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Over the past several decades, natural products with poly-pharmacological profiles 
have demonstrated promise as novel therapeutics for various complex diseases, 
including cancer. Berberine (PubChem CID: 2353), a soliloquies quaternary alkaloid, 
has been validated to exert powerful effects in many cancers. However, the underlying 
molecular mechanism is not yet fully elucidated. In this study, we summarized the 
molecular effects of berberine against multiple cancers based on current available 
literatures. Furthermore, a systems pharmacology infrastructure was developed to 
discover new cancer indications of berberine and explore their molecular mechanisms. 
Specifically, we incorporated 289 high-quality protein targets of berberine by 
integrating experimental drug–target interactions (DTIs) extracted from literatures 
and computationally predicted DTIs inferred by network-based inference approach. 
Statistical network models were developed for identification of new cancer indications 
of berberine through integration of DTIs and curated cancer significantly mutated 
genes (SMGs). High accuracy was yielded for our statistical models. We further 
discussed three typical cancer indications (hepatocarcinoma, lung adenocarcinoma, 
and bladder carcinoma) of berberine with new mechanisms of actions (MOAs) based 
on our systems pharmacology framework. In summary, this study systematically 
provides a powerful strategy to identify potential anti-cancer effects of berberine with 
novel mechanisms from a systems pharmacology perspective.
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INTRODUCTION

Natural products with diverse chemical scaffolds have been recognized as an invaluable source of 
candidates in drug discovery and development for multiple complex diseases, including cancer. 
Berberine, a plant-derived compound isolated from medicinal plants such as Coptis chinensis and 
Hydrastis canadensis, had a long history of medicinal application in traditional Chinese medicine 
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(Ayati et al., 2017). As one of the main alkaloids, berberine has 
been reported to exert potentially beneficial effects on many 
cancer types, including breast cancer (Kim et al., 2008), bladder 
cancer (Yan et al., 2011), and hepatocarcinoma (Liu et al., 2011; 
Zhu et al., 2016). For example, berberine had shown significant 
inhibitory effect on hepatocellular carcinoma cells and could 
reduce the volume and weight of tumors in an H22 transplanted 
tumor model in mice (Li et al., 2015).

Based on collection of hundreds of berberine-related 
pharmacological literatures, we systematically summarized eight 
key mechanisms of anti-cancer effects of berberine, including cell 
death, cell invasion and metastasis, cell cycle arrest, cell growth, 
transcription factors, inflammatory factors, angiogenic, chemo-
sensitivity, and radio-sensitivity (Figure 1 and Supplementary 
Table S1). Specifically, apoptosis (programmed cell death) 
plays a vital role in tumor cell development, differentiation, 
and proliferation (Ola et al., 2011). Recent study has revealed 
that berberine could induce apoptosis of human osteosarcoma 
U2OS cells through inhibiting the PI3K/Akt signaling pathway 
activation (Chen, 2016). In addition, anti-angiogenesis is a 
promising strategy for prevention and treatment of multicancer 
in preclinical or clinical studies in terms of many natural products 
(Khalid et al., 2016; Kotoku et al., 2016). Previous in vitro and 
in vivo experiments have validated that berberine exerted anti-
angiogenic effect through inhibiting various proinflammatory 
and pro-angiogenic factors, including vascular endothelial 
growth factor (VEGF), interleukin-6 (IL-6), interleukin-2 
(IL-2), and metalloproteinase inhibitor (TIMP) (Hamsa and 
Kuttan, 2012).

Collectively, berberine with polypharmacology has 
demonstrated its broad anti-cancer properties through targeting 
various oncogenic pathways and targets. Therefore, systematic 
exploration of the drug targets of berberine is of great significance 
for understanding its anti-cancer mechanisms of action (MOAs) 
and for further excavating its novel cancer indications.

Systems pharmacology-based approaches, as an emerging 
interdiscipline that combines experimental assays and 
computational tools, have provided an alternative to understand 
the therapeutic mechanisms of complex diseases (Fang et al., 
2018). Recent studies have demonstrated advanced discovery 
of new indications for natural products based on systems 
pharmacology approaches (Fang et al., 2017b; Fang et al., 2019). 
For example, novel molecular mechanisms of several effective 
natural products (e.g., resveratrol, quercetin, caffeic acid, and 
wogonoside) for multiple complex diseases including multi-
cancer types and age-related disorders have been identified 
and validated by various literatures and in vitro and in vivo 
experiments (Fang et al., 2017a; Huang et al., 2019). Collectively, 
systems pharmacology-based approaches have been proved as an 
effective tool for exploring the poly-pharmacological actions of 
natural products towards various complex diseases.

