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Abstract: Vaccination is an important means to fight against the spread of the SARS-CoV-2 virus and
its variants. In this work, we propose a general susceptible-vaccinated-exposed-infected-hospitalized-
removed (SVEIHR) model and derive its basic and effective reproduction numbers. We set Hong Kong
as an example and calculate conditions of herd immunity for multiple vaccines and disease variants.
The model shows how the number of confirmed COVID-19 cases in Hong Kong during the second
and third waves of the COVID-19 pandemic would have been reduced if vaccination were available
then. We then investigate the relationships between various model parameters and the cumulative
number of hospitalized COVID-19 cases in Hong Kong for the ancestral, Delta, and Omicron strains.
Numerical results demonstrate that the static herd immunity threshold corresponds to one percent of
the population requiring hospitalization or isolation at some point in time. We also demonstrate that
when the vaccination rate is high, the initial proportion of vaccinated individuals can be lowered
while still maintaining the same proportion of cumulative hospitalized/isolated individuals.

Keywords: COVID-19; SVEIHR model; compartmental model; vaccination; Delta variant; Omicron variant

1. Introduction

The COVID-19 pandemic has persisted for nearly three years since the end of 2019,
resulting in huge human and socioeconomic costs. Since the discovery of the original SARS-
CoV-2 virus in late 2019, many measures have been taken in an attempt to regain control
over the pandemic, including vaccine development and deployment, changes to healthcare
systems operations, and non-pharmaceutical interventions (NPIs) such as mask-wearing,
social distancing, and, in extreme situations, lockdowns. However, in the meantime, the
original virus has mutated to become even more infectious. In particular, the Delta variant
became dominant in most of the world soon after its emergence, only to be replaced by the
even more transmissable and virulent Omicron variant.

Mathematical modeling [1–3] is therefore required to capture the dynamics of the
COVID-19 pandemic in the presence of vaccinations, NPIs, and new disease variants.
Important and urgent questions that epidemiological modeling can help address include:

• whether herd immunity can be achieved and the pandemic eventually eradicated;
• the risk of COVID-19 epidemic resurgence [4];
• what are the driving socio-demographic and health factors behind the epidemic

progression;
• how to optimize vaccination strategy [5], or whether long-term co-existence with the

virus should be pursued instead;
• whether and when to reopen international or national (e.g., state or provincial) borders;
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• whether additional surge capacity is required at hospitals; and
• who to prioritize during vaccination (e.g., providing second doses or booster shots

versus increasing efforts to give more people their first dose).

In the following subsection, we summarize the existing literature on epidemiological
modeling of COVID-19 in the presence of vaccination.

1.1. Background and Related Work

A common approach for epidemiological modeling is the use of compartmental mod-
els, where each compartment represents a possible state of individuals in the population.
The dynamics of the number of individuals in each compartment can then be described as
a system of differential equations. A key concept in epidemiological modeling is the repro-
duction number, defined as the average number of individuals an infected individual will
infect. In particular, the basic reproduction number R0 assumes a fully susceptible population,
whereas the effective reproduction number changes over time in accordance with the disease
dynamics. In general, a reproduction number less than 1 is associated with herd immunity,
in which the disease will eventually die out.

If the basic reproduction number of a disease exceeds one, vaccination can be used
to reduce the effective reproduction number. The vaccination threshold, defined as the
minimum proportion of individuals to be vaccinated in order to reach herd immunity, is
generally defined as

ρmin =
1− 1/R0

ve
(1)

where ve is the mean vaccine efficacy. However, a problem with this classical formula
is that it fails to describe the dynamic interactions during an epidemic between disease
transmission and ongoing vaccination. This is important for novel diseases, such as COVID-
19, for which vaccines are initially not available.

Matrajt et al. [6] proposed a multi-dose vaccination model for COVID-19 and found
that if the single-dose efficacy of a vaccine against COVID-19 is high, then prioritizing the
first dose, even at the possible expense of delaying the second dose of two-dose vaccines,
may help to contain the pandemic more quickly. Meanwhile, [7–10] consider optimal
prioritization of vaccination groups (based primarily on age). However, [6,9] both consider
relatively low basic reproduction numbers (R0) for COVID-19, even when all NPIs are
relaxed, compared to current estimates of R0 ≈ 5 for the Delta variant [11] and R0 ≈ 9.5 for
the Omicron variant [12]. Furthermore, [7,8] do not provide estimates of herd immunity
thresholds for COVID-19.

Giordano et al. [13] show that NPIs have a higher effect than vaccination alone and
advocate for the need to keep NPIs in place during the first phase of the vaccination
campaign. However, the authors do not consider the relaxation of NPIs later on during
the pandemic, when the vaccination ratio is high. We shall consider this latter scenario in
this paper. In contrast, [14] considers the optimization problem of minimizing the total
impact of social distancing measures over time given certain healthcare capacity constraints.
Therefore, the gradual relaxation of NPIs occurs naturally as vaccination ratios increase.

