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Abstract: The oral delivery of macromolecules is quite challenging due to environmental insults
and biological barriers encountered along the gastrointestinal (GI) tract. Benefiting from their living
characteristics, diverse bacterial species have been engineered as intelligent platforms to deliver
various therapeutics. To tackle difficulties in oral delivery, innovative bacteria-based microdevices
have been developed by virtue of advancements in synthetic biology and nanotechnology, with aims
to overcome the instability and short half-life of macromolecules in the GI tract. In this review, we
summarize the main classes of macromolecules that are produced and delivered through the oral
ingestion of bacteria and bacterial derivatives. Furtherly, we discuss the engineering strategies and
biomedical applications of these living microdevices in disease diagnosis, bioimaging, and treatment.
Finally, we highlight the advantages as well as the limitations of these engineered bacteria used
as platforms for the oral delivery of macromolecules and also propose their potential for clinical
translation. The results summarized in this review article would contribute to the invention of
next-generation bacteria-based systems for the oral delivery of macromolecules.

Keywords: oral delivery; microdevices; biologicals; bacteria; biomedicine

1. Introduction

Biologics, also known as biomacromolecular pharmaceuticals, including peptides,
proteins, antibodies, polysaccharides, and nucleic acids, produced from various biologi-
cal systems, such as microorganisms, mammalian cells, and animal- or human-derived
tissues via biotechnological means [1]. These biomacromolecules have been widely used
for the prevention, diagnosis, and treatment of human diseases, such as tumors, AIDS,
cardiovascular and cerebrovascular diseases, and hepatitis [1–7]. Currently, approximately
30 percent of all the U.S. Food and Drug Administration (FDA) approved drugs are
biomacromolecules [8]. Among them, proteins and peptides take up the majority of these
therapeutic biomacromolecules [8–11]. Owing to their clinical success and rapid improve-
ments in commercial values and market shares, biologicals have been recognized as one of
the most promising areas in drug research and development in the 21st century.

Although biologicals provide high specificity and activity thanks to their large and
complex structures, there are problems and obstacles that need to be solved for the use of
these drugs as most of them suffer from low stability, short half-life, and limited penetration
across biological barriers [2,8]. In order to improve their treatment efficacy, the preferential
method for the use of biologicals is injection, which is able to promote drug absorption,
rapidly increase the blood drug concentration and enable accurate dosing [8,12]. How-
ever, conventional parenteral administration inevitably has problems with pain, patient
incompliance, needle sickness, needle-stick injuries, and risks of systemic infections [13]. In
contrast, the oral delivery of macromolecules drugs is a more convenient and non-invasive
approach, with significant ameliorations in patient compliance and reduction of economic
cost [1,8]. Unfortunately, the oral delivery of biomacromolecular pharmaceuticals faces
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biological barriers and microenvironmental insults encountered along the gastrointestinal
(GI) tract [1,10]. For instance, the GI tract presents harsh environments with low pH in the
stomach as well as high levels of bile salts and enzymes in the intestine for digestion and
processing, which can severely reduce the efficacy of oral biomacromolecular drugs [1,14].
Therefore, innovative delivery strategies and systems of oral therapeutic macromolecules
are highly desirable to overcome these challenges, with an overarching goal to increase
bioavailability.

In recent years, many researches have been focusing on the development of medical
devices including microneedle-based pills, nanostraws, microjets, hydrogels, intestinal
patches, and bacterial therapeutics, which are capable of overcoming these biological
barriers and orally delivering a wide range of biologics [15–18]. These new delivery de-
vices are designed to enable the oral dosing of biomacromolecules and improve their
bioavailability, with increased patient adherence and reduced pain and other side ef-
fects [1,10,15,19,20]. Bacteria have been investigated as drug delivery microdevices due
to their living characteristics that are able to carry macromolecular drugs via genetic
engineering [21]. Moreover, various therapeutics can be attached to bacteria through
physicochemical modifications [22,23]. Given the ability to colonize specific positions,
for example disease sites, bacteria-based systems have been designed to release drugs
preciously and continuously in the targets of interest. Compared to conventional drug
delivery systems for the oral delivery of macromolecules, bacterial microdevices exhibit
the advantages of the in situ production of biologicals, long-term colonization in the in-
testine, targeting ability, and versatility to load diverse drugs [24,25]. In this review, we
mainly focus on bacteria-based microdevices and summarize their current progress and
future prospects for the oral delivery of biomacromolecules (Figure 1). We firstly introduce
the different kinds of biomacromolecular drugs prepared and delivered by bacteria and
bacterial derivatives. Then, current technologies for the modification of bacteria-based
therapeutic macromolecules are described, with an emphasis on the strategy of genetic
engineering. Lastly, biomedical applications of these bacteria-based microdevices as well
as their future prospects in this field will be discussed.
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Figure 1. Schematic illustration of the oral delivery of therapeutic biomacromolecules by bacteria-
based microdevices for disease diagnosis and treatment.