In this study, we proposed a systems pharmacology 
infrastructure to identify new cancer indications of berberine 
and explore their molecular mechanisms (Figure 2). Specifically, 
we constructed a global DTI network of berberine by integrating 
both experimentally reported DTIs obtained from literatures 
and DTIs computationally predicted by our previous predictive 
network models (Fang et al., 2017c). Besides, a high-quality 

FIGURE 1 | Diagram illustrating the eight potential anti-cancer effects of berberine. Berberine exerts anti-cancer activities via targeting various cancer key protein 
targets, related to cell death, cell invasion and metastasis, cell cycle arrest, cell growth, transcription factors, inflammatory factors, angiogenic, chemo-sensitivity, 
and radio-sensitivity.
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collection of significantly mutated genes (SMGs) for multiple 
cancer types was manually collected. On the basis of curated 
cancer SMGs and DTIs, we built statistical network models with 
high accuracy to prioritize new cancer indications of berberine 
and showcased its potential mechanisms. Overall, this study 
provides a useful systems pharmacology framework to interpret 
the multi-scale MOAs of berberine in multiple cancer type 
management, which may give some enlightenment for further 
treatment of cancer-associated diseases.

MATERIALS AND METHODS

Collection of Known Targets for Berberine
Known targets of berberine were collected by extracting 
data from four data sources, including HIT (Ye et al., 2011), 
STITCH (Kuhn et al., 2014), BindingDB (accessed June 2016) 

(Gilson  et  al., 2016), and ChEMBL (Bento et al., 2014). For 
STITCH, we only kept the targets with experimental evidence 
score higher than 0.7. We totally obtained 66 known targets 
via integrating the four available databases. Besides, we further 
gathered 238 extra targets of berberine by manually retrieving 
large-scale pharmacological literatures from PubMed (https://
www.ncbi.nlm.nih.gov) with “berberine [title] and cancer” 
as search terms (Supplementary Table S2). After duplicated 
targets and DTIs were eliminated from non-Homo sapiens, 
275 high-quality known DTIs were selected for further study 
(Supplementary Table S3).

Network-Based Target Prediction 
for Berberine
In a previous study, we have developed statistical network 
models to predict targets of natural products through a balanced 

FIGURE 2 | Workflow of a systems pharmacology infrastructure for the identification of cancer indications and exploration of molecular mechanisms of berberine. 
(A) Construction of drug–target network for berberine, (B) manual curation of cancer significantly mutated genes (SMGs) for multiple cancer types, (C) performing 
network analyses to explore the anti-cancer mechanism of berberine, and (D) statistical network models for prioritizing novel anti-cancer indication of berberine 
through integrating computationally predicted and known drug targets into the curated cancer SMGs.
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substructure–drug–target network-based inference (bSDTNBI) 
approach (Fang et al., 2018). The bSDTNBI method utilizes 
resource-diffusion processes to prioritize potential targets for 
natural products through integrating known DTI network, 
drug–substructure linkages, and new input drug–substructure 
linkages (Wu et al., 2017). For a new input chemical, each of its 
substructures equally spreads resources to its neighbor nodes 
layer by layer, and targets obtaining final resources could be 
regarded as the potential targets of the new chemical. Four 
parameters (α = β = 0.1, γ = −0.5, and k = 2) of bSDTNBI were 
adopted based on a previous study (Wu et al., 2016). Among 
them, parameter α was introduced to balance the initial resource 
allocation of different node types, while β was used to adjust 
weighted values of different edge types. The third parameter γ 
was imported to balance the influence of hub nodes in resource-
diffusion processes, and the fourth parameter κ denotes the 
number of resource-diffusion processes. We calculated four 
substructure items for each compound based on four types of 
molecular fingerprints from PaDEL-Descriptor (version 2.18) 
(Yap, 2011), including Substructure (FP4), Klekota-Roth (KR), 
MACCS, and PubChem. Among the four network models 
generated with different types of fingerprints, bSDTNBI_KR 
performed best with the highest values of precision (P = 0.049), 
recall (R = 0.752), precision enhancement (Ep = 27.02), recall 
enhancement (eR = 27.24), and the area under the receiver 
operating characteristic curve (AUC = 0.959). Finally, the best 
model built based on KR molecular fingerprint was selected 
to predict the new targets of berberine. The top 20 predicted 
candidates were used for further study (Supplementary 
Table S3).

