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ABSTRACT

The maintenance of the mitochondrial genomic
integrity is a prerequisite for proper mitochondrial
function. Due to the high concentration of reactive
oxygen species (ROS) generated by the oxida-
tive phosphorylation pathway, the mitochondrial
genome is highly exposed to oxidative stress
leading to mitochondrial DNA injury. Accordingly,
mitochondrial DNA damage was shown to be asso-
ciated with ageing as well as with numerous human
diseases including neurodegenerative disorders
and cancer. To date, several methods have been
described to detect damaged mitochondrial DNA,
but those techniques are semi-quantitative and
often require high amounts of genomic input DNA.
We developed a rapid and quantitative method to
evaluate the relative levels of damage in mito-
chondrial DNA by using the real time-PCR amplifica-
tion of mitochondrial DNA fragments of different
lengths. We investigated mitochondrial DNA
damage in SH-SY5Y human neuroblastoma cells
exposed to hydrogen peroxide or stressed by over-
expression of the tyrosinase gene. In the past,
there has been speculation about a variable vulnera-
bility to oxidative stress along the mitochondrial
genome. Our results indicate the existence of at
least one mitochondrial DNA hot spot, namely the
D-Loop, being more prone to ROS-derived damage.

INTRODUCTION

Mitochondria are responsible for maintaining the cellular
energy balance and are involved in the triggering of
apoptosis in response to oxidative stress. The majority of

mitochondrial proteins is encoded by nuclear DNA.
Nevertheless, mitochondria harbour their own genome
consisting of a circular duplex molecule of approximately
16.5 kb encoding 13 polypeptides that are exclusively
involved in the intracellular ATP production by the
electron transport chain (ETC) as well as two rRNAs and
22 tRNAs essential for mitochondrial polypeptide synthe-
sis (1). Like the mitochondrial DNA (mtDNA), the ETC
is localized at the inner side of the mitochondrial inner
membrane. The ETC reduces oxygen to water in four con-
secutive one-electron steps. As a by-product of this process,
reactive oxygen species (ROS) are produced. These reactive
molecules can be converted to H2O2 spontaneously or
by superoxide dismutase culminating in free hydroxyl
radicals (�OH) via Fenton chemistry (2). ROS, in particu-
lar hydroxyl radicals, exhibit a high capacity to impair
proteins, lipid membranes, DNA and RNA, which are
essential components of functional mitochondria.
Due to the high reactive environment, and probably due

to a mitochondrial chromatin-like structure condensed
to a lesser extent than nuclear chromatin, the mtDNA
is frequently exposed to oxidative stress leading to
mitochondrial genomic defects (3,4). The most prevalent
forms of mtDNA mutations are point mutations, nucleic
acid modifications and large-scale deletions, all of which
culminate in mitochondrial dysfunction and apoptosis
(5–7). Consequently, mtDNA damage was shown to be
associated with ageing (8) and numerous human diseases
such as cancer (9–11) and neurodegenerative disorders like
Alzheimer (12–14), Parkinson (5,14–16), Huntington
disease (17,18) and amyotrophic lateral sclerosis (19,20).
Thus, mtDNA damage, as a result of environmental
insults or enhanced by genetic predisposition, attracts
increasingly attention as the origin of mitochondrial
dysfunction.
In the last decade, numerous discoveries were made on

DNA repair in the mitochondria and the base excision
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repair pathway was identified as the major mtDNA repair
mechanism (1,10,21). However, only a limited number of
molecular biological and analytical methods is available to
detect damaged DNA caused by genotoxic insults.
Recently, Santos and co-workers established a long-run

quantitative PCR method that permits the amplification
of up to 25 kb genomic DNA fragments using as little as
several nanogram of total DNA (22). Although this long-
run PCR clearly facilitates nuclear and mitochondrial
DNA damage determination, the multi-step procedure
is still time-consuming, and requires a high degree of
optimization and accuracy for reliable experimental
results. More recently, this method was further modified
by the use of a high processivity polymerase applicable for
real-time amplification of fragments covering nearly the
entire mitochondrial genome (23).
Here, we describe a novel rapid, gene-specific and sim-

