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Abstract

Response bias (or criterion) contamination is insidious in studies of consciousness: that observers report they do not
see a stimulus may not mean they have absolutely no subjective experience; they may be giving such reports in relative
terms in the context of other stimuli. Bias-free signal detection theoretic measures provide an excellent method for
avoiding response bias confounds, and many researchers correctly adopt this approach. However, here we discuss how a
fixation on avoiding criterion effects can also be misleading and detrimental to fruitful inquiry. In a recent paper, Balsdon
and Azzopardi (Absolute and relative blindsight. Consciousness and Cognition 2015; 32:79–91.) claimed that contamination
by response bias led to flawed findings in a previous report of “relative blindsight”. We argue that their criticisms are
unfounded. They mistakenly assumed that others were trying (and failing) to apply their preferred methods to remove bias,
when there was no such intention. They also dismissed meaningful findings because of their dependence on criterion, but
such dismissal is problematic: many real effects necessarily depend on criterion. Unfortunately, these issues are technically
tedious, and we discuss how they may have confused others to misapply psychophysical metrics and to draw questionable
conclusions about the nature of TMS (transcranial magnetic stimulation)-induced blindsight. We conclude by discussing
the conceptual importance of criterion effects in studies of conscious awareness: we need to treat them carefully, but not to
avoid them without thinking.

Introduction

Blindsight is the phenomenon in which, following damage to
the primary visual cortex, patients can display above-chance
performance in discrimination or detection of visual stimuli
despite their reported lack of conscious visual experiences
(Weiskrantz, 1986, 1996; Cowey and Stoerig, 1991, 1995, 1997;
Kentridge et al., 1999, 2004; Cowey, 2010; Sahraie et al., 2010;
Overgaard, 2011; Ko and Lau, 2012; Kentridge, 2015). Studies of
blindsight are central to our understanding of consciousness be-
cause unlike many other methods of manipulating perceptual
awareness (e.g. masking), blindsight is not associated with com-
pletely abolished task performance capacity. This important
dissociation allows us to avoid confounding awareness with

just basic perceptual processing, and thereby to address the
phenomenon of conscious awareness in a conceptually mean-
ingful way (Lau, 2008; Lau and Rosenthal, 2011).

Because blindsight patients are rare, there have been at-
tempts to recreate blindsight in healthy subjects (Kolb and
Braun, 1995; Kunimoto et al., 2001). Unfortunately, some of these
efforts have turned out to be not replicable (Morgan et al., 1997;
Robichaud and Stelmach, 2003); others revealed the mathemat-
ical complexity of estimating the correspondence between con-
fidence and accuracy (Galvin et al., 2003; Evans and Azzopardi,
2007; Maniscalco and Lau, 2012). These efforts have also high-
lighted ongoing controversy regarding the relationship between
metacognitive sensitivity (i.e. correspondence between confi-
dence and accuracy) and conscious awareness (Charles et al.,
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2013; Fleming and Lau, 2014; Jachs et al., 2015). Other groups
have since attempted to experimentally induce milder forms of
the phenomenon that are conceptually related but different.
Below we refer to two such phenomena: “relative blindsight”
(Lau and Passingham, 2006) and “TMS-induced blindsight”
(Boyer et al., 2005; Jolij and Lamme, 2005; Ro, 2010; de Graaf et al.,
2011).

Studies concerning both phenomena, however, have recently
been criticized: it has been argued that both phenomena are sus-
ceptible to the contamination of response bias. This article evalu-
ates and responds to these critiques. Importantly, although the
last author (H.L.) was responsible for introducing the relative
blindsight paradigm via metacontrast masking, his lab is cur-
rently no longer pursuing that line of research, mainly because
the observed experimental effect was small (though replicable;
Maniscalco and Lau, 2010; Maniscalco et al., 2016) and there are
likely better experimental paradigms to probe the same concep-
tual questions (e.g. Rounis et al., 2010; Rahnev et al., 2011; Koizumi
et al., 2015). As such, the main goal of this article is not to defend
the existence and robustness of the phenomena in question.
Rather, we hope to raise important issues concerning general at-
titudes toward response biases in perception research; ultim-
ately, these issues concern far more than the phenomenon of
blindsight itself.