Significantly Mutated Genes (SMG) for 
Multiple Cancer Types
We collected 804 SMGs for 28 cancer types/subtypes from a 
previous study (Cheng et al., 2016), including glioblastoma 
multiforme (GBM), serous ovarian adenocarcinoma (SOC), 
stomach adenocarcinoma (STAD), colorectal adenocarcinoma 
(CRAC), breast carcinoma (BRCA), uterine corpus 
endometrioid (UCEC), medulloblastoma (MBL), acute myeloid 
leukemia (AML), cutaneous melanoma (CM), lung squamous 
cell (SQCC), thyroid carcinoma (THCA), lung adenocarcinoma 
(LUAD), kidney clear cell (CCSK), head and neck squamous 
(HNSCC), small cell lung (SCLC), lower grade glioma 
(LGG), bladder carcinoma (BLCA), esophageal carcinoma 
(EC), prostate adenocarcinoma (PRAD), hepatocarcinoma 
(HCC), neuroblastoma (NBL), chronic lymphocytic leukemia 
(CLL), pancreas adenocarcinoma (PAC), multiple myeloma 
(MM), acute lymphocytic leukemia (ALL), non-small cell 
lung (NSCLC), diffuse large B-cell lymphoma (DLBCL), and 
pilocytic astrocytoma (PA). Considering a lack of statistical 
power if the number of SMG for specific cancer types is lower 
than 20, we further excluded ALL, NSCLC, DLBCL, and PA. 
All SMGs are annotated using gene Entrez ID, chromosome 
location, and the official gene symbols from the National 
Center for Biotechnology Information (NCBI) database (Zhe 
and Huang, 2002). Finally, 24 cancer types/subtypes covering 

804 SMGs were selected for further study (Supplementary 
Table S4).

Prioritizing Cancer Indications of 
Berberine
In this study, an integrated statistical network model was 
generated to prioritize cancer indication of berberine based 
on drug–target network and cancer SMGs (Cheng et al., 2016; 
Jiang et al., 2018). We assumed that berberine would exert 
high potential for the treatment of a specific cancer type if its 
targets tend to be SMGs of this cancer. For each cancer type/
subtype, Fisher’s exact test was utilized to calculate the statistical 
significance of the enrichment of SMGs for each cancer type 
in target profiles of berberine. The P-values were corrected by 
Benjamini–Hochberg method (Benjamini and Yekutieli, 2001). 
We set a cutoff adjusted P-value threshold (q) < 0.05 to define 
significantly predicted drug–cancer pairs.

Network Construction
To further explore the multi-scale MOAs of berberine in treating 
multiple cancer types, three types of networks were constructed 
by Cytoscape 3.2.1 software (Shannon et al., 2003): 1) drug–
target (D-T) network, which presents the relationship between 
berberine and its targets; 2) target–function (T-F) network, 
which illustrates the relationship between cancer-related 
biological processes and SMGs; and 3) drug–target–disease 
(D-T-D) network, which reflects a global view of the molecular 
mechanism of berberine against multiple cancer types. After 
network analysis, the SMGs were further mapped to DAVID 
database (https://david.ncifcrf.gov/summary.jsp) for extracting 
the canonical pathways that were highly associated with these 
targets (Dennis et al., 2003). Finally, circos plot was used to 
visualize the predicted cancer indications.

RESULTS AND DISCUSSION

Construction of the Drug–Target (D-T) 
Network for Berberine
The constructed drug–target interaction network (Figure 3) 
of berberine contains 289 interactions, including 275 known 
targets and 20 predicted targets (Supplementary Table S3). In 
vitro and in vivo assays in previous studies have validated that five 
out of the 20 predicted targets could be mediated by berberine, 
indicating high accuracy of our target prediction approach. These 
five predicted targets are caspase-3 (CASP3) (Okubo et al., 2017), 
cellular tumor antigen p53 (TP53) (Qing et al., 2014), caspase-9 
(CASP9) (Zhao et al., 2017), nuclear factor NF-kappa-B p105 
subunit (NFKB1) (Yu et al., 2014), and mitogen-activated protein 
kinase 1 (MAPK1) (Song et al., 2015).

