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Early studies have provided a wealth of information on the functions of microRNAs
(miRNAs). However, less is known regarding their functions in the hypothalamus involved
in sheep reproduction. To explore the potential roles of hypothalamic messenger RNAs
(mRNAs) and miRNAs in sheep without FecB mutation, in total, 172 and 235 differentially
expressed genes (DEGs) and 42 and 79 differentially expressed miRNAs (DE miRNAs)
were identified in polytocous sheep in the follicular phase versus monotocous sheep in the
follicular phase (PF vs. MF) and polytocous sheep in the luteal phase versus monotocous
sheep in the luteal phase (PL vs. ML), respectively, using RNA sequencing. We also
identified several key mRNAs (e.g., POMC, GNRH1, PRL, GH, TRH, and TTR) and
MRNA-mMIRNAs pairs (e.g., TRH co-regulated by oar-miR-379-5p, oar-miR-30b, oar-
miR-152, oar-miR-495-3p, oar-miR-143, oar-miR-106b, oar-miR-218a, oar-miR-148a,
and PRL regulated by oar-miR-432) through functional enrichment analysis, and the
identified MRNAs and miRNAs may function, conceivably, by influencing gonadotropin-
releasing hormone (GnRH) activities and nerve cell survival associated with reproductive
hormone release via direct and indirect ways. This study represents an integral analysis
between mRNAs and miRNAs in sheep hypothalamus and provides a valuable resource
for elucidating sheep prolificacy.

Keywords: hypothalamus, mRNAs, miRNAs, GnRH, reproduction, sheep

INTRODUCTION

Reproduction, one of the major factors significantly affecting the sheep industry, is a complicated
but important physiological process. The success of reproduction is mainly dependent on the release
of hormones, including gonadotropin-releasing hormone (GnRH) released from the hypothalamus,
follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which are both secreted from
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the pituitary (Cao et al, 2018a). Following the release of
hormones, a series of events associated with reproduction, such
as ovulation and fertilization, could occur.

It is well known that reproductive traits, such as litter size,
are controlled by minor polygene. Researchers have found
several major fecundity genes which considerably influence
sheep prolificacy, such as bone morphogenetic protein receptor
IB (BMPRIB), bone morphogenetic protein 15 (BMPI15) (Chu
et al., 2007), and growth differentiation factor 9 (GDF9) (Chu
etal., 2011). FecB is a mutation in BMPRIB occurring in base 746
from A to G. This base change further results in changes in
protein function due to a key amino acid transition from
glutamine to arginine (Fogarty, 2009). Sheep with one copy of
the FecB mutation can experience significant increase in litter
size, by 0.67, while this increase is about 1.5 when there are two
mutated copies (Liu et al., 2014). Moreover, this mutation was
also detected in diverse sheep species, such as Booroola Merino
sheep (Mulsant et al., 2001) (Australia), Garole sheep (Polley
et al.,, 2010) (India), Hu sheep (Davis et al., 2006) (China), and
Small Tail Han sheep (STH sheep; China) (Davis et al., 2006).
STH sheep, an indigenous species in China, has attracted much
attention for its excellent traits (Liu et al., 2016; Chao et al.,
2017), especially the higher prolificacy (Davis et al., 2006).
Furthermore, STH sheep can be divided into three genotypes
based on the effects of FecB mutation, better known as FecB BB
(with two-copy FecB mutations), FecB B (with one-copy FecB
mutation), and FecB™™ (with no FecB mutation). Usually,
compared to sheep with the other two genotypes, STH sheep
with FecB*" show a monotocous phenomenon. However, the
fact is that there are STH sheep with FecB™" and which show a
polytocous phenomenon (Davis et al., 2006), and how this
mechanism was established remains largely unclear.