plified semi-long run real-time (SLR rt-) PCR method for
the accurate quantification of mtDNA lesions induced by
oxidative stress that can be implemented within less than
three hours. In contrast to long run approaches, amplicon
sizes up to 1000 bp for the determination of DNA lesions
allow the investigation of mtDNA vulnerability in small,
well-defined regions along the mitochondrial genome. This
rt-PCR based application detects DNA variations that
interfere with the polymerase-based DNA amplification.
Common ROS-derived DNA damage products include
strand breaks, base modifications and bulky DNA
adduct formation either inhibiting primer annealing or
blocking the polymerase driven synthesis of the comple-
mentary DNA strand (24). As a matter of principle, in
rt-PCR analysis, in contrast to endpoint PCR approaches,
no extensive adjustment of DNA template concentration
is necessary for accurate DNA quantification and thus
for an efficient and quick DNA damage determination.
The timing chart of the entire damage assay is displayed
in Figure 1A. Employing a cell culture model stressed
with a chemical insult, we were able to show a
concentration-dependent increase of mtDNA damage.
Comparing several independent regions evenly distributed
along the mitochondrial genome, we found the level
of lesions induced by H2O2 exclusively increased in the
fragment harbouring the regulatory D-Loop. Moreover,
we were able to monitor mtDNA recovery following H2O2

incubation. In summary, our protocol provides for the
first time the means to study the vulnerability of specific
mtDNA regions to damaging agents and the mtDNA
recovery efficiency under these conditions. The method is
quick, accurate, and easy to control for experimental
parameters. These characteristics make it interesting for
researchers from different fields, who aim for studying
the effects of mtDNA damage on cellular function
and its influence on the pathogenesis of a variety of
diseases.

MATERIAL AND METHODS

Cell culture and DNA damage assay

The catecholaminergic SH-SY5Y neuroblastoma cell
line originated from ATCC (#CRL-2266) was grown in

Dulbecco’s modified Eagle’s medium DMEM/HAM
F12 (Biochrome, Germany) and 10% heat-inactivated
Foetal Bovine Serum (PAA Laboratories, Austria). For
ROS-induced mtDNA damage generation, cells were
exposed to hydrogen peroxide (H2O2) (Sigma-Aldrich,
Germany) in serum-free media for 0.5 h as indicated.
H2O2 was removed by two times washing with standard
culture media. Cells were harvested immediately or
allowed to repair for indicated time points.

Stably expressing human tyrosinase SH-SY5Y cells
(TR8/TY) were cultured in Dulbecco’s modified Eagle’s
medium (Biochrome, Germany) supplemented with
10% fetal bovine serum (PAA Laboratories, Austria)
and 2mML-glutamine (Invitrogen) at 37�C under 5%
CO2/air including selection media containing 7 mg/ml
blasticidin (InvivoGen, San Diego, CA, USA) for
pcDNA6/TR and 300 mg/ml Zeocin (InvivoGen) for
pcDNA4/tyrosinase as previously described (25).

ATPase 8

OH

Cyt b

D-Loop

N
D

6

N
D

4

ND4L
ND3

COIII

COII

COI

ATPase6

N
D

5

N
D

1
N

D
2

OL

PH

PL

d

b

c

a

16
s 

rR
NA

12s rRNA

B

Damage
experiment

real time 
PCR

Data
Evaluation

DNA
isolation

½ h 2 h
Timing
chart2½ h

A

Figure 1. Primer selection and Timing Chart. The experimental flow-
chart of the SLR rt-PCR method (A). A schematic view of the
mitochondrial genome (B). The four selected 1 kb sized regions [red
sectors a–d; mtDNA position: chrM:16021+423 (a); chrM:8204+
9203 (b); chrM:12050+13049 (c); chrM:3962+4998 (d)] were
employed for the SLR rt-PCR approach to quantify the MLF.
Mitochondrial genes are almost introns-less arranged on both strands
(heavy and light) and code for 22 transfer RNAs (yellow bars), the
small and large subunits of ribosomal RNA (bright blue curved
squares) and 13 proteins implicated in the oxidative phosphorylation
(dark blue). OH, replication origin for heavy strand; OL, replication
origin for light strand; PL, light strand promoter; PH, heavy strand
promoter.
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Induction of human tyrosinase expression was achieved by
the addition of 1 mg/ml doxycycline (MP Biomedials,
Solon, OH, USA). In both cellular models oxidative
stress derived cytotoxcity was monitored by the LDH
release assay as described (26).