We further mapped the 289 protein targets of berberine into 
the curated cancer SMGs, resulting in 51 cancer-related targets 
encoded by SMGs (Supplementary Table S3). Accumulating 
evidences indicate that berberine may exert anti-cancer effects 
through regulating these targets. For instance, signal transducer 
and activator of transcription 3 (STAT3) are important in 
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various phases of the tumor development, including tumor 
cell proliferation, survival, invasion, immunosuppression, and 
inducing and maintaining a pro-carcinogenic inflammatory 
microenvironment (Fan et al., 2013). A previous study has 
showed that berberine suppressed tumorigenicity and growth 
of nasopharyngeal carcinoma (NPC) cells by inhibiting STAT3 
activation (Tsang et al., 2013). Recently, a strategy targeting tumor 
suppressors and apoptosis-related genes provides a rationale 
for developing more effective approaches and agents for cancer 
prevention (Sun et al., 2017; López-Cortés et al., 2018; Yamaguchi 
et al., 2019). Berberine has been observed to activate expression 
of many tumor apoptosis-related proteins, including caspase-8 
(CASP8), tumor necrosis factor-a (TNF-a), and p38 MAPK, and 
thus induced apoptosis of HeLa cells (Lu et al., 2010). Besides, 
it has been reported that berberine can decrease expression of 
mitochondrial-dependent anti-apoptotic factors such as B-cell 
lymphoma-2 (Bcl-2) and Bcl-2-like protein 1 (BCL2L1) in KB 
human oral cancer cells (Kim et al., 2015).

Taken together, the observed polypharmacological profiles of 
berberine motivated us to elucidate its anti-cancer mechanism 
through systems pharmacology analysis on the interaction 
between berberine and 51 SMGs.

Elucidating Molecular Mechanisms of 
Berberine in Cancer Prevention and 
Treatment
Target–Function Network
As depicted in Figure 4, the target–function (T-F) network is 
composed of 230 T-F pairs connecting 51 SMG targets and 8 
cancer-related functional modules based on the DAVID analysis 
(Supplementary Table S5). The eight functional modules include 
anti-cancer action associated with sustaining proliferative 
signaling (Huang et al., 2015), resisting cell death (Chidambara 
Murthy et al., 2012), deregulating cellular energetics (Tan et al., 
2015), enabling replicative immortality (Xiong et al., 2015), 
avoiding immune destruction (Jiang et al., 2017), genome 
instability and mutation (Li et al., 2014), angiogenesis (Jie et al., 
2011), and activating invasion and metastasis (Tang et al., 2009). 
On average, each SMG target is involved in six cancer-related 
functional modules. We found that 25 out of 51 SMG targets are 
associated with more than five functional modules, indicating 
the higher potential role of these SMG targets related to cancers. 
Previous studies of berberine in cancer validated the functional 
analysis of our T-F network. For instance, berberine could induce 
cell cycle arrest involved in sustaining proliferative signaling in 

FIGURE 3 | Drug–target (D-T) network of berberine composed of known and predicted targets. The predicted targets were obtained by a balanced substructure–
drug–target network-based inference (bSDTNBI) approach. This network includes 289 drug–target interactions connecting berberine and 51 protein targets 
encoded by significantly mutated genes (SMGs).
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cholangiocarcinoma KKU-213 and KKU-214 cell lines (Puthdee 
et al., 2017). Berberine was reported to inhibit metastasis and 
tumor-induced angiogenesis in human cervical cancer cells as 
well (Chu et al., 2014).

KEGG Enrichment Analysis
In order to further elucidate molecular mechanisms of 
berberine in cancer prevention and treatment, we performed 
KEGG pathway enrichment analysis based on the 51 SMGs. 
After pathways with adjusted P (q) value higher than 0.05 were 
excluded, 56 enriched pathways related to cancer pathogenesis 
were obtained (Supplementary Table S6).