With advances in sequencing, the application of RNA
sequencing (RNA-seq) in animals, including sheep (Jiang et al.,
2014; Zhang et al., 2019a; Zhang et al., 2019b), mice (Beck et al.,
2018), and cattle (Correia et al., 2018), enables integral analysis of
the expression profiling of mRNA and miRNAs. Therefore,
RNA-seq has been widely used to understand some complex
traits. Regarding the generation of miRNA, precursor miRNA is
transcribed mainly by RNA polymerase II, then processed into
mature miRNA (Gebert and Macrae, 2019). Significantly,
miRNAs play pivotal roles in life processes, such as muscle
growth (Cao et al., 2018c), fleece and hair development (Liu
et al., 2018), and neural development (Schratt et al., 2006).
Additionally, reproduction is an extremely complex process,
and the use of RNA-seq may contribute to enhancing our
understanding of sheep fecundity. By comparing the mRNA
and miRNA expression patterns in European mouflon and
sheep, a research (Yang et al., 2018) found several key mRNAs,
such as INHBA, SPP1, and ZP2, and miRNAs, such as miR-
374a and miR-9-5p, which may be responsible for the success
of female sheep reproduction. Pokharel et al. (2018) detected
and characterized some key miRNAs and mRNAs in sheep
ovary which may be responsible for sheep prolificacy. Thereby,
the identification and functional analysis of mRNAs and
miRNAs and characterization of their mutual interaction

through sequencing technology may provide new insights
into the prolific mechanism in STH sheep with the FecB*"
genotype, which has so far been difficult to elucidate using
standard approaches.

Therefore, in the present study, we applied transcriptomics
analysis in PF vs. MF and PL vs. ML to identify DEGs and DE
miRNAs and analyze their potential functions, expecting to
elucidate the potential prolific mechanism in sheep with the
FecB"" genotype and act as a reference for other female mammals.

MATERIAL AND METHODS

Preparation of Animals

First, the TagMan probe (Liu et al., 2017) was applied to
genotype the sheep population (n = 890). Then, 12 sheep with
no significant differences in sheep age, weight, height, body
length, chest circumference, and tube circumference were
selected from 142 STH sheep with the FecB"™" genotype and
grouped into the polytocous group (n = 6, litter size >2) and
monotocous group (n = 6, litter size = 1) according to their litter
size records. Additionally, all the sheep were bred under the same
conditions, with free access to water and feed, in a sheep farm of
the Tianjin Institute of Animal Sciences.

All selected sheep were processed by estrus synchronization
with Controlled Internal Drug Releasing Device (CIDR;
progesterone 300 mg; Zoetis Australia Pty. Ltd.,, NSW,
Australia) for 12 days. The six sheep, comprising three
polytocous sheep and three monotocous sheep, were
slaughtered within 45-48 h after CIDR removal (follicular
phase), the remaining six sheep were slaughtered on day 9
after CIDR removal (luteal phase). Finally, the selected sheep
were divided into four groups, including polytocous sheep in the
follicular phase (PF), polytocous sheep in the luteal phase (PL),
monotocous sheep in the follicular phase (MF), and monotocous
sheep in the luteal phase (ML), on the basis of their littering
record and estrous cycle.

Preparation of Tissues, RNA Extraction,
and Sequencing

Hypothalamic tissues were collected from 12 killed sheep and
immediately stored at —80°C until being used. Then, total RNA
was isolated using TRIzol Reagent (Invitrogen, Carlsbad, CA,
USA) under the manufacturer’s instructions, and the quality and
integrity of isolated RNA were assessed by an Agilent 2100
Bioanalyzer (Agilent Technologies, CA, USA) and
electrophoresis. The high-quality RNA of 3 pg of each sample
was used to build the mRNA library using a NEBNext Ultra
Directional RNA Library Prep Kit for Illumina (NEB, Ipswich,
USA), which has been described in our previous work (Zhang
et al., 2019b). All the sequencing works were conducted in
Annoroad Gene Technology Co., Ltd. (Beijing, China).