DNA isolation and purification

Total DNA was purified using DNA Blood and Tissue Kit
(Qiagen, Germany) from cells under standard and under
ROS generating conditions, respectively, and DNA
quantity and purity was determined by spectrometric
analysis. The isolated DNA showed a high purity (A260/
A280> 1.8) and was stored at 4�C according to standard
procedures.

Oligonucleotides

All Primers for the real-time applications (rt) were
designed using Primer 3 software, synthesized and
HPLC-purified by Metabion international, Germany.
The sequence of all primers used in this study can be
found in Table 1.

Semi-long run rt-PCR

The SLR rt-PCR amplifications were conducted in the
Light Cycler 2.0 system (Roche, Germany), and the ampli-
fication was monitored and analysed by measuring the
intercalation of the fluorescent dye to double-stranded
DNA supplied by the Fast Start DNA Master plus
SYBR Green I kit (Roche, Germany) according to the
manufacturer’s instructions. To compare the levels of
DNA lesion in each tested region of the mitochondrial
genome, two mtDNA fragments of different lengths
(long fragments ranging from 972 to 1037 bp and small
fragments from 54 to 87 bp, respectively), located in the
same mitochondrial genomic region were used. The
mtDNA regions selected for rt-PCR are displayed in
Figure 1B. The HPLC-purified oligonucleotides used in
this study, the PCR settings, and their PCR efficiencies
are listed in Table 1.

The PCR conditions for the different fragments were
optimized to achieve similar amplification efficiencies
required to compare different amplicons. The product
specificity was monitored by melting curve analysis and
product size was visualized on agarose gel by electro-
phoresis (data not shown). The reaction mix (total
volume V=10 ml) consists of 1� SYRB Green Master
mix, 500 nM each forward and reverse primer (specific
for the long or the short amplicon, respectively) and the
equivalent quantities of template DNA (3 ng of total
DNA). The cycling conditions include a pre-incubation
phase of 10min at 95�C followed by 40 cycles of 10 s
95�C, 10 s 60�C, and 10 s 72�C (small fragments) or 50 s
72�C (large fragments), respectively. Each sample was
assayed in quadruplicate, fluorescence was continuously
monitored versus cycle numbers and crossing point
values were calculated by the Light Cycler 3 software
version 3.5 (Roche).
To compare the DNA damage rate in our experimental

system generated by the SLR rt-PCR method with an
already established PCR-based approach, we conducted
the quantitative PCR method from Santos and colleagues
(22) employing the 8,9 kb DNA fragment as previously
described.

rt–PCR data analysis

Data analysis is based on the measurement of the crossing
point (Cp). Isolated total DNA from untreated sample was
taken as reference. For each of the four mtDNA regions
the difference in the crossing point �Cp (long fragment/
small fragment) was used as a measure of the relative
MLF with the 2���CT method in correlation to the ampli-
fication size of the long fragment (27).
Briefly, for the quantification of damage in each

mtDNA region, rt-PCR analysis for the corresponding
small and long fragments was performed consecutively.
For each experimental condition rt-PCR was conducted
in quadruplicates and the resulting average of Cp values
for the long and the small fragment were used for the
evaluation of DNA damage quantity. Therefore, the

Table 1. Oligonucleotides and their SLR rt-PCR parameter used in this study

Primer Sequence Size (bp) Template Tan (�C) telong (s) PCR efficiency (%)

AS1.F CCCTAACACCAGCCTAACCA 55 chrM:369+423

60

10 98.2
AS1.R AAAGTGCATACCGCCAAAAG

BS1.F CATGCCCATCGTCCTAGAAT 54 chrM:8204+8257 10 97.2
BS1.R ACGGGCCCTATTTCAAAGAT

CS1.F TCCAACTCATGAGACCCACA 55 chrM:12914+12968 10 99.9
CS1.R TGAGGCTTGGATTAGCGTTT

DS1.F ACTACAACCCTTCGCTGACG 87 chrM:3442+3528 10 99.7
DS1.R GCGGTGATGTAGAGGGTGAT

AL4.F CTGTTCTTTCATGGGGAAGC 972 chrM:16021+423 50 69.4
AS1.R AAAGTGCATACCGCCAAAAG

BL1.F CATGCCCATCGTCCTAGAAT 1000 chrM:8204+9203 50 89.0
BL1.R TGTTGTCGTGCAGGTAGAGG

CL1.F CACACGAGAAAACACCCTCA 1000 chrM:12050+13049 50 85.1
CL1.R CTATGGCTGAGGGGAGTCAG

DL1.F CCCTTCGCCCTATTCTTCAT 1037 chrM:3962+4998 50 85.4
DL1.R GCGTAGCTGGGTTTGGTTTA
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difference in the crossing point �Cp of untreated versus
each treated condition of the respective long and small
fragments was calculated by the 2���CT method expressed
as ratio of intact DNA. The DNA damage was calculated
as lesion per 10 kb DNA of each mtDNA region by
including the size of the respective long fragment and dis-
played as average of at least three independent
experiments.