Finally, a shared feature of [7–9] is that they all employ complex compartmental
models, with stratification based on age and possibly other factors such as vaccination status.
In this paper, we instead use a much simpler model, without the need for many stratified
compartments, allowing for easier sensitivity analysis and interpretation of the results.
Although many conclusions and recommendations (such as the prioritization of certain
groups for vaccination) can only be obtained using stratified models, we demonstrate that
some important insights can still be obtained using our simpler model.

1.2. Contributions of This Paper

The main contributions of this paper are as follows:

• We propose a mathematical model to characterize the epidemiological process of
COVID-19 with vaccination and derive formulas for its vaccine reproduction number
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(similar to R0 but assuming a fully vaccinated population) and effective reproduc-
tion number. We show that, based on the current ratio of CoronaVac (Sinovac) and
Comirnaty (Pfizer–BioNTech) vaccinations in Hong Kong, herd immunity could not
have been obtained via vaccination alone. Furthermore, no ratio of CoronaVac versus
Comirnaty vaccinations can achieve herd immunity against Omicron via vaccina-
tion alone.

• Using our new model, we observe the impact of vaccination in terms of various
parameters (including the initial vaccination coverage at the start of a new outbreak,
the rate of new vaccinations, the average vaccine efficacy, and NPI intensity) on the
cumulative number of hospitalized cases, for both the original and Delta strains of the
SARS-CoV-2 virus, as well as the Omicron variant.

• We compute, for different vaccination rates and vaccine efficacies, the minimum initial
vaccination coverage required such that the cumulative number of hospitalized/isolated
cases is less than a given percentage of the population. Furthermore, we demonstrate
how a high vaccination rate decreases the required initial vaccination coverage.

• We find that the traditional formula (1) for herd immunity, assuming a static vacci-
nation coverage (i.e., an initial vaccinated group with no additional vaccinations),
corresponds to a cumulative hospitalization ratio of about one percent.

• We show how regions can achieve herd immunity at a lower vaccination coverage ratio
than that predicted by (1), but at the cost of additional infections (natural immunity
versus induced immunity).

Based on prevailing Hong Kong government policy during the Delta and previous
waves, we assume that all infected cases are sent to hospital or isolation in an ancillary
facility, even when infeasible due to lack of actual healthcare capacity (e.g., during the
Omicron wave).

Note that our model does not differentiate between hospitalization or isolation in a non-
hospital setting, as both outcomes prevent further transmission to the general population.
Although we take the population of Hong Kong as an example in this paper, our model is
general and thus applicable to any approximately homogeneous region. A previous version
of our proposed model, without vaccination, has been applied to several different regions
and found to be quite accurate at modeling the evolution of the COVID-19 pandemic. In
this regard, it is expected that the model used in this paper can be also applied to other
cities and countries for capturing the dynamics of vaccination.

In summary, rather than focusing on the conditions required to achieve herd immu-
nity, we focus instead on the cumulative number of infections throughout the course of
an epidemic. One justification for this is that the definition of herd immunity does not dis-
criminate between vaccine-induced immunity and natural immunity from disease recovery.
Although it is theoretically possible to achieve herd immunity via natural immunity alone,
due to the severity of some COVID-19 cases and the limitations on healthcare capacity, this
is not a desirable approach.

2. Methods
2.1. Compartmental Modeling for COVID-19

In [15,16], an SEIHR model is proposed for the modeling of COVID-19 in Hong Kong
and other regions in the absence of vaccination. The model was found to accurately describe
the number of confirmed cases in each region over time. Compared to the classical SEIR
model [2]—which contains a susceptible (S), exposed (E), infected (I), and removed (R)
compartment—the SEIHR model adds a “hospitalized” (H) compartment for confirmed
cases in hospital (or non-clinical isolation) and makes the E compartment contagious to
model the effect of asymptomatic and pre-symptomatic infections. By modeling both
unconfirmed cases (using the E compartment) and the isolation of confirmed cases (using
the H compartment), the SEIHR model achieves better results than the classical SIR and
SEIR models when fitting actual COVID-19 infection data.
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In this paper, we modify the previous SEIHR model by adding a “vaccinated” (V)
compartment. We call this new model the SEIVHR model. For simplicity, we assume a
single-dose vaccine where vaccination provides immediate protection, with an efficacy of
ve. We also assume that the rate of vaccinations at time t is proportional to S(t), the number
of unvaccinated susceptible individuals at time t. The full list of model parameters is
given in Table 1, along with some additional notation. The system of differential equations
describing the SVEIHR model can therefore be written as follows:

X(t) =
[
S(t) V(t) E(t) I(t) H(t) R(t)

]T

d
dt

X(t) =

G︷ ︸︸ ︷

−k− η(t) 0 0 0 0
k −ηV(t) 0 0 0

η(t) ηV(t) −β− δ 0 0
0 0 β −γ− δ 0
0 0 0 γ −δ
0 0 δ δ δ




S(t)
V(t)
E(t)
I(t)
H(t)

, (2)

where

η(t) = ε
E(t)

N
+ α

I(t)
N

ηV(t) = εV
E(t)

N
+ αV

I(t)
N

where Y(t) denotes the number of individuals in compartment Y at time t (for Y in
{S, V, E, I, H, R}), and α, ε, γ, and δ are all positive.