Among 56 pathways, PI3K-Akt (hsa04151; q = 2.0 × 10−12), 
p53 (hsa04115; q = 2.7 × 10−9), HIF-1 (hsa04066; q = 3.9 × 10−9), 
FoxO (hsa04068; q = 4.9 × 10−9), VEGF (hsa04370; q = 5.7 × 
10−7), MAPK (hsa04010; q = 2.5 × 10−6), Ras (hsa04014; q = 6.4 × 
10−6), Jak-STAT (hsa04630; q = 9.9 × 10−4), mTOR (hsa04150; 
q= 1.5 × 10−2), AMPK (hsa04152; q = 1.9 × 10−2), and NF-kappa 
B (hsa04064; q = 4.0 × 10−2) signaling pathways have been 
confirmed to be associated with berberine in previous literatures 
(Table 1). For example, berberine was reported to inhibit cellular 

growth and promotes apoptosis by down-regulating PI3K/Akt 
signaling pathway in breast cancer SKBR-3 cells and hepatoma 
HepG2 cells (Liu et al., 2011; Kuo et al., 2011). In vitro and in vivo 
assays revealed that berberine sensitized drug-resistant breast 
cancer to doxorubicin (DOX) chemotherapy and directly induced 
apoptosis through the dose-orchestrated AMPK signaling 
pathway (Pan et al., 2017). Berberine also induces autophagic 
cell death through inhibition of mTOR-signaling pathway by 
suppressing Akt activity and up-regulating P38 MAPK signaling 
in HepG2 and MHCC97-L cells (Wang et al., 2010). The rest of 
the 45 enriched pathways prompt the potential anti-cancer acting 
mechanisms that may be mediated by berberine, which deserve 
to be validated by experimental assays in the future.

Drug–Target–Diseases Network
We further built a drug–target–diseases (D-T-D) network via 
mapping 51 SMGs targeted by berberine into multiple cancers. As 
shown in Figure 5, the 51 SMGs are related to 24 types of cancer. 
On average, each cancer links to nine SMGs, while each SMG is 
connected to 4.6 cancer types. Network analysis showed that the 
top 6 SMGs connected to the largest number of cancer types are 

FIGURE 4 | Target–function (T-F) network demonstrating the relationship between cancer-related biological processes and SMGs. A functional module is linked to a 
target if the target is involved in mechanism of anti-cancer action.
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cellular tumor antigen p53 (TP53), gTPase KRas (KRAS), epidermal 
growth factor receptor (EGFR), retinoblastoma-associated protein 
(RB1), serine-protein kinase ATM (ATM), and cadherin-1 (CDH1). 

Among them, EGFR, a key significantly mutated gene of cancer, is 
involved in the pathological mechanism of 13 cancer types, including 
LUAD, HNSCC, SQCC, EC, UCEC, PRAD, BRCA, CCSK, CLL, 

TABLE 1 | Summary of the 11 enriched pathways validated to be mediated by berberine in previous literatures.

Pathway ID Pathway name Genes P-value PMID

hsa04151 PI3K-Akt signaling pathway EGFR, HRAS, PIK3CB, MET, TP53, RAF1, BCL2L1, CDK4, KDR, AKT1, 
CDKN1A, CCND1, KRAS, CDKN1B, CCND3, BCL2, RAC1, MTOR, MYC, 
FN1

2.03E−12 27081456|25212656

hsa04115 p53 signaling pathway CDKN1A, CCND1, CCND3, CASP8, SERPINE1, TP53, APAF1, FAS, 
CDK4, ATM

2.66E−09 20455200

hsa04066 HIF-1 signaling pathway AKT1, EGFR, HRAS, CCND1, KRAS, PIK3CB, ERBB2, TP53, RAF1, RB1, 
CDK4

3.89E−09 28775788

hsa04068 FoxO signaling pathway AKT1, EGFR, HRAS, CCND1, KRAS, PIK3CB, ERBB2, TP53, RAF1, 
MLH1, CDH1, MYC

4.88E−09 24766860|29360760

hsa04370 VEGF signaling pathway TNF, MAPK14, BCL2, RAC1, TP53, APAF1, BCL2L1, CASP1 5.72E−07 23869238
hsa04010 MAPK signaling pathway AKT1, EGFR, HRAS, CCND1, KRAS, PIK3CB, ERBB2, TP53, RAF1, 

MLH1, CDH1, MYC
2.45E−06 19492307|25212656

hsa04014 Ras signaling pathway AKT1, EGFR, HRAS, CCND1, KRAS, PIK3CB, ERBB2, TP53, RAF1, RB1, 
CDK4