Lesion rate ½Lesion per 10 kb DNA�

¼ 1� 2�ð�long��shortÞ
� �

�
10000 ½bp�

size of long fragment ½bp�
:

1

Determination of mitochondrial copy number

Quantitative rt-PCR was carried out as described above
by amplifying equal amounts of total DNA isolated from
differentially treated cells using genomic primers for
mitochondrial sequences: BS1 (54 bp fragment size) and
ChIP9 (157 bp fragment size) forward 50-CACCTACCT
CCCTCACCAAA-30, reverse 50-GGGATCAATAGAG
GGGGAAA-30, respectively. The experiments were per-
formed at least on three independent occasions and each
sample was assayed in quadruplicate. Nuclear DNA
sequences LC3 (220 bp fragment size), forward 50-GTGA
ATTGGGCTGTGAGTGT-30, reverse 50-AGCCAAAG
GTGCATTTCGTA-30 and ChIP14 (236 bp fragment
size), forward 50-GGTGCCTGGGAAGGATTAAA-30,
reverse 50-TCTCAGCATACTTGAGGTTTCC-30; and
ChIP7.2 (176 bp fragment size) forward 50-TGGGGGTG
ACTTACAGAAGG-30, reverse 50-GGTTGAACTGCCA
CTCACCT-30) and non-treated cells were used as refer-
ence sample.

Statistical analysis

The data are presented as the means±SE of three inde-
pendent experiments unless stated otherwise.

RESULTS

Validation of the SLR rt-PCR assay

The basic principle of our method relies on the
rt-PCR-based amplification rate of two mtDNA frag-
ments of different length. Amplification of the bigger
fragment serves as experimental probe to observe the
level of lesions introduced by oxidative stress. The short
product, an adjoining fragment of <90 bp, serves as
internal normalization control. Under cellular and physi-
ological relevant conditions, the amplification of short
nucleotide sequences statistically represents undamaged
mtDNA due to the low probability of lesion generation
in small DNA fragments by a moderate ROS level (22).
The mitochondrial lesion frequency (MLF) can be
calculated by the ratio of lesion occurrence per amplified
nucleotide size and normalized to DNA magnitude by
assuming a Poisson distribution of randomly generated
lesions along the mitochondrial genome (28). As a conse-
quence, MLF is inversely proportional to the amplifica-
tion depending on its sequence length.

To evaluate the levels of lesions induced by oxidative
stress at different targets of the mitochondrial genome, we
selected four experimental probes and respective internal
controls for amplification, which are evenly distributed
along the mtDNA. Three experimental sequences con-
tained regions, which were located in the ND5, ND1/
ND2 and COII/ATPase6/8 genes, respectively. In
addition, one amplicon was situated in the D-Loop,
which exhibits a triple-stranded, semi-stable DNA struc-
ture during replication (29,30). Due to its partially relaxed
structure, we hypothesized that the D-Loop is more
prone to oxidative damage than other mtDNA regions.
Figure 1B displays a schematic representation of the
mitochondrial DNA and the localisation of the four
selected mitochondrial genomic regions analysed in this
study.

To validate the SLR rt-PCR assay, total DNA
was isolated from SH-SY5Y cells yielding similar DNA
concentrations (c=300 ng/ml) and logarithmically diluted
1 : 10 to 1 : 10 000, corresponding to �30 ng to 30 pg of
total DNA, and amplified using long-run rt-PCR with
primers for all fragments (Figure 2A–H). To ensure an
unbiased comparison of the amplification of the big and
the small fragment of the same sample, the amplification
efficiencies were calculated according to the equation
E=10(�1/slope) (31) resulting in 97.2–99.9% for the frag-
ments below 90 bp sizes and 69.4–89% for the 1 kb frag-
ments, respectively (Table 1). The relationship between the
Cp value and the logarithmic dilution values of total DNA
was linear with correlation coefficients R2 ranging from
0.9996 to 1 for all tested amplicons. As a result, the
SLR rt-PCR assay shows a high linearity over a wide
range of template concentrations which enables a consis-
tent and precise determination of DNA damage within all
tested DNA template quantities. Together these data show
that all sequences are amplifiable with comparable
efficiencies, which allows the investigation of mitochon-
drial DNA damage in an accurate and highly reliable
fashion using the Semi Long Run rt-PCR with our
settings.