Table 1. List of symbols and parameters for the SVEIHR model depicted in Figure 1.

Symbol Definition

N Population size

ε Transmission rate of exposed individuals, unvaccinated targets

α Transmission rate of infected individuals, unvaccinated targets

ve (Mean) vaccine efficacy

εV Transmission rate of exposed individuals, vaccinated targets (refer to
Definition 1)

αV Transmission rate of infected individuals, vaccinated targets (refer to
Definition 1)

β Rate of exposed individuals becoming symptomatic

γ Hospitalization/isolation rate of infected individuals. Our model does not
differentiate between hospitalization and non-clinical isolation of
confirmed cases.

δ Recovery rate of exposed, infected, or hospitalized/isolated individuals

k Vaccination rate of susceptible individuals

rV(0) Ratio of vaccinated individuals at time 0 (i.e., V(0)/N, where N is the total
population)

c Control intensity of non-pharmaceutical interventions (NPIs), where c = 0
denotes no control, and c = 1 denotes complete cessation of disease
transmission
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Figure 1. Diagram of the SVEIHR model. Individuals in the model transition between the six states of
the model in accordance to the labeled per-individual transition rates between states. The “recovered”
(R) state is always a final state, while the “susceptible” (S) and “vaccinated” (V) states become final if
there are no longer any “exposed” (E) or “infected” (I) individuals in the system.

Remark 1. The non-diagonal elements of G correspond to the transition rates shown in Figure 1,
whereas the diagonal elements are defined such that the column sums of G are all zero.

Remark 2. The transmission rates η(t) and ηV(t) are the weighted averages of the individual
transmission rates for the population, where the individual transmission rate of individuals outside
of the E and I compartments is zero. These individual transmission rates depend on whether the
target individual is vaccinated or not.

Definition 1. The vaccine efficacy ve is the reduction in transmission rate for vaccinated targets,
such that εV = ε(1− ve) and αV = α(1− ve). In other words, ve = 0 denotes no difference
between the S and V compartments, whereas ve = 1 denotes that no individuals in compartment V
will ever catch the disease.

2.2. Reproduction Numbers

Recall that for the original SEIHR model proposed in [16],

R0 =
ε

β + δ
+

αβ

(γ + δ)(β + δ)
(3)

and herd immunity can be reached if 1− 1/R0 of the population achieves immunity, either
via vaccination or disease recovery. We define the following numbers:

• The basic reproduction number R0, referred to above, is the average number of individ-
uals an infectious individual will infect in a wholly susceptible population, without
vaccination.

• The vaccine reproduction number RV is the average number of individuals an infectious
individual will infect in a wholly vaccinated population.

• The effective reproduction number Re(t) is the average number of individuals an infec-
tious individual will infect based on the current situation at time t.

RV can be obtained from (3) by simply replacing the transmission rate parameters ε
and α by their counterparts for vaccinated individuals:

RV =
εV

β + δ
+

αVβ

(γ + δ)(β + δ)
. (4)

By extension, the effective reproduction number can be derived as a linear combination
of R0 and RV:

Re(t) =
S(t)
N

R0 +
V(t)

N
RV. (5)
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Remark 3. The effective reproduction number Re(t) is a weighted average of the basic and vaccine
reproduction numbers, where the weights are the proportion of unvaccinated (S) and vaccinated (V)
susceptible individuals in the population.

If NPIs are introduced with a control intensity of c, 0 ≤ c ≤ 1, then the transmission
rates α, ε, αV, and εV and the reproduction numbers RV and Re(t) are all scaled by a factor
of 1− c and written as:

RV,c = (1− c)RV

Re,c(t) = (1− c)Re(t).

2.3. Herd Immunity and Multiple Vaccines

For regions where multiple vaccines have been administered, we can use the average
efficacy across all vaccines, weighted by the proportion of vaccinated individuals taking
each vaccine. If the efficacy and uptake ratio of each vaccine i are denoted as ve,i and ri,
respectively, then the average efficacy is

ve = ∑
i

ve,iri. (6)

In Hong Kong, two vaccines have been administered, namely Comirnaty (Pfizer–
BioNTech) and CoronaVac (Sinovac). As of 10 April 2022, 3,438,310 people in Hong Kong
have completed two doses of Comirnaty, and 2,508,108 people have completed two does of
CoronaVac [17], giving r1 = 0.6 and r2 = 0.4. Based on efficacy studies for Delta [18–20],
we obtain ve,1 = 0.88 and ve,2 = 0.59. From these values, we obtain an average vaccine
efficacy of ve = 0.758.