Relative blindsight

Relative blindsight refers to the phenomenon that, for similar
stimuli at identical objective task performance levels (e.g. accur-
acy in stimulus discrimination), observers can have different
subjective levels (or frequency) of reported awareness in differ-
ent conditions. That is, whereas actual clinical cases of blind-
sight involve the absolute abolishment of visual awareness
while objective task performance is still above chance, relative
blindsight involves a relative difference in subjective visual
awareness levels while objective task performance is held con-
stant (see Fig. 1).

The term “relative blindsight” was introduced by Lau and
Passingham (2006) when they used metacontrast masking to
demonstrate the phenomenon. They varied stimulus presenta-
tion timing parameters, specifically the stimulus onset asyn-
chrony (SOA) between the visual target and the metacontrast
mask, and identified two SOA conditions with identical object-
ive performance levels in the task of discriminating between a
square and a tilted square (a “diamond”). It was found that at
the shorter of the two SOAs (in which the mask was presented

sooner after the target), subjects reported that they saw the tar-
get consciously less often than at the longer SOA, despite simi-
lar objective (“square or diamond?”) task performance levels
between the conditions.

The study (Lau and Passingham, 2006) has been criticized for
a number of reasons. First Jannati and Dilollo (2012) argued that
the “criterion content” may not be matched between the different
SOA conditions. The term “criterion content” (Kahneman, 1968)
here should not be confused with the concept of response criter-
ion or bias. Rather, Jannati and Dilollo’s (2012) point is that the
objective discrimination task in Lau and Passingham (2006) may
not have relied on the same visual information in the two
matched-performance conditions. We do not address this point
here because in a different study we replicated the phenomenon
with stimuli for which criterion content is better matched
(Maniscalco and Lau, 2010; Maniscalco et al., 2016). Therefore, the
possibility of differing criterion content is unlikely to be a critical
issue.

Balsdon and Azzopardi (2015) also raised the issue of criterion
content, together with other new criticisms. It was mentioned
that stimulus timing was not carefully monitored in the original
Lau and Passingham (2006) study. The last author (H.L.) duly ac-
knowledges that this was the case. However, as Balsdon and
Azzopardi (2015) pointed out, these are straightforward issues
that can be fixed easily. They should not undermine the possibil-
ity that relative blindsight exists, but only concern the question
of under what specific timing parameters the phenomenon can
be obtained via metacontrast masking.

Balsdon and Azzopardi (2015) went on to raise what seems
to be a more substantive issue, concerning the paradigm used
by Lau and Passingham (2006): “Lau and Passingham reported
comparing percent correct 2AFC scores for performance (‘Was
the target a square or a diamond?’) and percent correct yes–no
scores for awareness (‘Did you see the target?’). . . . [However,]
the test that was used to assess performance was in fact not a
2AFC, . . . but rather a yes-no question” (p. 81).

We do not dispute that a 2AFC task is different from a 2-
choice discrimination task (or what Balsdon and Azzopardi
(2015) call a yes-no, or YN, task, as explained in the next sec-
tion). In the former, the same pair of stimuli is presented in
every trial, and the subject must identify the spatial or temporal
arrangement of the stimulus pair; in the latter, one out of two
stimuli is presented in each trial and the subject must state
which one of the two is presented. According to these standard
definitions in psychophysics—which many researchers fail to
adopt these days—2AFC includes a variety of tasks, e.g. a