The D-loop region is more vulnerable to ROS induced
mtDNA damage

First, testing the sensitivity of mtDNA damage quantifi-
cation using our SLR rt-PCR approach, we employed
H2O2 treatment to induce oxidative damage. Therefore,
neuroblastoma SH-SY5Y cells were exposed to
hydrogen peroxide (H2O2, Sigma) for 0.5 h as indicated.
H2O2 was removed by two-times washing with standard
culture medium. The results of three independent DNA
damage experiments by SLR rt-PCR analysis are shown in
Figure 3A–D. Consistently, the SLR rt-PCR analysis
revealed a similar lesion rate in all tested coding regions
[ND1/2 (D), ND4/5 (C), and COII/ATPase6/8 (B)]. Initial
DNA damage was observed in SH-SY5Y cells treated with
100 mM H2O2 yielding from 0.13 lesions per 10 kb DNA in
the COII/ATPase 6/8 domain (B), and 0.14 lesions in the
ND4/5 domain (C), to 0.29 lesions in the ND1/2 domain
(D). In addition, a steady increase of mtDNA lesions is
attended by an elevation of H2O2 concentration from
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100 mM to 1mM. Strikingly, a 5-fold higher lesion rate
was observed in the non-coding regulatory D-Loop (A)
after treatment with 100mM H2O2 resulting in 1.7
lesions per 10 kb DNA. The increase of lesion rate in
the D-Loop versus tested coding regions was 4-fold
(3.5 lesions per 10 kb DNA/0.85 lesions per 10 kb DNA)
in cells treated with 200 mM and 2.5-fold (4.9/1.94) in

cells treated with 500 mM H2O2, respectively. The differ-
ence of lesion rates between the non-coding regulatory
D-Loop and the three coding regions was alleviated
in templates treated with a high peroxide concentration
(750mM H2O2: D-Loop 5.9 lesions/10 kb DNA, coding
regions 4.2–4.5 lesions/10 kb DNA; 1000mM H2O2:
D-Loop 6.1 lesions/10 kb DNA, coding regions 4.8–5.3
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Figure 2. Characterization of real-time PCR. To test the validity of the mtDNA damage assay over a broad range of total DNA concentration,
real-time amplification was performed (A) for the 55 bp fragment on chrM:369+423, (B) for the 54 bp fragment on chrM: 8204+8257, (C) for the
55 bp fragment on chrM: 12914+12968, (D) 87 for the 55 bp fragment on chrM:3442+3528, (E) for the 972 bp fragment on chrM:16021+423,
(F) for the 1000 bp fragment on chrM:8204+9203, (G) for the 1000 bp fragment on chrM:12050+13049, (H) and for the 1037 bp fragment on
chrM:3962+4998 over a range of 30 ng to 30 pg total DNA isolated from SH-SY5Y cells, respectively. The amplification resulted in an inverse
linear relationship with the Cp values and the dilution of total DNA templates with correlation coefficients between 1 and 0.9996, respectively.
MtDNA damage assay shows high linearity over a wide range of template concentration with comparable amplification efficiencies E from 97.2 to
99.9% for the fragments below 90 bp sizes and 69.4 to 89% for the 1 kb fragments, respectively.
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lesions/10 kb DNA). In parallel, oxidative stress derived
cytotoxcity was measured by LDH release. In our exper-
imental settings, low H2O2 concentrations (0–200 mM)
caused minor cytotoxcity. LDH release increased
steadily in a H2O2 concentration dependant manner as
illustrated in Supplementary Figure S1. In addition,
during the oxidative stress exposure the cells exhibited
no obvious sign of severe cell disruption, morpho-
logical changes or cell displacement by microscopic
observation.
To compare the sensitivity and accuracy of our experi-