2. Biomacromolecules-Loaded Oral Bacterial Microdevices

Bacteria play extensively, yet important, roles in our lives both directly and indi-
rectly [26]. With the development of interdisciplinary research on bacteria and their appli-
cations, numerous bacteria have been widely administrated as oral probiotics or bacterial
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therapeutics for treating various diseases including cancers, diabetes, inflammatory bowel
diseases (IBDs), and pathogenic infections [27–33]. Due to their unique characteristics, such
as genetic manipulation, rapid proliferation, and targeting specificity to disease sites, bacte-
ria have successfully expressed different kinds of biologics through biological technologies
and exhibited extremely promising potential to be utilized in bioimaging, diagnosis, and
therapy [34–36]. Currently, the reported therapeutic biomacromolecules that are delivered
by bacteria mainly include proteins, glycans, and nucleic acids. In this section, we focus on
the introduction of the types and biomedical functions of these biomacromolecular drugs.

2.1. Therapeutic Proteins/Peptides

Proteins have specific and dynamic functions including forming receptors and chan-
nels, transporting molecules, and catalyzing chemical reactions [37–39]. Diseases may
be caused, when proteins in the host body present mutations or abnormal concentra-
tions [1,11]. Since their ability to serve a set of functions that are more specific and tolerable
than small molecules, proteins are attractive to be used as therapeutics [11]. For several
decades, therapeutic proteins have been considered as an important class of pharmaceutical
biomacromolecular drugs [11], which encompass natural or engineered versions of large
proteins, peptides, and antibodies [40,41]. With the rapid development of molecular biol-
ogy and biotechnology, increasing numbers of recombinant proteins have been emerged
and employed as pharmaceuticals, playing different clinical roles in healthcare (Table 1) [2].

To date, hundreds of proteins have been approved by the FDA for clinical applications,
and there are many more in the pipeline [10,11]. However, because of the limitations of
recombinant bacterial systems, lots of proteins are expressed as inclusion bodies, which
can be used functionally only after renaturation processes [42]. At the time of clinical trials,
human insulin, as the first recombinant therapeutic protein, was generated by combin-
ing separately pre-produced chain A and chain B via chemical conjugation [43]. Subse-
quently, recombinant insulin is predominantly expressed in the large scale by Escherichia coli
(E. coli) [42,44]. Advances in biotechnologies, for example codon optimization, enable the
improvement of production and solubility and realize the delivery of insulin through oral
ingestion of bacteria [45]. Another series of therapeutic cytokines, interleukins (ILs), have
been expressed in bacteria and orally administrated for disease treatments [46,47]. For in-
stance, IL-2 and IL-17A, both of which demonstrate their antitumor efficacies, are produced
and secreted by a recombinant Lactococcus lactis strain [48,49]. IL-35, an anti-inflammatory
cytokine, is also delivered by an engineered bacterium for the prevention and treatment of
dextran sulfate sodium (DSS)-induced colitis (Figure 2A) [47]. Moreover, therapeutic pro-
teins have been attached to bacteria via surface decoration for combination therapy [22,50].
Recently, we have exploited silk fibroin that shows anti-inflammatory effects and can target
the ulcerous or damaged areas of the intestine to decorate probiotics by self-assembly on
their surface (Figure 2B) [50]. Silk fibroin is co-delivered as a therapeutic protein drug to
synergistically enhance the treatment efficacy in mice associated with intestinal mucositis.
Meanwhile, the self-assembled silk fibroin could form an entire shell on the surface to
protect the decorated probiotics from the insults in the GI tract.
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Table 1. Therapeutic biomacromolecules orally delivered by bacteria for treating intestinal infectious diseases.