Figure 1. Illustration of a relative blindsight effect. For two conditions, Performance (indexed by percent correct, d’, or some other measure of
perceptual sensitivity/capacity) is equivalent, but Awareness or Confidence ratings differ.
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2-interval forced choice detection task in which one has to iden-
tify whether a target is presented followed by a blank, or vice
versa; a task to determine the spatial localization of a target to
be presented on either the left or the right (the other location is
occupied by “blank”); or a task in which the subject has to say
whether a square is on the right and a diamond is on the left, or
the other way round. These are all 2AFC tasks, but the task used
in Lau and Passingham (2006) was decidedly not of the 2AFC
variety because in each trial only one of two possible stimuli
was presented—a square or a diamond. We do not dispute that
it was a 2-choice discrimination and not a 2AFC. Yet the con-
cern raised by Balsdon and Azzopardi (2015) is puzzling because
at no point in Lau and Passingham (2006) did the authors men-
tion a 2AFC task. Although Lau and Passingham (2006) did call
their task a “forced-choice discrimination”, nowhere did the au-
thors claim they had used a 2AFC task. As we discuss later,
these terminological confusions might more easily be avoided
in the future if the term “forced-choice discrimination” were to
be replaced by “2-choice discrimination”.

We suspect Balsdon and Azzopardi’s (2015) mis-reading of
Lau and Passingham (2006) may also have stemmed from
Balsdon and Azzopardi’s (2015) belief that response bias is such
a problematic contaminating factor (see also Evans and
Azzopardi, 2007) that they expected Lau and Passingham (2006)
to have used a 2AFC task as the objective discrimination task. It
is true that 2AFC tasks are supposedly less susceptible to re-
sponse bias (Macmillan and Creelman, 1990, 2004). However, as
we will explain below, response bias is not really an issue in the
objective task. So Lau and Passingham (2006) did not intend to
use a 2AFC task at all; thus, there was no failure in implement-
ing one. Yet it is worth noting that Balsdon and Azzopardi
(2015) seem to be so concerned about response biases that they
misread Lau and Passingham (2006), and so incorrectly reported
Lau and Passingham’s (2006) conclusions. How would response
biases be such insidious, potentially “contaminating” factors?

A response bias problem?

Balsdon and Azzopardi (2015) called Lau and Passingham’s
(2006) objective task a yes-no (YN) task, which is technically cor-
rect. In this task an observer discriminates between a square
and a diamond, and so one could rephrase the question as “Is
the target a square or NOT?” in order to get “yes” versus “no” an-
swers. (Incidentally, this method has also been called the
“method of single stimuli” (Morgan et al., 2013), as the task is to
discriminate a single stimulus.) However, we prefer to call it a
“2-choice discrimination” task rather than a “yes-no” task be-
cause both stimulus possibilities are symmetrical in that they
carry similar levels of physical intensity (and presumably over-
all neural activity too). This is quite different from a YN detec-
tion task in which the target-absent condition has lower
stimulus energy. As we shall see below, this distinction may be
important to avoid confusion. Nevertheless, let us examine
whether using a 2-choice discrimination version of a YN task
might possibly lead to response bias confounds.

In general, unlike in detection tasks, subjects tend not to
show response biases in 2AFC tasks (e.g. Stanislaw and
Todorov, 1999; but see also Cameron et al., 2002; Yeshurun et al.,
2008; Morgan et al., 2013; and Acuna et al., 2015 for discussion on
cases when 2AFC tasks can be susceptible to response biases,
such as in the case of illusions). So, Balsdon and Azzopardi’s
(2015) challenge seems to be that Lau and Passingham’s (2006)
demonstration of relative blindsight may be trivially explained
by response biases in the non-2AFC objective discrimination

task. But what difference could such response biases have
made? One possible concern is that response bias can change
the observed percent correct as a measure of performance,
without altering underlying signal processing. That is, for two
task conditions yielding identical underlying signal processing
sensitivity, if one condition is associated with strong response
bias but the other is not, percent correct ought to be lower in the
condition associated with stronger response bias (Macmillan
and Creelman, 2004). Therefore, if (a) Lau and Passingham’s
(2006) subjects showed response biases in discriminating square
from diamond (i.e. they favored one over the other) and (b) this
bias differed between SOA conditions, then task performance
may not have been truly matched between the conditions as
was reported. Yet this situation is highly implausible: it is un-
likely that observers would show response biases for this kind
of task, a 2-choice discrimination rather than detection, given
the matched stimulus energies (Peters and Lau, 2015). And,
even if subjects did show some bias, it seems unlikely that they
would systematically show more or different bias in one SOA
condition versus another. Therefore, Lau and Passingham (2006)
did not consider it necessary to implement a 2AFC objective dis-
crimination task to address this type of concern. In any case,
the possibility of response bias contamination in the objective
measure was subsequently addressed empirically: using a bias-
free signal detection theoretic (SDT) measure of sensitivity (d’)
in the objective task, Maniscalco and colleagues (Maniscalco
and Lau, 2010; Maniscalco et al., 2016) replicated Lau and
Passingham’s (2006) relative blindsight finding.