6.42E−06 25212656|23159854

hsa04630 Jak-STAT signaling pathway AKT1, HRAS, KRAS, PIK3CB, JUN, RAC1, RAF1 9.90E−04 26463023
hsa04150 mTOR signaling pathway TNF, CASP8, APAF1, CASP1 1.50E−02 23159854|20830746
hsa04152 AMPK signaling pathway EGFR, MAPK14, JUN, RAC1, MET 1.88E−02 28775788
hsa04064 NF-kappa B signaling pathway TNF, CASP8, APAF1, CASP1 3.97E−02 19107816

FIGURE 5 | Drug–target–disease (D-T-D) network of berberine. This network shows 51 proteins of berberine encoded by SMGs of 24 types of cancer.
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STAD, LGG, CRAC, and GBM. Previous studies confirmed that 
berberine can inhibit EGFR signal pathway in several cancer types, 
including STAD (Wang et al., 2016), PRAD (Huang et al., 2015), and 
CRAC (Wang et al., 2013). Besides, berberine acts in specific tumor 
by regulating multiple SMGs. For instance, cellular tumor antigen 
p53 (TP53) (Wilson et al., 2010), RAC-alpha serine/threonine-
protein kinase (AKT1) (López-Cortés et al., 2018), and cyclin-
dependent kinase inhibitor 1B (CDKN1B) (Cusan et al., 2018) 
are highly correlated with breast cancer. Accumulating evidences 
demonstrated that berberine can inhibit breast cancer by acting on 
SMGs such as TP53 (Kim et al., 2012; Tan et al., 2015), AKT1 (Kuo 
et al., 2011), and CDKN1B (Patil et al., 2010).

Briefly, the D-T-D network demonstrated that SMGs targeted 
by berberine were closely related to multi-cancer types. In the 
following part, statistical systems pharmacology approach was 
employed to identify novel cancer indications of berberine and 
explore the molecular mechanisms.

Systems Pharmacology-Based Prediction of Cancer 
Indications for Berberine
As shown in Figure 6, a statistical systems pharmacology 
framework is proposed to prioritize novel cancer indications 

of berberine based on Fisher’s exact test analysis. We calculated 
the therapeutic potential of berberine in 24 cancer indications 
and obtained 18 cancer indications of which adjusted P (q) 
values are lower than 0.05 (q < 0.05), including HCC (q < 1.0 × 
10−5; −Log10 (q) = 19.25), LUAD (q < 1.0 × 10−5; −Log10 (q) = 
9.35), BLCA (q < 1.0 × 10−5; −Log10 (q) = 9.31), CM (q < 1.0 × 
10−5; −Log10 (q) = 9.29), HNSCC (q < 1.0 × 10−5; −Log10 (q) = 
8.52), SQCC (q < 1.0 × 10−5; −Log10 (q) = 6.74), EC (q < 1.0 × 
10−5; −Log10 (q) = 6.66), UCEC (q < 1.0 × 10−5; −Log10 (q) = 
6.52), PRAD (q = 1.15 × 10−5; −Log10 (q) = 6.32), BRCA (q = 
1.33 × 10−5; −Log10 (q) = 6.26), CCSK (q = 2.30 × 10−5; −Log10 
(q) = 6.02), CLL (q = 0.55 × 10−3; −Log10 (q) = 4.64), STAD 
(q = 1.76 × 10−3; −Log10 (q) = 4.14), SCLC (q = 5.33 × 10−3; 
−Log10 (q) = 3.65), NBL (q = 1.29 × 10−2; −Log10 (q) = 3.27), 
LGG (q = 1.67 × 10−2; −Log10 (q) = 3.16), CRAC (q = 3.21 × 
10−2; −Log10 (q) = 2.87), and SOC (q = 3.36 × 10−2; −Log10 
(q) = 2.85) (Supplementary Table S7). As listed in Table 2, 10 
out of the 18 predicted cancer indications of berberine were 
validated by reported experimental evidences, including HCC, 
LUAD, BLCA, EC, PRAD, BRCA, STAD, CRAC, and SOC, 
indicating the high accuracy of our systems pharmacology-
based predictive method (success rate = 55.6%).