Bacteria Species Therapeutic Agents Modification Strategies Types of Therapy Refs

Lactococcus lactis IL-35 Genetic modification Dextran sulfate sodium
(DSS)-induced colitis [32]

Escherichia coli (E. coli)
Nissle 1917 Silk fibroin Surface decoration DSS-induced colitis [33]

Lactococcus lactis Elafin Genetic modification Inflammatory bowel disease
(IBD) [51]

Lactococcus lactis IL-10 Genetic modification IBD [52]

Salmonella typhimurium Streptococcus pneumoniae
capsular polysaccharides Genetic modification Streptococcus pneumoniae

infection [53]

E. coli Nissle 1917 Chitosan Surface decoration DSS-induced colitis [54]
E. coli A responsive genetic circuit Genetic modification Inflammation disease diagnosis [55,56]

Lactobacillus casei Listeria adhesion protein Genetic modification Listeria infection [57]
E. coli Nissle 1917 Trefoil factor Genetic modification IBD [58]
E. coli Nissle 1917 Dispersin B (DspB) Genetic modification Gut infection [59]
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biotherapy. Adapted with permission from [50]; published by Wiley-VCH, 2021.

Therapeutic peptides are another class of therapeutic proteins. Gastric stable pen-
tadecapeptide, BPC-157, is reported to be able to prevent and treat GI inflammations [51].
In order to deliver BPC-157 orally, lactic acid bacteria, which are capable of producing
and delivering diverse therapeutic proteins via genetic engineering [52,60–63], are used to
produce BPC-157 fusing with a membrane protein. The heterologous peptide is successfully
displayed on the bacterial surface and orally delivered into the host as a therapeutic agent
to reduce reactive oxygen species (ROS) production [52]. Another therapeutic peptide,
glucagon-like peptide-1 (GLP-1), for the treatment of non-insulin-dependent diabetes, is de-
livered orally by a recombinant Lactococcus lactis that is genetically modified with a plasmid-
encoding GLP-1 cDNA [41]. In addition, antibodies and antigens have also been expressed
by bacteria, which are delivered orally to elicit strong immune responses [1,10,11,63]. The
soluble receptor activator of nuclear factor kappa-B ligand (RANKL) expressed in Lactococ-
cus lactis exhibit the potential to act as an oral vaccine adjuvant that enhances the systemic
and mucosal immune responses [64]. As an antigen, the HIV envelope protein is expressed
in commensal Streptococcus mitis, which are co-administrated as an oral vaccination to in-
duce both salivary and systemic antibody responses and develop antigen-specific systemic
T cell tolerance [65].
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2.2. Nucleic Acids

Nucleic acids, as a type of macromolecular therapeutic agents, are a series of functional
DNA and RNA [19]. They have been widely applied for gene therapy in different forms
including short-interfering RNAs, DNA/RNA vaccines, and genetic pharmacology [66].
In general, nucleic acid drugs include aptamers, interfering RNAs, antigens, ribozymes,
and antisense nuclear acids. Nucleic-acid-based therapeutics exhibit the potential to treat a
number of diseases by correcting the abnormal expression of specific genes, by virtue of
their characteristic of high specificity to target genes [19]. However, due to the presence
of multiple biological barriers including enzymatic barriers, mucus gel barriers, and cell
membrane barriers in the GI tract, the oral delivery of nucleic acid drugs suffers from
similar challenges to therapeutic proteins/peptides [1,10].