So, if anything, probably it is response bias in the subjective re-
port that should be of concern here: is Lau and Passingham’s
(2006) finding of a difference in subjective confidence between
matched-performance conditions potentially contaminated by
response bias? To test this, Balsdon and Azzopardi (2015) de-
signed an experiment which required subjects to discriminate
between squares and diamonds under metacontrast masking,
and to rate confidence afterwards, similar to Lau and
Passingham’s (2006) procedure. Balsdon and Azzopardi (2015)
used four levels of difficulty, manipulated by varying the stimu-
lus onset asynchrony (SOA) between target and mask for each
subject. However, unlike Lau and Passingham (2006), they asked
subjects to rate confidence on a scale of 1–4 (rather than “seen”
or “guessed”). They subsequently defined the criterion for “seen”
as a confidence rating of higher than 2, meaning a rating of 2 or
less is defined as “unseen”. At the easiest two levels of difficulty,
they reported matched “square or diamond?” performance but
differing percentages of “seen” versus “unseen”, i.e. relative
blindsight. Critically, they then examined the effect of shifting
the criterion for “seen” versus “unseen” by grouping confidence
ratings differently (e.g. [1] vs. [2, 3, 4]¼ liberal; [1, 2, 3] vs. [4]¼ con-
servative), and reported that at the most liberal criterion for
“seen” (confidence >1), the relative blindsight effect vanished (p.
82). This finding is in line with a previous study, which showed
that the magnitude of the relative blindsight effect is susceptible
to shifting the criterion for “seen” (Jannati and Di Lollo, 2012).

However, these results are not surprising: shifting criteria
can change the relative distribution of exemplars classified into
two categories, and extreme criteria can obscure differences in
group comparisons, even if significant differences do truly exist.
For example, consider the (hypothetical) weight distributions
between residents of the USA and Hong Kong (Fig. 2, top panel).
If we take as the criterion for “overweight” a weight of 200
pounds (Fig. 2B), we will likely find many more overweight peo-
ple (per capita) in the United States than in Hong Kong. But the
percentage of people classified as overweight in each region
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will also likely change somewhat if we shift this criterion, for
example to 150 or 250 pounds. Considering an extreme case, if
we use an overly conservative criterion, such as 600 pounds
(Fig. 2C), we will likely find few if any differences between the
two regions; the percentage of “overweight” people will
approach zero in both regions under such an absurd definition.
And likewise if we set an overly liberal criterion (as done by
Balsdon and Azzopardi (2015) in “abolishing” the relative blind-
sight effect) of 50 pounds (Fig. 2A), we will likely find little differ-
ence in proportion of overweight people between the two
regions, as presumably everybody will be classified as “over-
weight” (or nearly every stimulus classified as “seen”).
Importantly, these changes in observed percentage of over-
weight individuals will occur despite no change in any underly-
ing population differences in weight between the USA and Hong
Kong. So, critically, we should not report as a result of an
extreme criterion that there are no regional differences in pro-
portion of individuals who are overweight, nor should we con-
clude that reporting such differences is incorrect because of the
potential for criterion contamination. The difference is there,
and it is up to the researchers to use an appropriate criterion
level to reveal the difference (or to induce the subjects to do so,
in a psychological experiment, especially in one in which sub-
jects are asked to rate the subjective visibility of a stimulus).
The same logic can apply to any situation in which one binar-
izes data.