FIGURE 6 | Circos plot visualizes the predicted cancer indications of berberine. The red connected lines represent the calculated −Log10 (q) value of each berberine-
cancer type pair based on Fisher’s exact test, while the blue ones represent the corresponding number of overlapped targets. The predicted cancer indications 
with literature validation were highlighted in bold font. We classified the 18 predicted cancer indications into four neoplasm categories according to Medical Subject 
Headings (MeSH) system (https://www.ncbi.nlm.nih.gov/mesh/68009371).
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Among the 18 cancer indications, CM, HNSCC, SQCC, 
UCEC, CCSK, CLL, SCLC, NBL, and LGG are the unreported 
cancer indications of berberine, which deserve further 
preclinical validation. For example, cutaneous melanoma 
(CM), one of the most aggressive types of cancer, represents 
a major problem worldwide due to its high incidence and 
elevated degree of heterogeneity (Jemal et al., 2010; Coricovac 
et al., 2018). Based on our predictive model, berberine exerted 
a high potential for anti-CM, with a significant q value  
[q < 1.23 × 10−8; −Log10 (q) = 9.29]. Therefore, the potential of 
berberine in the prevention and treatment of CM deserves to 
be further validated.

Case Study: Exploring the MOAs of Berberine on 
Hepatocarcinoma (HCC), Lung Adenocarcinoma 
(LUAD), and Bladder Carcinoma (BLCA)
To further validate the accuracy of statistical network models 
and predicted anti-cancer targets of berberine, we selected three 
typical cancer types [HCC (q = 5.63 × 10−20), LUAD (q = 4.52 × 
10−10), and BLCA (q = 4.92 × 10−10)] as case studies to illustrate 
their anti-cancer MOAs (Figure 7).

Hepatocellular Carcinoma
HCC, the third leading cause of cancer death worldwide, 
has become one of the most common and prevalent human 
malignancies in the world (Okubo et al., 2017). In vitro assays 
revealed that berberine can inhibit autophagy in hepatoma cell 
lines (e.g., HepG2 cells and MHCC97-L cells) by regulating 
multiple proteins [e.g., mitogen-activated protein kinase 14 
(MAPK14), TP53, and phosphatidylinositol 4,5-bisphosphate 
3-kinase catalytic subunit beta isoform (PIK3CB)] and pathways 
(e.g., P38 MAPK signaling), stimulating further development 
of derivatives for drug-base cancer prevention and treatment 
(Wang et al., 2010; Liu et al., 2011; Wang et al., 2014). In this 
study, Fisher’s test showed that berberine played a significant 
role in treatment of liver cancer (q = 5.63 × 10−20). In addition, 

network analysis revealed that berberine bound with 27 HCC-
related SMG targets, suggesting its underlying anti-cancer 
mechanisms of berberine (Figure 7). In vivo or in vitro data 
have demonstrated that these SMGs are closely relevant to the 
treatment of cancer by berberine. For example, berberine can 
inhibit cell proliferation of HepG2, Hep3B, and SNU-182 through 
up-regulating protein expression of tumor suppressor genes, such 
as activating transcription factor 3 (ATF3) (Chuang et al., 2017). 
Furthermore, study revealed that berberine inhibited expression 
of BCL2, thus reducing autophagic cell death and mitochondrial 
apoptosis in liver cancer cells, such as HepG2 and MHCC97-L 
cells (Hur et al., 2010).

Lung Adenocarcinoma
LUAD is one of the leading causes of cancer-related death both 
men and women in the United States. Approximately two million 
people are diagnosed with lung cancer each year (Torre et al., 
2016). Berberine was predicted to have anti-LUAD potential 
(q = 4.52 × 10−10). Some previous in vivo and in vitro studies 
confirmed our prediction (Mitani et al., 2001; Zheng et al., 
2014). Furthermore, berberine is currently being assessed as an 
anti-LUAD drug in clinical trials (NCT03486496). As shown in 
Figure 7, berberine interacts with 13 LUAD-related SMGs (e.g., 
matrix metalloproteinase-2), indicating the underlying MOAs of 
anti-LUAD of berberine. Matrix metalloproteinases (MMPs), one 
target displayed in our network, is the major protease of LUAD 
and is associated with tumor invasion and metastasis (Herbst 
et al., 2000). Study on human lung cancer cell line A549 confirmed 
that berberine inhibited invasion and growth of tumor cells 
through  decreasing productions of matrix metalloproteinase-2 
(MMP2) (Peng et al., 2006).

Bladder Carcinoma
BLCA is the most common cancer of the urinary system in the 
United States (Kaufman et al., 2009). In our network model, 
berberine is predicted to have a significant relationship with 

TABLE 2 | Relevant literature evidences of the 18 predicted cancer indications of berberine.