To overcome obstacles encountered in the oral administration of nucleic acids, nu-
merous strategies that can address instability resulted from enzymatic degradation and
side effects caused by anionic charges and enhance the oral bioavailability have been
developed [67,68]. It is worth noting that some of them have entered into clinical tri-
als [53,69]. The main approaches developed for nucleic acid delivery can be categorized
into non-virus (such as liposomes, polymer vectors, and plasmid DNA) and virus vectors
(such as adenovirus and retrovirus) [68,70]. As an alternative, bacteria have been exten-
sively engineered to deliver nucleic acids, such as plasmid DNA, aptamers, and DNA
vaccines for treating IBDs and colon cancer [1,71,72]. Non-pathogenic bacterial species
are considered as a promising approach to drug delivery in both forms of intravenous
injection and oral administration. For example, the human Elafin gene, encoding Elafin
that is absent in mucosa of IBD patients, has been delivered via a plasmid vector inside oral
probiotics for inflammation inhibition and intestinal flora regulation [54]. Additionally,
Lactococcus lactis has been developed as a therapeutic microdevice to deliver IL-10 gene
that encodes an immunomodulative protein for IBD treatment [73]. With the merit of in
situ production, IL-10 is able to avoid degradation from intraluminal harsh environments
and maintain their native therapeutic activities [73]. Meanwhile, pathogenic bacteria, such
as Clostridium species, Salmonella Typhimurium (S. Typhimurium), and Listeria monocytogenes,
have been applied for targeted tumor killing and oral vaccines [20,63,74,75]. Since these
invasive species can deliver heterologous genes into tumor cells for expressing antitumor
drugs, their tumor killing efficacies have been improved significantly [75,76]. Furthermore,
chemically modified bacteria have been investigated for the oral delivery of DNA. For
instance, Hu and colleagues have developed an engineered bacterium that is anchored
with cationic DNA nanoparticles on the surface (Figure 3A) [74]. Equipped with protective
DNA nanoparticles layers on the surface, bacteria succeed in escaping phagosomes and
remain intact and active after exposure to the GI tract. The delivered DNA vaccines are
able to encode vascular endothelial growth factor receptor 2 (VEGFR2) and activate T cells,
showing significant inhibition against tumor growth [74]. Additionally, bacterial ghosts,
empty bacterial envelopes that lack infectious abilities but display bio-adhesive properties,
have been explored as vectors for the delivery of DNA drugs [20,77]. In order to induce
peripheral and mucosal immune responses, Wen et al. have delivered HIV-1 gp-140 DNA
vaccine through S. typhimurium-derived bacterial ghosts, which could activate antibody
responses via the TLR4 pathway (Figure 3B) [78].
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2.3. Polysaccharides

Polysaccharides, a sort of biological macromolecules produced by plants, animals,
and microorganisms, refer to a class of therapeutic agents containing a glycan molecular
skeleton or derived from carbohydrate compounds and their derivatives, such as glyco-
proteins, proteoglycans, glycolipids, lipopolysaccharides, and glycosides. The chains of
polysaccharides with a complex structure on the cell surface play critical roles in a variety
of physiological and pathological processes in organisms. However, due to a higher degree
of the complexity and diversity of the structure compared to those of proteins and nucleic
acids, progresses achieved in polysaccharide-based macromolecular drugs lag far behind.
In recent years, with the developments of glycomics and glycobiology as well as the
technologic improvements in separation and purification, structural characterization, and
qualitative and quantitative analysis, more polysaccharides with excellent pharmacological
activities have entered the vision of scientists and pharmacists. Polysaccharide drugs have
become an important part of drug discovery and development in recent years. In this
section, we focus on the bacteria-mediated oral delivery of therapeutic polysaccharide
agents.

Both lipopolysaccharides (LPS) in bacterial cell walls and capsular polysaccharides
attached on the surface of the bacterial cell wall are the interface of bacteria to interact
with surrounding environments. These polysaccharides are associated with the bacterial
virulence and immune regulation of the host. Benefiting from their immune activation
abilities, bacterial lipopolysaccharides and capsular polysaccharides have been utilized
as oral vaccines [79,80]. For example, E. coli has been glycol-engineered as a polyvalent
pneumococcal bioconjugate vaccine by using recombinant techniques and established
as a robust platform for the development of bioconjugate vaccines to prevent and treat
numerous pathogenic infections [81]. The immunogenic and protective pneumococcal
bioconjugates produced by E. coli are able to endow mice with high levels of bactericidal
killing activities, suggesting a promising potential of bioconjugate vaccines to treat many
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severe pathogenic infections. Later, Su et al. have synthesized a Streptococcus pneumoniae
(S. pneumoniae) capsular polysaccharide via recombinant attenuated Salmonella, which have
been delivered orally as a vaccine against S. pneumoniae infection (Figure 4A) [82]. On
the other hand, various polysaccharides, such as chitosan, cellulose, inulin, and alginate,
have been utilized for probiotic encapsulation for colon-specific drug delivery, due to their
biocompatibility and biodegradability [14,83–85]. With the help of chitosan that inhibits
bacterial infection and accumulation in disease sites in the host, we have fabricated a robust
platform of multimodal probiotics by decorating bacteria with dopamine and chitosan
(Figure 4B) [86]. Given the hybrid dopamine and chitosan coating on the probiotic surface,
the bioavailability of decorated probiotics in the gut increased to more than 30-times higher,
and their accumulation in the inflamed tissue is improved by 4 times. Compared to non-
encapsulated bacteria, the treatment efficacy of the coated probiotics is validated to be
strikingly enhanced in colitis mice.
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3. Biomedical Applications of Oral Bacterial Microdevices