So the claim that Lau and Passingham’s (2006) observed dif-
ference in confidence between matched-performance condi-
tions arises solely from response bias is misleading: of course
finding the effect depends on bias/criterion selection, but this
does not mean the effect is problematic or unreal. (In fact, under
certain circumstances, subjects’ criterion selections might
themselves be informative.) Unfortunately this seems to be the
main point of Balsdon and Azzopardi’s (2015)’s challenge
(though see Supplemental Material for other issues), and as
such we think their worries are unfounded.

TMS-induced blindsight

The issue of response bias in the investigation of blindsight has
also come up in other studies. For example, Boyer et al. (2005)
demonstrated that transcranial magnetic stimulation (TMS) to
the occipital pole (where V1/V2 lies) can induce blindsight-like
behavior in normal observers. Subjects rated their awareness of
a target (“yes” or “no”). If they were unaware of it, they were
also required to discriminate either its orientation or color and
rate their confidence in their decision. Even on trials in which
they reported being unaware of the target, observers were able
to discriminate its orientation and color above chance. Thus,
the authors reported that TMS to V1 can produce temporary,
blindsight-like behavior in normal observers. (See also Ro and
Rafal, 2006, for further discussion.)

Figure 2. Illustration of hypothetical weight distributions of USA and Hong Kong citizens (top panel), and effects of different selections for a
criterion to classify individuals as “overweight” (lower three panels). If we choose a criterion that is either too liberal (A) or too conservative
(C), we will likely see no differences in the percentage of people classified as “overweight” between the USA and Hong Kong: nearly everybody
or practically nobody will be classified as “overweight” in these two scenarios, respectively. But this does not mean the differences are not
there; we must choose a reasonable criterion (B) in order to detect the differences. Note that Lau & Passingham (2006) encouraged subjects to
use such a reasonable criterion for “awareness” when they reported a difference in “awareness” ratings across two conditions (e.g. Fig. 1B).
However, their lack of finding any differences in objective performance across those two conditions (e.g. Fig. 1A) does not indicate that they
chose an unreasonable criterion for performance: classifying trials as “correct” vs. “incorrect” does not depend on subjective criterion selection,
and subjects did not display ceiling (100% correct) or floor (50% correct) performance. The relevant issue of whether response bias may play a
role in performance measured here is discussed in the main text.
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Lloyd et al. (2013) challenged this conclusion. They argued
that TMS may simply raise the criterion for reporting a stimulus
as “seen”, and therefore induced not blindsight, but merely a re-
sponse bias that primarily affects near-threshold stimuli. As
such, Lloyd et al. (2013) argued that bias-free measures of detec-
tion sensitivity, such as the SDT measure d’ (Green and Swets,
1966; Macmillan and Creelman, 2004), should be used to com-
pare between YN awareness ratings and 2AFC discrimination
tasks. So, as in Boyer et al. (2005), Lloyd et al. (2013) applied TMS
to the occipital pole while subjects discriminated the targets
and rated subjective awareness. Importantly, on some trials,
the target was actually absent, which allowed them to use the
bias-free SDT measure d’ to assess detection sensitivity based
on the awareness ratings—that is, to assess how well the
awareness ratings tracked the presence or absence of the target
(a Gabor patch). They also assessed discrimination sensitivity d’
(left-tilted versus right-tilted orientation of the Gabor patch),
and found that TMS impaired both the detection and discrimin-
ation sensitivities (d’) in similar magnitudes. Based on this find-
ing, they argued that TMS-induced blindsight is simply a case of
near-threshold perception, in that there was no selective im-
pairment of awareness that did not also impair objective infor-
mation processing.