Given an estimated R0 of 5 for Delta [11], we obtain a vaccination threshold of

ρmin =
1− 1/R0

ve
(R0 = 5, ve = 0.758)

= 1.055 > 1,

which implies that herd immunity via vaccination alone was impossible in Hong Kong
given the current mix of vaccines. However, a greater proportion of Comirnaty vaccinations
could have achieved herd immunity via vaccination alone. The minimum value of r1 for
this scenario, assuming a fully vaccinated population, can be obtained using (1) and (6):

1− 1/R0

ve,1rmin
1 + ve,i

(
1− rmin

1
) = 1 (ve,1 = 0.88, ve,2 = 0.59, R0 = 5)

rmin
1 = 0.7241. (7)

For Omicron, estimates for the basic reproduction number for Omicron range from
7.25 to 11.88 [12]. In this paper, we shall assume an R0 value of 9.5 for exemplary purposes.
In other words, even with a fully vaccinated population, the required minimum vaccine
efficacy would be 1− 1/R0 = 0.894. In contrast, efficacy studies [21] have given values of
ve,1 = 0.655, considerably less than the required threshold, whereas for CoronaVac, Yale
researchers found effectively no neutralizing antibodies in volunteers against the Omicron
variants even after two doses administered [22]. Therefore, herd immunity via vaccination
alone is impossible against Omicron.

More generally, we can state the following:

• If 1− 1/R0 ≤ min(ve,1, ve,2): either vaccine can achieve herd immunity via vaccination
alone.

• If 1− 1/R0 > max(ve,1, ve,2): neither vaccine can achieve herd immunity via vaccina-
tion alone.
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• Otherwise: whether herd immunity can be achieved via vaccination alone depends on
the mix of vaccines administered.

Where herd immunity is impossible via vaccination alone, it can instead be achieved
via a mix of vaccination and natural immunity (i.e., via the recovery of infected individuals).

2.4. Asymptotic Behavior

Let R(∞) = limt→∞ R(t) denote the limiting number of removed (recovered or de-
ceased) individuals in system (2), and let Hc(∞) denote the cumulative number of hospi-
talized/isolated individuals as t → ∞. We now explore the relationship between R(∞)
and Hc(∞). First, we note that there are three paths from compartment E to compartment
R, namely E → R, E → I → R, and E → I → H → R. Let the proportion of exposed
individuals that follow each path be p1, p2, and p3, respectively.

Since all paths from E lead to R, and all paths to R include E, the cumulative number
of exposed individuals, Ec(∞), is equal to R(∞). Furthermore, since compartment H exists
on the E→ I → H → R path only, we obtain Hc(∞) = p3R(∞). Finally, from Figure 1, we
can see that

p3 =

(
γ

γ + δ

)(
β

β + δ

)
. (8)

Remark 4. The value p3 in (8) denotes the proportion of exposed individuals who are hospitalized or
isolated for the disease. In other words, 1− p3 of cases recover on their own without being detected.

3. Results and Discussions

In this section, we present simulation results for our SVEIHR model under various
scenarios. For the sake of example, we set N = 7,394,700 [23], the approximate population
of Hong Kong as of 12 August 2021.

3.1. Ancestral Strain

Based on [16], we set (ε, α, β, γ, δ) = (0.48, 0.5, 0.14, 1, 0.1) for the ancestral strain of
COVID-19, obtaining R0 = 2.26. Figure 2 shows the evolution of each compartment
of the SVEIHR model (2), given initial state X(0) = (N − 1, 1, 0, 0, 0, 0), that is, a single
exposed individual at time 0, a vaccination rate of k = 0.002, a vaccine efficacy of ve = 0.95
(approximately that of Comirnaty for the ancestral strain), and no NPIs (c = 0). It is shown
that the number of hospitalized/isolated individuals mostly dies out within 100 days;
however, most of the population will eventually catch the disease in this scenario, as shown
by the dark green line. Additionally, a large proportion of cases are undetected, as shown
by the large gap between the two green lines. Furthermore, the number of successful
vaccinations (vaccinated individuals that do not later become exposed) remains low, at
about one million at t = 100.