mental system with the method developed by Santos and
colleagues (22), we conducted the quantitative PCR-based
approach employing the 8.9 kb fragment described in their
report. To ensure optimal experimental settings, we mon-
itored the relative amplification of all sample templates
and a 50% control template yielding to an acceptable
relative amplification of 51% (Figure 4A). Employing
the same experimental templates, no DNA damage was
observed in the samples treated with 100mM and
200mM H2O2 (Figure 4B). Templates isolated from cells
treated with elevated H2O2 concentrations (500–1000 mM)
exhibited steadily increasing DNA damage quantities of
1.0 (500 mM), 2.2 (750 mM) and 3.4 lesions/10 kb DNA
(1000mM H2O2). In our hands, performance of this
method led to large standard deviations. In summary,
data obtained with our method are in the same range as
the results achieved by employing the method of Santos
and co-workers. However, we observed with our new

method a higher sensitivity combined with very consistent
and precise MLF scales. As a consequence of the sensitive
rt-PCR methodology, biological relevant MLF of >1
lesion per 10 kb mtDNA can be detected, which enables
the examination of physiological mtDNA damage and
potential repair processes in vivo.

In a second approach, we wanted to test whether we
were able to detect ROS derived mtDNA damage in a
more physiological context than chemical insults. To
that end, we performed the DNA damage assay with
the TR8TY8 neuronal cell line generated by Hasegawa
and co-workers, which exogenously expresses human
tyrosinase in the presence of tetracycline. The induction
of tryosinase expression leads to an increase of the
intracellular dopamine content and, as a consequence of
induced oxidase activity, finally increases the intracellular
ROS level (25). We investigated the impact of tyrosinase
expression on the generation of mtDNA lesions using the
SLR rt-PCR approach. Following induction of tyrosinase
expression, we harvested the cells and subsequently
isolated total DNA at indicated time points. In this
approach, the non induced cells served as reference and
DNA damage was determined for all four mitochondrial
genomic regions. Employing SLR rt-PCR analysis, initial
DNA damage was detected at Day 3 with 2.0 lesions per
10 kb mtDNA increasing to 3.5 lesions at Day 4 and
4.8 lesions per 10 kb mtDNA at Day 5 in the COII/
ATPase 6/8 domain (Figure 5A). Similar DNA damage
rates were observed in the ND4/5 and ND1/2 coding
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Figure 3. H2O2/ROS-induced mtDNA lesions. Quantification of mtDNA damage per 10 kb DNA by SLR rt-PCR amplification of total DNA
isolated from SH-SY5Y cells exposed to 0–1000mM hydrogen peroxide for 30min showing an steadily increasing mtDNA damage over hydrogen
peroxide concentration in all tested mtDNA regions. mtDNA damage was calculated using the �2Ct method and expressed as relative DNA lesion
rate. By SLR rt-PCR, similar lesion rate were observed in all tested coding regions [COII/ATPase6/8 (B), ND4/5 (C), and ND1/2 (D)], whereas the
D-Loop (A) exhibited increased mitochondrial lesion frequency (MLF). Error bars designate standard deviation (at least three independent
experiments).

e24 Nucleic Acids Research, 2010, Vol. 38, No. 4 PAGE 6 OF 10



regions (data not shown). Consistent with the H2O2

induced genomic damage approach, DNA lesion analysis
of the non-coding D-loop region revealed an overall
increased damage rate compared to the coding regions
(COII/ATPase 6/8, ND4/5 and ND1/2). Detectable
D-loop lesions initially occurred at Day 2 after tyrosinase
induction (1.6 lesions/10 kb), and steadily elevated to 5.3
lesions per 10 kb mtDNA at Day 5 (Figure 5B). In
summary, employing our method, we were able to detect
increasing DNA damage correlating with the magnitude
of oxidative stress in two different experimental models.
Moreover, we were able to show enhanced vulnerability of
the regulatory D-loop region towards oxidative stress in
comparison to the coding regions of the mitochondrial
genome.

mtDNA recovery kinetics upon ROS damage

We wanted to test whether our SLR rt-PCR assay is appli-
cable to monitor the recovery of mtDNA following
oxidative stress. In order to perform the assay, mtDNA
lesions were induced by sub-lethal treatment of SH-SY5Y
cells with 500 mM hydrogen peroxide for 30min. After
H2O2 removal, mtDNA recovery was measured after 1,