The fragments with lengths of 18-30 nt, which were obtained
from total RNA through the gel separation technique, were used
as templates to synthesize the first strand of complementary
DNA (cDNA). The second strand of cDNA was also synthesized
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in the presence of deoxynucleoside triphosphates (dNTPs),
ribonuclease H, and DNA polymerase I. Then the obtained
double-stranded ¢cDNA was processed with end-repair, the
addition of base A and sequencing adaptors, and uracil-N-
glycosylase (UNG) enzyme digestion. Finally, polymerase chain
reaction was conducted to build the miRNA library.

In addition, a paired-end sequencing approach for mRNAs
and miRNAs was conducted using an Illumina HiSeq 2500.

Quality Control, Mapping and Assembly
Raw reads were filtered using in-house software of fqtools_plus-
v2.0.0 according to strict criteria, including removing reads with
adaptor contaminants, low-quality reads, and reads with N bases
accounting for more than 5%. Then, HiSAT2 (Kim et al., 2015)
was used to map the cleaned reads to the reference genome
(Oarv3.1), and both the sheep reference genome and genome
annotation file were downloaded from ENSEMBL (http://www.
ensembl.org/index.html). Subsequently, StringTie 1.3.2d (Pertea
et al., 2015) was used to assemble transcripts of mRNAs.

Several criteria were also implemented to generate clean
miRNA reads, including removing reads without a 3’ adapter,
reads without insert fragment, reads with lengths beyond the
normal range, raw reads containing too much A/T, and some
low-quality reads using in-house scripts. Furthermore, the
cleaned data of miRNA were matched against the sheep
reference genome (Oarv3.1) by Bowtie v1.1.2 (Langmead
et al., 2009).

Differential Expression and Functional
Enrichment Analysis of mRNAs

To validate the expression level of mRNAs, the fragments per
kilobase per million mapped reads (FPKM) values (Trapnell
et al., 2010) were calculated to represent the gene expression
level, and DESeq 2-1.4.5 (Wang et al., 2010) was also used to
detect the DEGs between two comparisons based on FPKM
values. Additionally, a gene with fold change >1.5 and p < 0.05
was considered as a DEG in PF vs. MF and PL vs. ML. In
addition, we also performed Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis. We first downloaded the Uniprot database, where
each sequence contains the GO annotation and KEGG
annotation species (sheep) of the sequence as well as gene and
protein names. All genes of sheep to be analyzed were compared
with the Uniprot database by blast (NCBI-blast 2.2.28) to find
the best alignment result for each sequence, and corresponding
to GO and KEGG annotation results. Then, we also downloaded
the corresponding relationship between the entry name and
number provided on the websites of GO and KEGG, as well as
the classification hierarchy file, and summarize the GO and
KEGG classification of the genes we obtained. Lastly, a
particular GO term or KEGG pathway with a hypergeometric
p value < 0.05 was thought to indicate significant enrichment.

Differential Expression Analysis and
Prediction of Target Genes of miRNAs

The miRDeep v2.0.0.8 (Friedldnder et al., 2012) was applied to
identify the known and novel miRNAs by mapping clean reads

and hairpins to mature miRNAs recorded in the miRbase
database (Griffiths-Jones, 2006). In addition, transcripts per
million (TPM) were calculated to represent miRNA expression
levels on the basis of the reads number. DESeq2-1.4.5 (Wang
etal.,, 2010) was also applied to identify DE miRNAs in PF vs. MF
and PL vs. ML, and the threshold of fold change >1.5, p < 0.05
was considered to indicate differential expression. Furthermore,
miRanda v3.3a (Enright et al., 2004) was used to predict the
target genes of miRNAs.

Integral miRNA-mRNA Networks Analysis
To precisely identify key DE miRNAs and DEGs associated with
reproduction, a network containing DE miRNAs and DE
mRNAs, on the basis of miRNA functions (Gebert and Macrae,
2019), was built using Cytoscape_v3.5.0 (Shannon et al., 2003), and
only mRNAs exhibiting negative relationship with miRNAs were
included in miRNA-mRNA interaction networks.