Thanks to close connections between bacteria and the host, numbers of bacteria have
demonstrated their advantages in immune regulation, homeostasis maintenance, and host
health [26]. On the other side, speedy developments in synthetic biology technology and
nanotechnology endow bacteria with both programmable endogenous and exogenous
functions, such as chemotaxis, biomacromolecule secretion, loading of synthetic substrates,
which outperform conventional diagnostics and therapeutics in a range of diseases [25]. In
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this section, the biomedical applications of oral bacterial microdevices are summarized,
and their current status and future prospect are also discussed.

3.1. Diagnosis

Living bacterial cells perform biological functions by sensing and responding to
different signal molecules in surrounding environments, such as nutrients, metabolites,
cytokines, and biological stimuli [87,88]. Taking advantages of genetic engineering tech-
nologies, synthetic gene circuits have been created in both prokaryotes and eukaryotes,
which are able to respond to specific signal molecules and continuously produce measur-
able unique biomarkers or therapeutic macromolecules in target sites [27,55,56,89]. By
synthetic gene circuits, diagnostic bacteria can readily record and quantify the process of
measurement, which cannot be achieved by conventional test strategies [89].

To diagnose gut inflammation and colon cancer via oral administration, bacterial
strains have been engineered to sense disease markers by using a gene circuit. For example,
Lee et al. have equipped E. coli with a responsive genetic circuit and an optimized nitrate
biosensor, which could simultaneously detect thiosulfate and nitrate biomarkers [55]. Simi-
larly, Naydich et al. have developed an E. coli memory circuit and identified a wide variety
of new responsive bacterial biosensor triggers from inflamed gut [56]. They illustrated that
this noninvasively engineered bacterial biosensor is able to report transient molecules and
observe the inflammation in mouse gut for over six months. The results demonstrated
that genetic engineered bacteria could be used as new strategies for the non-invasive
diagnostics of inflammation diseases. Owing to the unique ability to selectively home
in tumors, bacteria have been also investigated to detect cancers. For example, Danino
et al. have programmed probiotics as a PROP-Z diagnostic platform for the non-invasive
detection of metastatic cancer, which is difficult to be detected by conventional imaging
(Figure 5A) [27]. After oral administration into the GI tract, the programmed bacteria enter
metastatic tumors in the liver and the expressed specific enzyme green LacZ is cleaved into
red and yellow substrates by injection with LuGal. The yellow substrate is filtered by the
renal system, and the released luminescent molecules could be detected and quantified
sensitively in urine. Moreover, they have successfully detected metastases from colon,
lung, ovary, and pancreatic tumors in the liver by the oral delivery of these programmed
probiotics. The application of bacteria-based oral microdevices for disease diagnosis, par-
ticularly for early cancer detections, is able to extend patient survival time significantly in
a more effective and less painful way.

3.2. Bioimaging

Monitoring bacterial colonization and bioactivities in the intestinal tract is funda-
mental and urgent, given the important roles of the gut microbiome in regulating human
health [90]. By means of the rapid blossom of genetic manipulation technology, bacteria
have been genetically modified to deliver biomacromolecules orally for bioimaging. A
series of conventional optic reporter genes, such as GFP and mCherry, has been utilized for
the in vivo imaging of bacteria colonizing in the gut [91]. However, these optic reporters
have limitations in deep tissues due to complex and harsh environments in the intestinal
tract and the limited light penetration depth [34,92]. In order to improve bioimaging
performance in deep tissues, researchers have developed acoustic reporter genes encoding
gas-filled proteins for assembling gas vesicles, which allow the bacteria to be imaged by ul-
trasound with characteristics of deep tissue penetration and high spatial resolution [92,93].
For example, Bourdeau and his colleagues have designed an acoustic reporter gene based
on the microbubbles of some aquatic photosynthetic organisms (Figure 5B) [34]. With the
transformation of acoustic reporter genes, E. coli successfully expresses gas-filled protein
and generates nanosized gas vesicles, which can be imaged by ultrasound when the bulk
density is less than 0.01%. Furthermore, the authors have optimized the reporter genes
with different acoustic characteristics, by which they have successfully detected bacteria
in the host GI tract with a resolution less than 100 microns. Obviously, this technology
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enables the observation of the gut microbiome in vivo and contributes to the development
of multimodal bacteria-mediated diagnosis and treatment.
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3.3. Disease Treatments