For the ancestral strain, we define individual vaccine efficacies of ve,1 = 0.95 and
ve,2 = 0.51 and vaccine uptake ratios of r1 = 0.6 and r2 = 0.4 for the Comirnaty and
CoronaVac vaccines, respectively. Applying (6), we obtain a mean vaccine efficacy of
ve = 0.774. Next, applying (1), the theoretical vaccination threshold for herd immunity is
(1− 1/2.26)/0.774 = 0.7203, implying that herd immunity against the ancestral strain was
possible via vaccination alone. However, as we will show in this paper, this would have
required a high ratio of vaccination individuals before an outbreak occurred, which was
impossible as vaccines had yet to be developed when the ancestral strain first propagated.
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Figure 2. Evolution of the SVEIHR model for the ancestral strain of SARS-CoV-2, with parameters
(ε, α, β, γ, δ) = (0.48, 0.5, 0.14, 1, 0.1), vaccination rate k = 0.002, vaccine efficacy ve = 0.95, and initial
values X(0) = (N− 1, 1, 0, 0, 0, 0). The first six lines in the legend depict the number of individuals in
each compartment over time, while the final (bright green) line depicts the cumulative number of
hospitalized or isolated individuals.

3.2. The Second and Third Waves in Hong Kong

We now explore how the second and third waves in Hong Kong would have evolved
differently under vaccination, using parameters for the ancestral strain (ve = 0.774). The
cumulative number of hospitalized/isolated cases over time is shown in Figures 3 and 4
for different initial vaccination coverage ratios rV(0) and vaccination rates k, with initial
model states as listed in Table 2.

The results demonstrate that vaccination has a significant impact in reducing the
Hc(∞) for both waves, despite the relatively lower efficacy of CoronaVac, which was
chosen by approximately two-fifths of the population. In fact, this holds true even in the
case of rV(0) = 0, denoting zero initial vaccinations, with vaccination commencing only at
the start of the disease wave. The effect is especially pronounced when the vaccination rate
k is large. The reduction in cumulative hospitalizations increases when the vaccination rate
and/or initial vaccination coverage is increased.

Table 2. Initial values for the second and third waves of COVID-19 in Hong Kong with vaccina-
tion added.

Initial Value Second Wave Third Wave

V(0) rV(0)N rV(0)N
E(0) 9 9

I(0) 1 1

H(0) 0 0

R(0) 72 1193
N = 7,394,700, S(0) = N −V(0)− E(0)− I(0)− H(0)− R(0).
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Figure 3. Impact of vaccination with two vaccine types on the second wave of COVID-19 in Hong
Kong: (ε, α, β, γ, δ) = (0.48, 0.5, 0.14, 1, 0.1) and ve = 0.774, with initial values as in Table 2. Increasing
the initial vaccination coverage (rV(0)) and/or the subsequent vaccination rate (k) significantly reduces
the cumulative number of hospitalizations and isolations.

Figure 4. Impact of vaccination with two vaccine types on the third wave of COVID-19 in Hong Kong:
(ε, α, β, γ, δ) = (0.48, 0.5, 0.14, 1, 0.1) and ve = 0.774, with initial values as in Table 2. Increasing the
initial vaccination coverage (rV(0)) and/or the subsequent vaccination rate (k) significantly reduces
the cumulative number of hospitalizations and isolations.
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3.3. Sensitivity with Respect to Initial Vaccination Coverage rV(0) and Vaccination Rate k

In the following subsections, we use contour plots to investigate Hc(∞) with re-
spect to pairs of parameters in the SVEIHR model related to vaccination and NPIs. The
other parameters of the model are set to (ε, α, β, γ, δ) = (1.3637, 1.3637, 0.2273, 1, 0.1)
for Delta, thus obtaining a basic reproduction number of R0 = 5, and (ε, α, β, γ, δ) =
(2.5767, 2.5767, 0.2273, 1, 0.1) for Omicron, thus obtaining R0 = 9.5. This is consistent with
the estimates of R0 = 5.08 and R0 = 7.25 to 11.88 obtained in [11] and [12] for Delta and
Omicron, respectively.

Figure 5A shows Hc(∞) with respect to the initial vaccination coverage rV(0) and
vaccination rate k for different control intensities c and a vaccine efficacy of ve = 0.88, as
for Comirnaty [18]. Figure 5B shows the same, but with a vaccine efficacy of ve = 0.655, as
for CoronaVac [19]. The results show that relatively low numbers of hospitalizations are
possible under Comirnaty-only vaccination, even without NPIs for control, whereas a high
control intensity is required for CoronaVac-only vaccination, regardless of the number of
vaccinations. This is consistent with (7), where it is demonstrated that the minimum ratio
of Comirnaty vaccinations to achieve herd immunity via vaccination alone is rmin

1 = 0.724,
based on the static formula for herd immunity.

However, for the Omicron variant, Figure 5C,D show that regardless of vaccine, strong
NPI control (c = 0.75) is necessary to ensure a low number of hospitalizations or isolations.
This is due to both the increased transmission rate of Omicron (higher R0) and a lower
vaccine efficacy. However, Comirnaty still produces lower hospitalization numbers than
CoronaVac.