Data Validation

In order to validate the accuracy of sequencing data, four
DEGs, including CRH, FOXGI, TTR, and POMC, and four DE
miRNAs, including oar-miR-433-3p, oar-miR-495-3p, oar-
miRNA-16b, and oar-miR-143, were selected for data
validation. First, the primers of DEGs and DE miRNAs
were synthesized by Beijing Tianyi Huiyuan Biotechnology
Co., Ltd. (Beijing, China) (Supplementary Table 1) for
subsequent reverse transcription, which was performed using
PrimeScript™ RT reagent kit (TaKaRa) for mRNAs and
miRcute Plus miRNAs First-Strand ¢cDNA Kit (TIANGEN,
Beijing, China) for miRNA. Furthermore, quantitative PCR
(qPCR) was conducted with the SYBR Green qPCR Mix
(TaKaRa, Dalian, China) for mRNAs and miRcute Plus
miRNA ¢PCR Kit (TTANGEN, Beijing, China) for miRNAs
using a RocheLight Cycler®480 II system (Roche Applied
Science, Mannheim, Germany). In addition, B-actin (for
mRNA) and U6 small nuclear RNA (snRNA; for miRNA)
were utilized as reference gene/miRNA to calculate the relative
expression level with the method of 244" (Livak and
Schmittgen, 2001). The qPCR for mRNAs was conducted in
the following procedure: initial denaturation at 95°C for 5
minutes, followed by 40 cycles of denaturation at 95°C for 5 s,
then annealing at 60°C for 30 s. While the qPCR for miRNA
was conducted in the following procedure: initial denaturation
at 95°C for 15 minutes, followed by 40 cycles of denaturation
at 94°C for 20 s, then annealing at 60°C for 34 s. All the qPCR
results were presented as the mean + SD.

RESULTS

mRNA and miRNA Profiling

To fully characterize the globally hypothalamic mRNA and
miRNA expression differences between sheep with the same
genotype but different litter sizes, RNA-seq was used to detect
their expression profile in the hypothalamus. In total, RNA-seq
for mRNA generated approximately 1,519 million raw reads
and 1,460 million clean reads (Supplementary Table 2) after
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data filtering. Overall, 21,221 mRNAs were identified
(Supplementary Table 3) after mapping to sheep genome, and
our results also suggested that many mRNAs were located in the
intergenic region (nearly 45%), followed by the intron (about
35%) and exon (more than 20%) regions (Figure 1A and
Supplementary Table 4).

Regarding the expression level of mRNAs, our results showed
that the FPKM of those genes obtained from RNA-seq at <50
constituted nearly 90%, and the high-expression genes, i.e.,
those with FPKM >500, constituted about 0.5%
(Supplementary Table 3), which suggested that the data
obtained from the hypothalamus via RNA-seq were relatively
reasonable. Furthermore, the chromosome distribution of
mRNAs indicated that chromosome 3 contains 9.79% of the
genes identified from the hypothalamus, followed by
chromosome 1 (9.55%) and chromosome 2 (7.22%) (Figure
1B and Supplementary Table 5). Additionally, the number of

DEGs identified from PF vs. MF (Figure 2A and Supplementary
Table 6) and PL vs. ML (Figure 2B and Supplementary Table 6)
were 172 and 235, respectively. Among these DEGs, 79 and 90
were upregulated, while 93 and 145 were downregulated in PF
vs. MF and PL vs. ML, respectively. In addition, the expression
density of DEGs displayed obviously different expression
patterns between PF and MF, and between PL and ML
(Figures 2C, D).