The human gut microflora consisting of a huge community of microorganisms and
thousands of bacterial species plays vital roles in nutrient metabolism, host immunoreg-
ulation, defense against pathogens, and maintenance of intestinal barrier integrity [90].
Imbalances of the gut microbiome are associated with a variety of diseases, such as GI
infectious diseases and cancers [94–97]. Thus, to prevent and treat dysbacteriosis-related
diseases, it is quite essential to positively modulate the symbiosis and composition of the
gut microbiota.

3.3.1. Intestinal Infectious Diseases

Microbiota transplantation, including fecal microbiota transplantation (FMT) and
orally delivered bacteria carrying therapeutic biomacromolecules, is an effective approach
to restoring the homeostasis and health of the intestine [98]. Here, we focus on the treatment
of intestinal infectious diseases by functional biomacromolecules that are orally delivered
in forms of engineered bacteria (Table 1). Owing to the unique properties of bacteria, engi-
neered bacteria are designed to express specific therapeutic biomacromolecules that can
prevent and treat human diseases. Actic acid bacteria, e.g., Lactococcus and Bifidobacterium,
are eatable probiotics that have been used for yogurt preparation over centuries [99]. In ad-
dition to the ability to manipulate microbiome in the intestinal tract, actic acid bacteria have
been intensively investigated as an alternative for intestinal disease prevention and treat-
ment, due to their advantages in safety, manipulability, accumulation in the GI tract, and
pathogen inhibition ability [100]. With an aim to improve their anti-inflammatory property
and therapeutic efficacy, genetic engineering has been performed to express a series of het-
erologous biomacromolecules such as therapeutic proteins/peptides of medical interests,
including IL-10, IL-35, Elafin, and adhesive proteins of pathogenic bacteria [47,54,57,73].
For example, Lactococcus fermentum I5007 is engineered to express superoxide dismutase
that exists in other bacterial species and applied for treating trinitrobenzene sulfonic acid-
induced colitis by protection against ROS and inhibiting the NF-κB pathway [101]. In
addition, Drolia and colleagues have camouflaged Lactobacillus casei by expressing the char-
acteristic adhesive protein of Listeria (LAP) on the bacterial surface (Figure 6A,B) [57]. With
the presence of LAP on the surface, the engineered Lactobacillus occupies LAP receptors and
excludes Listeria competitively. In consequence, the engineered Lactobacillus reduces Listeria
infection by the immune regulation mechanism of probiotics and the increased “competi-
tiveness” enabled by bioengineering (Figure 6C). Inspired by the promising results of the
recombinant actic acid bacteria in treating intestinal diseases, some of them have enter into
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preclinic trials [102]. E. coli Nissle 1917 (EcN) is another well-known probiotic bacterium,
which is reported to effectively inhibit pathogenic bacteria in the gut and be engineered
variously for enhancing treatment efficacies of intestinal diseases. To promote the therapeu-
tic effects in IBD treatment, EcN is modified to express bioengineered curli fibers protein,
which is able to form fibrous matrices by self-assembly (Figure 7A). The bioengineered curli
fiber protein is expressed by fusing with a trefoil factor domain (Figure 7B), endowing the
formed curli fibrous matrices with enhanced epithelial healing ability following the oral de-
livery of the engineered bacteria to the inflammation sites of the intestine (Figure 7C,D) [58].
In addition, EcN is programmed to produce an anti-biofilm protein, dispersin B (DspB),
which is able to disrupt the integrity of mature biofilms [59,103]. The results suggested that
after oral administration, the engineered EcN shows effective elimination and prevention
activities against Pseudomonas aeruginosa in gut infection models.
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Figure 6. Engineered Lactobacillus for treating Listeria infection. (A) Detection of the expression of
LAP from Listeria by western blot, showing LAP presenting in both the cell wall and whole-cell
fractions of engineered Lactobacillus strains. (B) Immunofluorescence images of LAP expressed
successfully on the surface of engineered Lactobacillus. (C) Schematic illustration of the mechanism for
the protection effect of engineered Lactobacillus against listeriosis. Adapted with permission from [57];
published by Springer Nature, 2020.