(A)

Figure 5. Cont.
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(B)

(C)

(D)

Figure 5. Cumulative hospitalizations/isolations Hc(∞) with respect to initial vaccination cover-
age rV(0) and vaccination rate k for (A) a simulated Delta outbreak with Comirnaty vaccinations,
ve = 0.88; (B) a simulated Delta outbreak with CoronaVac vaccinations, ve = 0.59; (C) a simulated
Omicron outbreak with Comirnaty vaccinations, ve = 0.655; and (D) a simulated Omicron outbreak
with CoronaVac vaccinations, ve = 0.51. The results show that while Comirnaty can control a Delta
outbreak without NPIs (if vaccination is high), only stringent NPI controls are able to limit the spread
of Omicron, regardless of vaccination status.

Figure 5 shows that increasing either the NPI control intensity (c) or the vaccination
rate (k) decreases the minimum initial vaccination coverage rV(0) required for Hc(∞) to
remain under a certain limit. In other words, governments do not need to wait for the
theoretical vaccination threshold ρmin = (1− 1/R0)/ve to be reached to lift NPIs, as long
as the vaccination rate is sufficiently fast. On the other hand, even for the less virulent
Delta variant and all-Comirnaty vaccination, a relatively high rV(0) value of 0.75 is still
required when c = 0 (no NPI controls) to avoid a large outbreak, as shown by the green
transition zone in Figure 5A.
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3.4. Sensitivity with Respect to Vaccine Efficacy ve and Initial Vaccination Coverage rV(0)

Figure 6 shows Hc(∞) with respect to the vaccine efficacy ve and initial vaccination
coverage rV(0) for simulated Delta and Omicron outbreaks. It is shown that a very high
vaccine efficacy and initial vaccination coverage is required to control the cumulative
number of hospitalizations. Note that for k = 0, the boundaries of the green transition
arc, denoting a set of tipping points separating low and high levels of hospitalization, are
around rV(0) = 0.8 (for perfect vaccine efficacy) and ve = 0.8 (for perfect initial vaccination
coverage), corresponding to the expected value of 1− 1/R0 . On the other hand, increasing
the vaccination rate k elongates the transition arc in the rV(0) axis but not the ve axis. This
is because when rV(0) = 1, the value of k has no effect, as all individuals are already
vaccinated at the start of the outbreak.

Finally, compared to Delta, the higher R0 value of Omicron results in a much smaller
region in which the cumulative number of hospitalizations/isolations can be kept low. This
reflects the reality where vaccination alone is not sufficient to reach herd immunity against
Omicron, given the current state of the available vaccines. Instead, natural immunity caused
by infection has played a major role in ending the “fifth” wave wave of COVID-19 in Hong
Kong (the first caused by Omicron), whereas no previous wave had caused significant case
numbers in Hong Kong by comparison.

(A)

(B)

Figure 6. Cumulative hospitalizations/isolations Hc(∞) with respect to the initial vaccination cov-
erage rV(0) and average vaccine efficacy ve for simulated (A) Delta and (B) Omicron outbreaks
and no NPIs (c = 0). The area of the blue region, representing a low number of total infec-
tions/hospitalizations, increases with k, the vaccination rate.

3.5. Measuring the Effective Reproduction Number over Time

Considering the Omicron example from Section 3.4, we plot the effective reproduction
number Re(t) over time for various vaccine efficacy values ve and initial vaccination
coverage ratios rV(0), with a vaccination rate of k = 0.002 and no NPIs (c = 0). The results,
shown in Figure 7, demonstrate that the lowest ve values actually yield the lowest Re(t)
for sufficiently large t, despite yielding the highest Re(t) at the beginning of the outbreak.
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This can be explained by noting that a low vaccine efficacy results in a very large number
of infections at the beginning of the outbreak, causing greater depletion of the susceptible
and vaccinated compartments. In other words, a high transmission rate for susceptible
individuals does not automatically lead to a high number of new infections if there are few
people left to infect.

3.6. Sensitivity with Respect to Vaccine Efficacy ve and NPI Control Intensity c

Figure 8 shows Hc(∞) with respect to ve and the control intensity c of NPIs for different
rV(0) and a vaccination rate of k = 0.005. It is shown that for an initial vaccine coverage
of less than 70 percent (rV(0) ≤ 0.7), even a perfect vaccine (ve = 1) cannot control either
outbreak (Delta or Omicron) without some NPI control. For reference, [24] estimates that
mask wearing alone can achieve a control intensity of c = 0.2 (i.e., 80% efficacy) “among
compliant subjects”.

For Omicron, the blue region (representing a relatively low number of hospital-
ized/isolated individuals) is much smaller than for Delta, which again confirms that
Omicron is much more infectious than Delta. This explains why more than one million
people in Hong Kong were infected by Omicron despite stringent NPI controls and high
vaccine availability, whereas the previous non-Omicron waves in Hong Kong caused
significantly fewer infections in comparison.