Regarding miRNAs, RNA-seq generated approximately 315
million raw reads and 267 million clean reads (Supplementary
Table 7) with lengths ranging from 18 to 30 nt (Figure 3A) after
removing low-quality reads. Overall, 623 miRNAs were detected
(Supplementary Table 8). In addition, the chromosome
distribution of identified miRNAs was also determined. As
Figure 3B shows, the chromosome distribution of miRNAs
from 1 to X varies (Supplementary Table 9), and most of the
identified miRNAs were located at chromosome 3 (nearly 40%),
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FIGURE 1 | Mapping region and chromosome distribution of identified mRNAs. (A) Mapping region of identified genes at the reference genome in polytocous sheep
in the follicular phase (PF) (a), polytocous sheep in the luteal phase (PL) (b), monotocous sheep in the follicular phase (MF) (c), and monotocous sheep in the luteal
phase (ML) (d). (B) Chromosome distribution of identified genes from the hypothalami in the PF, MF, PL, and ML.
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FIGURE 2 | Differentially expressed genes (DEGs) analysis. (A) Volcano plot of identified genes in PF vs. MF, where red and green represent up- or downregulation,
respectively, same below. (B) Volcano plot of identified genes in PL vs. ML. (C) Heat maps showing the expression intensity of 794 DEGs in the follicular phase,
including PF and MF. (D) Heat maps showing the expression intensity of 1,044 DEGs in the luteal phase, including PL and ML.

followed by chromosome 9 (nearly 15%) and chromosome 18
(nearly 9%). Interestingly, chromosome 3 also contains the most
mRNAs (Figure 3B). Also, a diversity of non-coding RNAs
(ncRNAs), including transfer RNAs (tRNAs), snRNAs, miRNAs,
etc., were also identified (Figure 3C and Supplementary Table
10), and the known miRNAs account only for a small part of all
the identified ncRNAs. In addition, the target genes of miRNAs
in PF vs. MF and PL vs. ML were predicted to be 1,611 and 2,120,
respectively (Supplementary Table 11).

Additionally, the DE miRNAs identified from PF vs. MF and
PL vs. ML were 42 and 79, respectively. Of these DE miRNAs, 20

and 23 were upregulated, while 22 and 56 were downregulated,
respectively (Figure 4A and Supplementary Table 12). In
addition, the expression density of DEGs displayed obviously
different expression patterns between PF and MF, and between
PL and ML (Figures 4B, C).

GO and KEGG Enrichment Analysis of
DEGs

To better understand the potential functions of the DEGs, GO
term and KEGG pathway analyses were performed. In GO
analysis, the most enriched term in PF vs. MF was the MHC
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FIGURE 3 | Characterization of microRNA (miRNA) profiing and the percentage of detected miRNAs from ncRNAs. (A) Length distribution of clean reads from
identified miRNA fragments. (B) The chromosome distribution of identified miRNAs from hypothalami. (C) Categories of identified non-coding RNAs (ncRNAs) via

protein complex (GO:0042611). Other GO terms related to the
MHC protein were also enriched, such as MHC class II protein
complex binding (G0:0023026) and MHC protein complex
binding (G0:0023023), indicating the crucial role of the MHC
protein in the hypothalamic functions (Figure 5A and
Supplementary Table 13). Regarding PL vs. ML, the top 2
enriched terms were the immune system process
(G0O:0002376) and immune response (GO:0006955). In
addition, some GO terms associated with chemokine receptors,
including CXCR3 chemokine receptor binding(GO:0048248)
and chemokine receptor binding (GO:0042379), were also
highly enriched, suggesting the important roles of the immune

system and chemokine receptors in the hypothalamus at the
luteal phase (Figure 5A and Supplementary Table 13).