As we will argue below, Lloyd et al.’s (2013) interpretations
raise important conceptual issues surrounding our understand-
ing of blindsight and its relation to consciousness. First, how-
ever, we raise some methodological issues that may undermine
their findings:

i. Lloyd et al. (2013) did not use a 2AFC measure of objective
orientation discrimination performance, despite calling it a
“forced-choice judgment (FC)” (p. 3) and later referring to it
as a “2AFC” (p. 5). Because their task required observers to
indicate orientation as a “left or right?” judgment, which is
a 2-choice discrimination, it counts as a YN task in Balsdon
and Azzopardi’s (2015) terminology. As discussed elsewhere
in this article, calling it a FC task may lead to confusions be-
yond merely terminological issues, so we advocate the use
of “2-choice discrimination” rather than “forced-choice
judgment” or “forced-choice discrimination” (as was unfor-
tunately used by Lau and Passingham, 2006).

ii. Unlike Boyer et al. (2005) and other TMS-induced blindsight
studies (e.g. Jolij and Lamme, 2005; Allen et al., 2014), Lloyd
et al. (2013) used near-threshold level visual stimuli for
which objective discrimination performance was already
low, even without any TMS. The addition of TMS to further
reduce the low visibility of these near-threshold stimuli
could have resulted in floor effects.

iii. These near-threshold stimuli may not have been strong
enough to activate alternative visual pathways that may
mediate some of the TMS-induced blindsight types meas-
ured in other studies (see also Ro et al., 2004). The authors
did not address this possibility.

iv. Lloyd et al. (2013) used a figure-eight TMS coil. Although a
few studies (e.g. Kamitani et al., 1999; Kammer et al., 2005a,
2005b) have induced small visual scotomas using figure-
eight coils at TMS intensities within the range of those used
by Lloyd et al. (2013), the more focal stimulation induced
with a figure-eight coil is not as effective at producing scot-
omas as compared to the larger circular coils (Kastner et al.,
1998), such as used by Boyer et al. (2005). Indeed, most TMS-
induced blindsight studies have used circular coils to pro-
duce visual suppression (see also Jolij and Lamme, 2005;
Christensen et al., 2008; Allen et al., 2014).

v. Unlike Boyer et al. (2005), who used TMS intensities that
were 10% above the visual suppression threshold, Lloyd
et al. (2013) used phosphene threshold TMS intensities in
their study, which have been suggested to be substantially
lower than the intensities required for producing scotomas
with figure-eight coils (Kammer et al., 2005a, 2005b).

Besides these issues, however, another concern with Lloyd
et al.’s (2013) criticism of TMS-induced blindsight is conceptual:
why would finding selective impairment in YN d’ relative to
2AFC d’ be a convincing demonstration of blindsight?

A psychophysical signature of consciousness
impairment?

Lloyd and colleagues’ (2013) emphasis on seeking a dissociation
between YN and 2AFC sensitivity presumably rests on the
observation of this effect in a blindsight patient. Azzopardi and
Cowey (1997) compared YN d’ and 2AFC d’ in hemianopic blind-
sight patient G.Y. The authors used two tasks: one task was to
indicate whether a target had been presented or not (YN detec-
tion), and another to indicate which of two sequentially-
presented intervals contained a target (“first or second?” 2AFC).
For these two corresponding tasks, 2AFC d’ is known to be
related to YN d’ by a factor of H2 (Macmillan and Creelman,
2004); after this mathematical correction, control subjects dem-
onstrated no differences between YN d’ and 2AFC d’. On the
other hand, patient G.Y. displayed smaller YN d’ than 2AFC d’ in
his blind field (Azzopardi and Cowey, 1997). This approach has
the advantage of comparing two d’ values, which are sup-
posedly bias-free (but see Yeshurun et al., 2008). Yoshida and
colleagues (Yoshida et al., 2008) later replicated this finding in
monkeys with unilateral V1 lesions, reporting a lower decision
threshold in a 2AFC vs. a YN detection task, lending further sup-
port to use of this metric as an indicator of blindsight.

First we note that the mathematical relationship between
YN d’ and 2AFC d’ does not always hold empirically (Macmillan
and Creelman, 1990, 2004), so it is important to run control tasks
and/or subjects. Importantly, that mathematical relationship
holds only for true 2AFC tasks, so Lloyd et al.’s (2013) confusing
2AFC with 2-choice discrimination is problematic; this is a sub-
stantive technical issue that is beyond terminological choices.
For their tasks we should not expect a fixed relationship, known
a priori, between the sensitivity measures.