Figure 7. Effective reproduction number Re(t) with respect to time t for a simulated Omicron
outbreak, with initial vaccination coverage ratio rV(0), vaccine efficacy ve, a vaccination rate of
k = 0.002, and no NPIs (c = 0). Note that the lowest vaccine efficiencies result in the lowest Re(t) for
large t, as the supply of susceptible individuals becomes depleted.
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(A)

(B)

Figure 8. Cumulative hospitalizations/isolations Hc(∞) with respect to the vaccine efficacy ve and
NPI control intensity c for simulated (A) Delta and (B) Omicron outbreaks and no NPIs (c = 0). The
area of the blue region, representing a low number of total infections/hospitalizations, increases with
k, the vaccination rate.
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3.7. Sensitivity with Respect to Vaccine Efficacy ve and Reproduction Number R0

Estimates of the basic reproduction number for Omicron range from 7.25 to 11.88 [12],
which is much higher than even that for Delta. In this subsection, we therefore explore
the effect of increasing R0 on the cumulative number of hospitalizations/isolations, by
increasing the transmission rates α and ε in fixed proportion. Figure 9 shows Hc(∞) with
respect to ve and R0 for various values of rV(0), a vaccination rate of k = 0.002, and an
NPI control intensity of c = 0.8. The results demonstrate that the minimum vaccine
efficacy required to avoid a large outbreak increases with R0, until a certain threshold
is reached, upon which the outbreak cannot be controlled via vaccination alone. This
threshold increases with rV(0), implying that a more transmissible disease requires a larger
initial vaccination coverage ratio or stricter NPIs to prevent a large outbreak.

Figure 9. Cumulative hospitalizations and isolations Hc(∞) with respect to R0 and the vaccine efficacy
ve for a simulated epidemic outbreak and no NPIs (c = 0). The area of the blue region, representing
lower total infections/hospitalizations, increases with respect to rV(0), the initial vaccination coverage.

Figures for c = 0.2 and 0.5 are provided in the Supplementary Materials as Figures S1 and S2.
The results show that increasing the control intensity c increases the maximum R0 of the
disease for which a low number of hospitalizations/isolations can be maintained (for the
same vaccination efficacy ve).

3.8. Dynamic Versus Static Vaccination Thresholds

We consider, for various vaccine efficacies ve, the minimum vaccination threshold
required such that the cumulative number Hc(∞) of hospitalizations/isolations is less than
some value h. Note that this is different from the theoretical herd immunity threshold
defined in (1). For various vaccination rates k, we compute the theoretical herd immunity
threshold ρmin, as well as two additional values:

• rmin
V(0) denotes the minimum initial vaccination coverage for a given vaccination rate k

such that Hc(∞) < h.
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• rHI denotes the dynamic vaccination threshold, which we define as rHI = V(t∗)/N,
where V(0)/N = rmin

V(0) is the initial vaccination coverage and t∗ denotes the minimum
time after which Hc(∞) < h even if all new vaccinations were to cease at time t∗.

The results are shown in Figure 10 for h ∈ {0.01N, 0.1N}, no NPIs (c = 0), and
various vaccination rates k. As in Section 3.7, the parameters for different values of R0
are based on scaling the base parameters for the Delta variant such that the R0 value is
equal to that shown in the figures. Figures for additional values of h are available in the
Supplementary Material.

The results show that when k is high, rmin
V(0) can be significantly less than rHI and ρmin,

meaning that faster vaccination results in a lower initial vaccine coverage ratio required
to maintain the size of an outbreak under a given limit. A consequence of this is that
governments can consider lifting NPIs even before the theoretical vaccination threshold
for herd immunity is reached. Additionally, for h = 0.01N, rHI and ρmin are approximately
equal, whereas for h = 0.1N, rHI can be significantly less than ρmin. This is because when
h/N is large, a significant proportion of individuals are allowed become infected and gain
natural immunity from the disease in that way, reducing the vaccination requirement to
reach herd immunity. However, over-reliance on natural immunity may lead to a large
number of hospitalizations and a decline in the quality of medical care due to capacity
exceedance, increasing the case fatality ratio.

(A)

Figure 10. Cont.
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(B)

Figure 10. Minimum vaccination threshold required such that the cumulative number of hospi-
talizations and isolations is less than (A) 0.01N or (B) 0.1N, for different vaccine efficacies ve and
vaccination rates k, and no NPIs (c = 0). The theoretical herd immunity threshold ρmin is also
shown. It is demonstrated that for the 0.01N case, the proportion of vaccinated individuals when
herd immunity is reached (the dynamic vaccination threshold) is approximately equal to the theoretical
herd immunity threshold. On the other hand, for the 0.1N case, the dynamic vaccination threshold
can be much less than the theoretical herd immunity threshold, with post-infection natural immunity
becoming a major factor towards achieving herd immunity.