KEGG analysis in PF vs. MF (Figure 5B and Supplementary
Table 14) showed that the most enriched pathway was type I
diabetes mellitus (map04940). In addition, other metabolic
pathways, such as alpha-linolenic acid metabolism (map00592)
and arachidonic acid metabolism(map00590), were also
enriched. Regarding PL vs. ML, the top enriched pathways
were cytokine-cytokine receptor interaction (map04060). A
pathway named the Jak-STAT signaling pathway (map04630),
which has been found to participate in the reproductive process
(Ko et al., 2018), was also enriched.
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Analysis of Integrated miRNA-mRNA
Co-Expression Network

To fully understand the potential reproductive roles of miRNAs,
we built interactome networks using DE miRNAs and their
targets (DEGs). In total, 42 DE miRNAs (novel miRNAs) in
PF vs. MF were predicted to target 1,611 genes (Supplementary
Table 15). The number of overlapped genes, which means the
target genes were also DEGs, was 8 (Figure 6A and
Supplementary Table 16). An mRNA-miRNA co-expression
network was then constructed, where 5 DEGs were targeted by 3
novel miRNAs (Figure 6B). Regarding PL vs. ML, 38 known and
41 novel DE miRNAs were predicted to target 1,747 and 1,659
genes (Supplementary Table 15), and the numbers of
overlapped genes were 179 and 9, respectively (Figures 6C, D
and Supplementary Table 16). The main upregulated miRNA-
mRNA co-expression network suggested that 55 DEGs were
targeted by 11 DE miRNAs containing the top 10 upregulated
known miRNAs and one novel miRNA (Figure 6E). The main

downregulated miRNA-mRNA co-expression network
suggested that 33 DEGs were targeted by 11 DE miRNAs
containing the top 10 downregulated known miRNAs and one
novel miRNA (Figure 6F).

Data Validation

>In order to assess the accuracy of sequencing, qPCR was applied
to verify the RNA-seq data. The results indicated that
both mRNAs and miRNAs in sheep hypothalamus displayed
expression patterns similar to the sequencing results (Figure 7),
demonstrating the reliability of the data generated from
RNA-seq.

DISCUSSION

In this study, we initially identified 172 and 235 DEGs, and 42
and 79 DE miRNAs in two comparisons (PF vs. MF and PL vs.
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ML) through RNA-seq. Of these DE miRNAs, miRNA family
members including the let-7 and oar-miRNA-200 family
exhibited differential expression levels. Furthermore, one study
detecting 48 DE miRNAs from sheep ovary, including the let-7
and oar-miRNA-200 family members, suggested that those
identified miRNAs were differentially expressed in seasonal
and non-seasonal sheep breeds (Zhai et al., 2018). Therefore,
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FIGURE 5 | Functional enrichment analysis of DEGs. (A) Top enriched GO terms at the biological process, molecular function, and cellular component level in PF vs.
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some miRNAs, such as let-7 and oar-miRNA-200 family
members may not be only species-specific but also phase- or
fecundity-specific in sheep. In addition, some miRNAs,
including miRNA-138 and miRNA-212, were detected in rat
hypothalamus (Amar et al., 2012), which differed significantly
from miRNAs identified in sheep hypothalamus (both miRNA-
138 and miRNA-212 in our results failed to be detected). Besides,
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several miRNAs, such as miRNA-200 family members, were
conserved in the hypothalamus of mice (Choi et al., 2008; Crépin
et al, 2014), rat (Sangiaoalvarellos et al., 2014), and zebrafish
(Garaffo et al., 2015), as well as sheep (our results). In summary,
we confirmed that several miRNAs are conserved in many
animals, but there were also miRNAs that showed a species-
specific distribution in the hypothalamus, which means those
differences may be responsible for the differences between sheep
and rats, and even other non-mammals.

Functional Analysis of DEGs in PF vs. MF

In the functional enrichment analysis of DEGs in PF vs. MF,
several key genes, including prolactin (PRL), proopiomelanocortin
(POMC), and gonadotropin releasing hormone 1 (GNRHI), were
found to participate in the reproductive process. Some researchers
have proven that PRL and E2 could respond rapidly to stimulation in
the arcuate nucleus (ARC) of rat hypothalamic slices (Nishihara and
Kimura, 1989). Araujo-Lopes et al. (2014) revealed that PRL could
regulate the activities of GnRH through modulating kisspeptin
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neurons in the ARC offemale rats and inhibit LH secretion, causing a
series of alterations in the estrous cycle. Our results indicated that the
expression of PRL in PF was more than three times that of PRL in MF.
Therefore, coupled with the inhibitory role of PRL on LH, we
speculate that PRL may affect LH or FSH activities by influencing
the pulsatile GnRH wave in the hypothalamus.

