across cancer cell lines, and relying on
loss-of-function screening, we likely underestimated the total
impact of structural variants on cancer cell survival. Our
genome-scale screen, which relied on a modified t test approach,
was inherently limited by the non-Gaussian distribution of depen-
dency probability scores and small numbers of cell lines with any
given fusion. We addressed this limitation through an alternative
permutation-based identification of fusion-associated dependencies

Figure 5.

IgH–NSD2 fusion is associated with FGFR3 as a collateral dependency in multiple myeloma cell lines. A, Differential expression space for multiple myeloma cell lines
only, stratified by the presence/absence of IgH–NSD2 fusion, shows that both NSD2 and FGFR3 are overexpressed. B, Dependency space for five multiple myeloma
cell lineswith IgH–NSD2 fusion (KMS34, KMS11, KMS26, KMS18, OPM2) inwhich FGFR3 is the strongest identified dependency.C,Histone ChIP-seq data at the FGFR3
locus. D, AUC values from an unbiased compound screen in multiple myeloma cell lines, stratified by the presence/absence of IgH–NSD2 fusion; negative values for
difference in AUC indicate more potent killing for cells with IgH–NSD2 fusion.
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and found substantial overlap in these two approaches, but also
differences to suggest that some of our fusion-associated depen-
dencies were more likely to be false positives. Comparison of these
approaches also showed that limiting hypotheses to partners or
collateral genes increased the discovery of fusion-associated depen-
dencies, suggesting our genome-scale approach may have under-
estimated how frequently fusions create partner and collateral
dependencies.

Regarding some unbalanced rearrangements, sgRNA location rel-
ative to fusion breakpoints failed to capture what would likely be true
dependency on a partner gene, reducing the sensitivity of CRISPR in
identifying fusion partner genes important to cancer cell survival. In
other cases, despite sgRNA location off of a fusion transcript, fusion
partners still screened as dependencies. We reasoned that these
examples may represent an alternate mechanism by which a translo-
cation may contribute to a partner gene becoming a dependency

Figure 6.

Spheroid models provide an opportunity for further validation of fusion-associated dependencies. A, Left, EML4 is a partner dependency in the context of known
COSMIC fusion EML4–ALK in two cell lines (C10, NCIH3122). Right, EML4 is a collateral dependency in the context of a less well-characterized fusion THADA–MTA3 in
one cell line (NCIH23). Bottom, there is good support from RNA-seq andWGS for the presence of the THADA–MTA3 fusion in the NCIH23 cell line. B, Comparison of
phenotypic kill scores of CRISPR sgRNAs in spheroid models derived from NCIH23 and two cell lines without THADA–MTA3 fusion. Left, CRISPR sgRNAs targeting
EML4 (point represents mean of each sgRNA distribution; P¼ 0.013, two-sided t test). Right, mean of CRISPR sgRNAs targeting all nonessential genes (each point
represents mean of sgRNA distribution for each nonessential gene).
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(interruption of one allele through involvement in a fusionmay lead to
the contralateral allele becoming essential for cell survival) or that they
are balanced translocations and the reciprocal transcripts were simply
not detected (Supplementary Table S17; Supplementary Figs. S21A
and S21B). We sought to understand whether there were idiosyn-
cratic effects of CRISPR–Cas9 that could lead to the creation of
false-positive fusion-associated dependencies. Despite the high rate
of copy-number amplification among fusion-associated dependen-
cies, we reasoned that because copy-number correction through the
CERES algorithm was incorporated into dependency probability
scores, a nonspecific copy number effect was unlikely to be the
primary explanation for most fusion-associated dependencies. We
also considered whether CRISPR–Cas9 would differentially identify
false-positive fusion-associated dependencies at fragile sites and
found that only two of 363 fusions with associated dependencies
had a partner in a known fragile site and that none of the
dependencies themselves were located in fragile sites (59). We
concluded that the rate of false-positive fusion-associated depen-
dencies was likely to be low.

Broadly, our researchprovidesnew insight intohow fusionscontribute
to fitness in different cancer contexts going beyond their straightforward
partner-gene activation events, demonstrating that some of the identified
partner and collateral dependencies may have direct implications for
clinical care. Future studies are needed for further experimental valida-
tion of the regulatory elements involved in the fusion-associated depen-
dencies identified in this work. AsWGS of cancer cell lines increases, we
can broaden the scope of our approach to more fully characterize the
impact of structural variation on cancer cell survival.
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