4. Conclusions

In this paper, we proposed an SVEIHR model for COVID-19 to capture the dynamic
processes of virus transmission and vaccination, and their interactions. Based on the
numerical results in this paper, we present the following conclusions:

• For the ancestral strain of SARS-CoV-2 (R0 = 2.26) and a 6:4 ratio of Comirnaty and
CoronaVac vaccination, as currently observed in Hong Kong, the theoretical vaccina-
tion threshold for herd immunity is ρmin = 0.7203, implying that herd immunity is
possible via vaccination alone.

• For the Delta variant (R0 = 5), herd immunity is possible via vaccination alone using
Comirnaty, but not using the current ratio of Comirnaty and CoronaVac in Hong
Kong, even if the entire population is to be vaccinated—the proportion of Comirnaty
vaccinations has to increase.

• For the Omicron variant (R0 ≈ 9.5), herd immunity is impossible via vaccination
alone, regardless of vaccine mix and even if the entire population is to be vaccinated.
Similar results can be obtained for newer variants such as BA.4 or BA.5 by adjusting
the model’s parameters.
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• NPI control measures are required to limit an outbreak until vaccination has reached
a sufficiently high level. Moreover, if the basic reproduction number is high and the
vaccine efficacy relatively low, then control measures are required to prevent a mass
outbreak even when vaccine coverage is high (in some cases, even if the population is
fully vaccinated).

• Faster vaccination results in a lower initial vaccine coverage ratio required to main-
tain the size of an outbreak under a given limit. Thus governments can consider
lifting controls even before the theoretical vaccination threshold for herd immunity
is reached.

• Increasing the number of individuals who are allowed to become infected reduces
the requirement on the number of individuals that need to be vaccinated before herd
immunity is reached. However, over-reliance on infection-acquired natural immunity
may lead to a large number of hospitalizations and a decline in the quality of medical
care due to capacity exceedance, increasing the case fatality ratio.

Limitations of This Work

There are still many aspects of vaccination dynamics that need further investigation.
For example, our model assumes that immunity via vaccination is immediate and does
not consider the reduced vaccine efficacy between the first and second doses of two-
dose vaccines or in the period immediately after taking the second dose. We also do not
consider the waning of vaccine protection over time or the introduction of booster shots
(i.e., additional doses of vaccine to enhance protection), the formulations of which may also
be altered to provide extra protection against new variants. Studies [25] have shown that
vaccine antibody levels start to wane around 2–3 months after injection of the Comirnaty or
Vaxzervria (Oxford–AstraZeneca) vaccines; however, further study is required to show the
relationship between vaccine antibody levels and protection against COVID-19 infection.

Heterogeneities in the population are also ignored, whereas [26] showed that the herd
immunity threshold can be lower in a heterogeneous population than a homogeneous one.
We also do not model differences in the efficacy of different vaccines, instead using the
average efficacy only, nor do we consider scenarios with multiple disease variants in co-
existence, mainly due to the current dominance of Omicron in most of the world. Migration
between heterogeneous geographical regions, which may have different vaccination rates,
vaccine efficacies, and control measures, is also not considered here. Finally, it may be
useful to model not only total “hospitalizations” but also the number of patients requiring
various levels of medical care, including non-clinical isolation and observation only, basic
treatment, mechanical ventilation, and intensive care.

In future work, we will extend our model to include the effects of heterogeneity
with respect to age, social activity, and administered vaccines. Other effects for possible
consideration include waning vaccine efficacy over time, severe or critical cases as a subset
of hospitalized cases, and the co-evolution of multiple disease strains.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14071482/s1. Figure S1, Cumulative hospitalizations Hc(∞)

with respect to R0 and the vaccine efficacy ve, for a simulated Delta outbreak on Hong Kong and
NPIs (c = 0.2); Figure S2, Cumulative hospitalizations Hc(∞) with respect to R0 and the vaccine
efficacy ve, for a simulated Delta outbreak on Hong Kong and NPIs (c = 0.5); Figure S3, Minimum
vaccination threshold required such that the cumulative number of hospitalizations is less than
10−4N, for different vaccine efficacies ve and vaccination rates k, and no NPIs (c = 0). The theoretical
herd immunity threshold ρmin is also shown; Figure S4, Minimum vaccination threshold required
such that the cumulative number of hospitalizations is less than 10−3N, for different vaccine efficacies
ve and vaccination rates k, and no NPIs (c = 0). The theoretical herd immunity threshold ρmin is
also shown.

https://www.mdpi.com/article/10.3390/v14071482/s1
https://www.mdpi.com/article/10.3390/v14071482/s1
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