2 and 48 h. As a result, we observed an initial MLF of
2.9 lesions per 10 kb mtDNA, followed by a significant
repair of mitochondrial DNA after 1 h with a decrease
of MLF from 2.4 to 1.0 in the second hour of regenera-
tion. MtDNA damage was reversed almost entirely after
48 h (Figure 5C). Throughout the experiment, no morpho-
logical changes as well as no cell detachment could be
observed indicating that the apparent mtDNA recovery
was not caused by a separation of cells containing
severely disrupted mtDNA molecules (data not shown).
Moreover, LDH release, as a measure of cytotoxicity,
was very moderate under these conditions. We further
explored the impact of H2O2 derived mtDNA damage
on mtDNA replication during the recovery process. By
comparing the relative amount of mtDNA to nuclear
genomic DNA during ROS insult and recovery, we
found that H2O2 treatment did not alter the mtDNA
level. A total of 500 mM hydrogen peroxide for 30min
had no stimulating effect on mtDNA synthesis in our
experimental setting (Figure 5D). Interestingly, the
relative number of mtDNA molecules decreased during
the process of recovery supporting the hypothesis that
severely damaged mtDNA is being degraded while less
damaged mtDNA undergoes repair. Beyond the applica-
bility to quantify mtDNA damage after exposure to
different types of ROS, the SLR rt-PCR method has
also been used successfully to monitor mtDNA recovery.

DISCUSSION

Up to the present, mitochondrial as well as nuclear DNA
damage can be detected by a broad spectrum of method-
ically different approaches. One of the most prominent
and widely used methods is Southern blot analysis,
which is able to detect DNA strand breaks semi
quantitatively via a multi-step procedure and requires
high amounts of sample material (32,33). Single Cell Gel
Electrophoresis, commonly known as comet assay, allows
to detect single-and double-strand breaks as well as
alkali-labile DNA sites under alkaline conditions (34,35),
but these techniques deliver only partially quantifiable
values.
Merely, high-performance liquid chromatography

(HPLC) in combination with different detection
methods, e.g. electrochemical (ECD) (36) or the recently
described isotope dilution and tandem mass spectrometry
(MS) (37) display a quantitative approach to detect
specifically damaged DNA products. Hereby, the proce-
dure relies on the liquid chromatographically purification
of individual nucleosides followed by the separately quan-
tification of alkylated, deaminated and oxidized DNA
products by isotope-dilution and electrospray ionization
LC/MS-MS (37). Subjected to its experimental settings,
this method might also be applied to ROS derived DNA
damage products, like 8-oxoguanine (8-oxoG) or abasic
sites, but requires 4–6 d to complete depending on the
number of samples and reflects only a partial status of
damaged genomic sequences. In summary, all these tech-
niques are tedious, involve radioactive labelling, or require

0

0.2

0.4

0.6

0.8

1

1.2
re

la
tiv

e 
am

pl
ifi

ca
tio

n

H2O2 (µM)

H2O2 (µM)

le
si

on
/1

0 
kb

 D
N

A

0 (50%) 0 500 750 1000

100 200 500 750 1000
-1

0

1

2

3

4

5
B

A

Figure 4. Quantitative measurement of mitochondrial DNA damage
using the technique of Santos and co-workers (22). Representation of
the relative amplification of the 8.9 kb mitochondrial fragment
comparing the amplicon amounts of treated versus undamaged
control (A). To monitor performance of an optimal QPCR procedure
50% of reference template was amplified resulting in 51% of relative
amplification rate. Lesion frequencies of treated samples were
calculated per amplicon size and expressed per 10 kb of mitochondrial
genome (B).

PAGE 7 OF 10 Nucleic Acids Research, 2010, Vol. 38, No. 4 e24



considerable optimization efforts and a high amount of
genomic DNA.
In the present work, we have successfully established a

new and rapid Semi Long Run rt-PCR based assay for
measuring mtDNA damage by detecting the inhibition of
polymerase driven nucleotide amplification within a few
hours. The method was validated to quantify mtDNA
damage mediated directly by reactive oxygen species
or by cellular consequences of the exposure to reactive
oxygen species. In addition, the assay enabled us to
monitor mtDNA repair kinetics by measuring recovery
of amplification after removal of DNA damaging agents.
Although, the majority of genomic lesions will be detected
with high efficiency using our method, quantitative
PCR-based approaches exhibit limited perceptibility for
8-hydroxydeoxyguanosine (8-OHdG) lesions that do not
interfere entirely with DNA polymerase progression or
primer annealing. However, oxidative stress is thought
to generate a broad spectrum of different types of
lesions and only a minor proportion of H2O2-induced
lesions consists of 8-OHdG (38). Through the application
of sequence-specific primers, our method permits the
investigation of putative hot spots for mtDNA vulnerabil-
ity along the mitochondrial genome and enables to study
any genomic region of 1 kb size in the mitochondria as
well as in the nucleus in a real-time approach.