However, more importantly, why should we consider YN d’
< 2AFC d’ to be a critical signature of blindsight? Should it be
considered a hallmark of impaired awareness or consciousness
in general, to the point that we expect all demonstrations of un-
conscious perception to show this signature (c.f. Heeks and
Azzopardi, 2015)?

Ultimately, for the phenomenon of blindsight to be mean-
ingful in the context of consciousness studies, it cannot be iden-
tified purely via some idiosyncratic psychophysical signature.
What then is the potential conceptual appeal of the metric?
Perhaps it is because in YN detection, one has to distinguish be-
tween the presence and absence of an experience associated
with a stimulus. One presumably performs the detection based
on comparing the sense that something is presented to a lack of
that subjective sensation. In 2AFC tasks, on the other hand, in
both stimulus alternatives the “amount” of sensation is the
same; one only has to determine the nature (temporal or spatial
arrangement) of the stimuli. Perhaps in the 2AFC case, above-
chance yet unconscious guessing a la blindsight is more likely,
meaning that YN detection would be selectively impaired if
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subjective awareness is abolished. Ko and Lau (2012) explored
these issues and provided a simple computational framework
(which relies on criterion effects) to account for YN d’ < 2AFC d’
as well as other psychophysical features of blindsight.

But if these conceptual considerations are important, it is
not all instances of YN d’ < 2AFC d’ that we should be con-
cerned with. It is the comparison between an estimate of YN de-
tection d’ and a corresponding 2AFC d’ that is important here. As
mentioned above, Azzopardi and colleagues prefer to call a 2-
choice discrimination task a YN task, because it is not bias-free.
In fact, by relying on this terminological equivalency, Balsdon
and Azzopardi (2015) claimed they had abolished “absolute”
blindsight (purportedly the difference between objective per-
formance and subjective awareness; see Supplemental Material
for further discussion) in a discrimination masking paradigm
through demonstrating that “YN” (i.e. 2-choice discrimination)
d’ is equal to 2AFC d’. But it is unclear why one would expect to
find YN d’ < 2AFC d’ under impairment of awareness if the YN
task in question is discrimination rather than detection. This
means the null findings of equal YN and 2AFC d’ reported by
Balsdon and Azzopardi (2015) may be trivial, because the YN
task in question was discrimination, not detection.

The same logic holds for measures of 2AFC d’: the important
aspect is perhaps not that 2AFC tasks are bias-free, but rather
that the two alternatives have similar levels of stimulus energy,
so maintaining a criterion to discriminate between them seems
relatively undemanding and the measured sensitivity for 2AFC
tasks may be preserved in blindsight more so than for YN detec-
tion tasks. As discussed above, in this sense 2AFC tasks—
detection or discrimination—are similar to 2-choice discrimin-
ation tasks, in which both stimulus alternatives also have simi-
lar levels of stimulus energy. Although many discrimination
tasks can be framed as detections on the local scale (e.g. detec-
tion of cardinally-oriented lines in a “square or diamond?” task),
the key difference between a detection and a 2-choice discrim-
ination task is that the overall levels of stimulus energy are
matched between the two stimulus alternatives. This makes it
unlikely that subjects would use a “yes-no” kind of strategy (e.g.
“yes I see cardinally-oriented lines so it is a square”) in a 2-
choice discrimination task. It seems that in developing the YN
d’ < 2AFC d’ metric, the Azzopardi group (Azzopardi and Cowey,
1997, 1998; Evans and Azzopardi, 2007; Balsdon and Azzopardi,
2015; Heeks and Azzopardi, 2015) focused solely on the bias-free
nature of 2AFC tasks compared to YN tasks, and did not con-
sider the conceptual similarity between 2AFC and 2-choice dis-
crimination, or the conceptual difference between detection
and discrimination. We believe this is misguided, and reflects
an over-emphasis on response bias.