3.3.2. Cancers

Cancer is considered as a leading public health problem globally, which has caused
9.6 million deaths in 2018, with a proportion of approximately 20% in all deaths [104].
Currently, cancers have been treated mostly by conventional treatment strategies, such
as surgery, chemotherapy, radiotherapy, and immunotherapy. However, these traditional
therapeutic methods are often inadequate to eliminate cancers effectively and completely,
because of the potential of triggering intrinsic and acquired resistance as well as unavoid-
able cytotoxic side effects [105]. Since Coley and coworkers pioneered the use of bacteria,
e.g., S. pyogenes expressing Coley’s toxins, to treat cancers more than 100 years ago [105,106],
the door of bacteria-mediated cancer therapy has opened. Subsequently, more bacterial
species, including Bifidobacterium spp., Clostridium spp., S. typhimurium, and E. coli, have
been found to accumulate in tumor sites [25]. In light of their inherent capacities of breaking
related biological barriers and colonizing tumor tissue, these bacterial species have been
intensively attracted for cancer therapy [107,108]. Moreover, equipped with technologies
progressed rapidly in gene editing and bio-interface science, bacteria have been engineered
to act as vehicles for the delivery of therapeutic agents including both small molecules
and biomacromolecules (proteins and DNAs) (Table 2) [20,54,64,100,109]. In this part,
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engineered bacteria that are capable of delivering biomacromolecular drugs orally are
discussed.
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Table 2. Therapeutic biomacromolecules orally delivered for bacteria-mediated cancer therapy.

Bacteria Species Therapeutic
Agents Modification Strategies Types of

Therapy Refs

E. coli Nissle 1917
LacZ (plasmid)

luxCDABE
(genomic)

Genetic modification Cancer
diagnosis [27]

Lactococcus lactis IL-17A Genetic modification Cancer [48]
Lactococcus lactis IL-2 Genetic modification Cancer [49]

Salmonella typhimurium DNA Surface decoration Cancer [74]
Pediococcus pentosaceus P8 Genetic modification Cancer [110]

E. coli TNF-α Genetic modification Cancer [111]

To facilitate oral delivery, antitumor biomacromolecular therapeutics, such as cytotoxic
proteins, cancer-specific antigens, and cytokines, have been encoded into bacteria by ge-
netic engineering, which can produce inducibly or constantly [49,110,112–114]. Chung et al.
have developed a bacteria-based drug delivery platform for treating colorectal cancer [110].
A lactic acid bacterium Pediococcus pentosaceus is modified to produce a small protein (P8)
against CRC fused with a secretion signal peptide under the control of a strong inducible
promoter. After oral administration into the intestine, the engineered anti-CRC therapeutic
probiotics demonstrates significant anticancer efficacies in two different tumor-bearing
mouse models. Combining expressing therapeutic protein TNF-α driven by a thermal-
sensitive promoter and decorating with biomineralized gold nanoparticles (AuNPs) on the
bacterial surface, E. coli MG1655 is engineered both genetically and chemically to generate
a thermal-sensitive therapeutic platform termed as TPB@Au (Figure 8A,B) [111]. The engi-
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neered bacteria deliver Au nanoparticles to tumor site with the help of bacterial inherent
homing capability. Upon near-infrared light irradiation, the Au nanoparticles generate heat
and induce the expression of TNF-α, which could kill tumor cells (Figure 8C). In addition,
researchers have generated a bacteria-based oral DNA vaccine for cancer therapy. Atten-
uated Salmonella was decorated with DNA nanoparticles that could encode autologous
vascular endothelial growth factor receptor 2 (VEGFR2) on the surface (Figure 3A) [74].
The results suggested that the acid resistance of this vaccine is improved remarkably, due
largely to the protection effects of the nanoparticle layers. With the assistance of bacteria
that enhances the accumulation of more DNA inside tumor tissues, significantly improved
therapeutic efficacy is observed in tumor-bearing mice.
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3.3.3. Other Diseases