The mitochondrial genome is known to be a more
fragile target than nuclear DNA for endogenous and
exogenous genotoxic insults. Heteroplasmic as well as
homoplasmic somatic mtDNA mutations were identified
in cells and tissues associated with a broad spectrum of
cancer types and age-related diseases (for review see
mitomap.org). Interestingly, DNA mutations are localised
almost along the entire mitochondrial genome but
predominantly in the non-coding regulatory D-Loop sug-
gesting an increased susceptibility for somatic mutations
in human cancer (39). Employing the SLR rt-PCR
method, we were able to show that the D-Loop is
indeed more prone to ROS derived DNA damage than
other mtDNA loci. Although the reasons for this differ-
ential mtDNA damage remains cryptic, the unique, par-
tially triple-stranded displaced structure in the D-Loop
could be an explanation for the predisposition of this
region to excessive DNA damaging.

Interestingly, the accumulation of mitochondrial
nucleotide alterations and the destabilization of mtDNA
has been described in the context of various diseases
such as cancer (40) and several neurodegenerative disor-
ders (41). In addition to the ageing process, persistent
exposure to endogenous and environmental insults
(e.g. UV radiation, smoking, alcohol) resulting in
mitochondrial ROS and free radical generation steadily
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increases the vulnerability of the mitochondrial genome
(42–45), which impairs mitochondrial energy metabolism
and finally leads to mitochondrial dysfunction and
apoptosis. For maintaining cellular vitality, it is of prime
importance to intercept the vicious circle (ROS formation
$ impaired oxidative phosphorylation $ mtDNA
damage) and to stimulate mitochondrial biogenesis.
D-Loop formation is known to be an important structural
characteristic for mtDNA replication initiation.
Strikingly, MPP+, a well known inhibitor of complex I
of the mitochondrial respiratory chain and a PD-causative
toxin was shown to specifically destabilize the D-Loop
structure which resulted in an inhibition of mtDNA
replication (46,47). In compliance, point mutations
located close-by the replication origin in the D-Loop
were associated with impairment of mitochondrial bio-
genesis in different types of cancer (48). In our study,
following treatment with low H2O2 concentrations
(100 mM and 200 mM), we found a higher degree of
DNA damage in the mitochondrial D-Loop than in all
other mtDNA sequences tested, emphasizing the higher
sensitivity of the D-Loop region towards DNA
damaging agents.

Monitoring the mtDNA recovery after H2O2 treatment,
we found the initial mtDNA damage almost reversed after
48 h while the mtDNA copy number is reduced to 50%.
These results indicate that mtDNA recovery might be
a dynamic process of mtDNA repair, replication of
undamaged or repaired mtDNA molecules, and degrada-
tion of affected mtDNA molecules depending on the level
of DNA damage. It should be noted that the determina-
tion of mtDNA repair and copy number might be
influenced by replication of nuclear DNA at late time
points during the recovery process. A dilution effect
caused by the increase of the rather undamaged nuclear
DNA should be taken into account for the interpreta-
tion of those data. Through the application of different
cellular stressors at various concentrations our method
may provide a potential tool to identify the mecha-
nisms that either lead to mitochondrial recovery or
dysfunction.

In line with the quantitative PCR method of Santos and
co-workers (22), our method allows to measure mtDNA
damage and recovery but requires only three major steps
(DNA isolation, SLR rt-PCR and data analysis) to
complete the experiment. Importantly, it allows gene-
specific analysis of mtDNA damage due to the short
sequence of its experimental probes.

Laboratories investigating mitochondrial as well as
nuclear genomic integrity and particularly scientists inter-
ested in research areas ranging from human and environ-
mental bio-monitoring over DNA repair processes to
genetic toxicology will greatly benefit from this new SLR
rt-PCR method, which provides a quick and accurate tool
to quantify DNA damage as well as mtDNA repair
kinetics. Our technique qualifies as a screening method
for the validation of mtDNA protecting and mito-
chondrial viability enhancing therapeutics in various
diseases.
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