Regardless of our take on the logic of Azzopardi and col-
leagues’ method, it seems clear that Lloyd et al. (2013) were
drawn to the YN d’ < 2AFC d’ metric because of the distinction
between detection and discrimination, rather than because a
2AFC task is bias-free and a YN task is not. Contra Azzopardi
and Cowey (1997, 1998), Lloyd et al. (2013) essentially (and per-
haps unwittingly) compared d’ in two YN tasks: YN detection ver-
sus 2-choice discrimination (rather than 2AFC). They probably did
not see why a 2-choice discrimination task should be con-
sidered a YN task rather than 2AFC in this context.

So upon closer examination, we see that even for one of the
few groups who have endeavored to implement the YN d’ <
2AFC d’ metric (Lloyd et al., 2013), the researchers did not actu-
ally agree with the logic and implementation of the original
method. Other researchers investigating blindsight and its
related phenomena in humans have simply not intended to rely

on the metric; thus, being criticized for failing to adopt it cor-
rectly is puzzling. Outside of blindsight studies, few authors
refer to this metric at all. The moral seems to be that without a
sound conceptual rationale, one can only go so far with a tech-
nical-sounding metric, even if coupled with the laudable intent
of “response-bias avoidance.”

Response biases and conscious perception

It is true that, historically, many have raised legitimate con-
cerns regarding bias in statistical analysis or reporting of re-
sults. If, for example, we use “seen” reports from only one
condition as a principled measure of conscious perception, we
may be criticized on the grounds of criterion bias contamin-
ation, since every observer might have a different criterion for
reporting “seen”. So, many researchers try to control for the
possibility of overly-conservative or liberal criterion-setting
within an individual. These types of issues have been discussed
at length in the study of semantic priming (Holender, 1992;
Duscherer and Holender, 2005), unconscious processing (see
Reingold and Merikle, 1990; Merikle and Reingold, 1998 for re-
views), and indeed any task which can be analyzed with SDT
metrics (Macmillan and Creelman, 1990, 2004).

Yet the study of relative blindsight is directed precisely at
controlling for the potential confound of individual-level differ-
ences in criterion-setting: by comparing randomly interleaved
conditions within the same session and same individual, any
individual-level, global bias cannot account for performance dif-
ferences across conditions. Instead, we can focus on condition-
specific criterion effects, which should not be dismissed simply
because they index biases or sheer difference in responding
strategy. Importantly, criterion bias indexed by a SDT measure
such as c or b cannot be definitively attributed to response-level
effects (Witt et al., 2012, 2015). Certain perceptual phenomena—
such as the sound-induced flash illusion (Shams et al., 2000;
Shams, 2002), the ventriloquist effect (Howard and Templeton,
1966; Thurlow and Jack, 1973), the stream-bounce effect
(Sekuler et al., 1997), and the Muller-Lyer illusion (Witt et al.,
2012, 2015)—reveal themselves not only as differences in sensi-
tivity across conditions, but as differences in measures of criter-
ion as well. Thus, the criticism that TMS merely changed the
criterion for subjective seeing does not necessarily undermine
the phenomenon of TMS-induced blindsight (Ro et al., 2004;
Boyer et al., 2005; Ro and Rafal, 2006). Changing the criterion
may be an important perceptual phenomenon, both in cases of
normal perception (e.g. Rahnev et al., 2011; Solovey et al., 2014)
and in neurological cases of blindsight (Ko and Lau, 2012).

Traditionally, many researchers use SDT as a way to remove
the potential “contamination” of criterion bias, but doing so
should not be taken as evidence for technical or conceptual so-
phistication in all circumstances. If we are truly concerned with
objective capacity differences among several conditions, we
should certainly be cautious to avoid contamination of our com-
parison by bias. However, if we are concerned with the subject-
ive rather than the objective aspects of perception, criterion
bias may well be the very measure we should focus on.
Therefore, depending on the research question, discarding bias
can be just as thoughtless as throwing the baby out with the
bathwater.
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