In addition to intestinal inflammation diseases and cancers, bacteria have been de-
signed to deliver therapeutic agents for other diseases, such as diabetes, obesity, HIV, and
ethanol-induced liver disease (Table 3) [41,46,78]. Insulin, an essential drug for diabetes
treatment, is usually delivered by subcutaneous injection as its inability to resist the strong
acids and digestive enzymes in the GI tract. Thus, it is attractive to use bacteria that could
be engineered to orally deliver protein/peptide therapeutics against diabetes. Lactococcus
lactis is genetically modified to produce a single-chain insulin analog, which is able to
bind and stimulate the expression of the insulin receptor [45]. Another major therapeu-
tic drug for diabetes, GLP-1, is expressed in engineered Lactococcus and Bifidobacterium
longum to enhance the efficiency of glucose control in murine models [41,115]. In addi-
tion, Lactobacillus reuteri is engineered to produce mouse IL-22 for treating alcoholic liver
disease [46]. Previous studies demonstrated that in alcoholic liver disease models, the
production of IL-22, which regulates the expression of antimicrobial C-type lectin regen-
erating islet-derived 3 gamma (REG3G), is reduced significantly [116]. To restore REG3G
expression in the intestine, probiotic bacteria are genetically modified to orally deliver
IL-22 [46]. As a result, compared to mice administered with unmodified bacteria, mice fed
with engineered bacteria exhibit reduced liver damage and inflammation. These works
verify that oral-bacteria-based microdevices propose an alternative to solve the problems
associated with the parenteral administration of anti-diabetes drugs, such as pain, patient
reluctance, and needle-related injuries and risks.
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Table 3. Therapeutic biomacromolecules based on oral bacterial microdevices for treating other
diseases.

Bacteria Species Therapeutic
Agents Modification Strategies Types of

Therapy Refs

Lactococcus lactis GLP-1 Genetic modification Diabetes [41]
Lactococcus lactis Insulin Genetic modification Diabetes [45]

Lactobacillus reuteri IL-22 Genetic modification Ethanol-induced
liver disease [46]

Salmonella typhimurium
derived bacterial ghost gp-140 DNA Loading HIV-1 [78]

Bifidobacterium longum Glucagon-like
peptide-1 (GLP-1) Genetic modification Diabetes [115]

4. Conclusions and Future Prospects

In summary, bacteria can be easily constructed by either genetic engineering or
physicochemical modification to carry various therapeutic macromolecules including
proteins/peptides, nucleic acids, and polysaccharides. Given their living characteristics,
such as proliferation and colonization in the gut, different bacterial species have been fabri-
cated as versatile, yet intelligent, microdevices for the oral delivery of diverse biologicals.
These living-bacteria-based microdevices have demonstrated great potential for biomedical
applications including bioimaging, diagnosis, and treatment in intestinal inflammation and
infectious diseases, cancers, and diabetes. Encouragingly, a few engineered bacteria have
shown promising treatment efficacies and enter into clinical trials. Despite a remarkable
progress has been made in this field, the oral delivery of therapeutic biomacromolecular
drugs by bacteria-based microdevices faces a couple of substantial obstacles that are needed
to be overcome urgently. Firstly, due to the complexity of synthetic biological techniques,
many macromolecular agents cannot be expressed in their native forms by genetic mod-
ification, which suggests that the kinds of macromolecules could be orally delivered by
bacteria are limited. Moreover, it is quite essential to protect bacteria from strongly acidic
and digestive environments in the GI tract, with aims to increase their bioavailability and
colonization. Furtherly, the disease-targeting ability of engineered bacteria is necessary
to be improved. With adequate targeting ability, more bacteria can accumulate in the
right sites, and hence, more therapeutic drugs can be delivered. Lastly, new mechanisms
and strategies regarding increments in absorption and penetration across the intestinal
barrier should be considered particularly in the delivery of biologicals into distal organs
or tissues. In general, much work on bacteria-based microdevices for the oral delivery of
macromolecules has been limited to in vitro or preclinical animal studies, suggesting that
more efforts are needed to promote future translation of these advanced microdevices for
clinical applications. However, we believe that current limitations remaining in the field are
addressable considering the speedy advancements in synthetic biological methodologies,
nanotechnology, and related interdiscipline. We anticipate that bacteria-based microdevices
could pave an avenue for the preparation of next-generation drug carriers for the oral
delivery of biomacromolecules.
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