Cancer type P-value (Fisher test) Adj-P Negative logarithmic PMID

HCC 5.63E−20 1.35E−18 17.87 26081696|25496992|24942805
LUAD 4.52E−10 1.08E−08 7.96 24766860|26672764|26503561
BLCA 4.92E−10 1.18E−08 7.93 21545798|23065570|10418949
CM 5.12E−10 1.23E−08 7.91 N/A
HNSCC 3.03E−09 7.27E−08 7.14 26503508
SQCC 1.82E−07 4.37E−06 5.36 N/A
EC 2.18E−07 5.23E−06 5.28 28465635|26667771|21858113
UCEC 3.03E−07 7.27E−06 5.14 N/A
PRAD 4.77E−07 1.15E−05 4.94 16505103|26698234|25572870
BRCA 5.53E−07 1.33E−05 4.88 29143794|29414799|28926092
CCSK 9.58E−07 2.30E−05 4.64 N/A
CLL 2.28E−05 5.47E−04 3.26 N/A
STAD 7.32E−05 1.76E−03 2.76 27142767|25837881|18468407
SCLC 2.22E−04 5.33E−03 2.27 N/A
NBL 5.36E−04 1.29E−02 1.89 27235712|19189664|19096576
LGG 6.95E−04 1.67E−02 1.78 N/A
CRAC 1.34E−03 3.21E−02 1.49 23604974|26463023|25954974
SOV 1.40E−03 3.36E−02 1.47 N/A
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BLCA (q = 4.92 × 10−10). Meanwhile, our network indicated that 
berberine interacts with 17 BLCA-related SMGs (e.g., HRAS). 
According to previous study, the oncogenic ras genes GTPase 
HRas (HRAS) mutations, endogenously expressed in T24 
bladder cancer cell line, were associated with grades and stages of 
BLCA detected in more than 35% of patients (Buyru et al., 2003). 
Berberine inhibited cell proliferation and induced cell cycle arrest 
and apoptosis in BLCA by inhibiting oncogenic H-Ras pathway 
in BIU-87 and T24 cell lines (Yan et al., 2011).

Taken together, these three case studies against different 
cancer types (HCC, LUAD, and BLCA) indicate that systems 
pharmacology approach applied in this study is an effective 
method for exploring molecular mechanisms of anti-cancer 
effect of berberine. Meanwhile, the newly predicted tumor types 
might be promising to further investigate MOAs of berberine.

CONCLUSION

Berberine had been observed to exert multiple biological and 
pharmacological activities with potential benefits to a variety of 
complex diseases, including cancer. In this study, we proposed 

an integrated systems pharmacology infrastructure to identify 
cancer indications of berberine and explore the underlying 
molecular mechanisms. This work explores the following new 
anti-cancer characteristics of berberine: i) Through literature 
mining, we summarize eight mechanisms of anti-cancer effect 
of berberine; ii) global drug–target network of berberine is 
constructed by integrating large-scale experimentally reported 
targets and computationally predicted targets. Mechanisms of 
action (MOAs) of various anti-cancer effects of berberine are 
discussed through current drug–target network; iii) a statistical 
model is developed to prioritize novel cancer indications of 
berberine through integrating target profiles of berberine and 
significantly mutated genes in cancer.

Yet several limitations of our approach should be acknowledged. 
First, although we have integrated a wide range of DTIs from 
published literatures and publicly available databases, the 
incompleteness of current drug–target networks may still exist. 
Recent studies proved that integration of large-scale gene expression 
profiles of natural products may help to improve the performance 
of drug–target network model (Yamanishi et al., 2010; Cheng et al., 
2012). Second, as it is extremely difficult to obtain information on 
the active sites of berberine and mutated domain of proteins from 

FIGURE 7 | Drug–target–disease (D-T-D) network of berberine on hepatocarcinoma (HCC), lung adenocarcinoma (LUAD), and bladder carcinoma (BLCA). The 
thickness of the red dotted line represents the predicted association between berberine and three types of tumors.
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public sources, the current study could not explain the MOAs from 
a microcosmic point of view. Third, experimental assays should be 
performed to further validate the predicted targets and MOAs of 
anti-cancer effects of berberine in the future.

In summary, the systems pharmacology framework in 
this study has provided potential strategies to discover the 
polypharmacology effects of berberine for the prevention and 
treatment towards multiple cancers.
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