POMC neurons, as a key upstream factor affecting hypothalamic
hormone release, were found to be sensitive to metabolic hormones

such as leptin (Wilson and Enriori, 2015) and enhance kisspeptin
neuron activities in rodents, resulting in increased GnRH secretion
(Muroi and Ishii, 2016). Leptin can act in the hypothalamus directly,
eliciting the release of GnRH (Guzman et al,, 2019), and promoting
the expression of POMC (Perello et al, 2007). Although the
stimulatory effects of POMC on kisspeptin have been known for
a long time, how this signaling is established remains poorly
understood (Saedi et al., 2018). Significantly, our results indicated
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that the expression of POMC in PF was relatively lower than in MF,
while GNRH]I, which has been reported to play a key role in
determining sheep litter size (An et al., 2013), displayed a reverse
expression pattern between PF and MF. Therefore, we hypothesized
that a negative regulatory relationship between POMC and GNRH1
may exist in sheep hypothalamus.

Functional Analysis of DEGs in PL vs. ML
In functional enrichment analysis of DEGs in PL vs. ML, some
pathways including the Jak-STAT signaling pathway (PRL, GH,
CRLF2, ENSOARG00000007618, ENSOARG00000016231, and
IL2RB) were highly enriched. The current study argued that the
Jak-STAT signaling pathway in mice was involved in GnRH
activities (Ko et al., 2018). PRL, as mentioned above, plays an
important role in GnRH activities (Araujo-Lopes et al., 2014).
The expression of PRL was detected not only in the follicular
phase but also in the luteal phase, and interestingly, there was a
reverse expression pattern of PRL between PF vs. MF and PL vs.
ML, suggesting its crucial roles in reproduction. The effects of
leptin on GnRH release have been revealed (Guzman et al,
2019), and the infusion of leptin into the arcuate nucleus in rats
could cause PRL release (Watanobe, 2010), which suggested that
PRL can be a downstream factor activated by leptin to function in
GnRH activities. In addition, the overexpression of growth
hormone (GH) could disrupt the state of reproduction, mainly
through mediating leptin activities (Chen et al., 2018).
Additionally, estrogen could play an inhibitory role on GH in
vivo (Leung et al., 2003). Collectively, considering the effects of
PRL and GH on leptin, we speculated that GH, leptin, and PRL
may coordinate to inhibit GnRH release.

The Regulatory Network of miRNA-mRNA
After Transcription in PF vs. MF

To better understand the functions of miRNAs, a negative
interactome containing 5 mRNAs and 4 miRNAs in PF vs. MF
was built. Cyclin-dependent kinase 3 (CDK3), targeted by
Novel 237, was reported that the downregulation of activities of
CDK3-related kinase could promote cell apoptosis in the rat (Braun
et al, 1998). Immediate early response 3 (IER3), targeted by
Novel_327, was also involved in enhancing (Zhou et al,, 2017) or
mediating (Jin et al., 2015) cell apoptosis. Polycystic kidney and
hepatic disease gene 1 (PKHDI), targeted by Novel_401, has been
discovered to induce cell apoptosis, after being downregulated
through the PI3K and NF-kB pathways (Sun et al, 2011).
Furthermore, our sequencing data indicated that CDK3 and IER3
were downregulated while PKHDI was upregulated in PF vs. MF.
All in all, we hypothesized that more nerve cell apoptosis occurred
in MF than PF, which may further influence hormone activities
associated with reproduction and may lead to the final observed
litter size differences.

The Regulatory Network of miRNA-mRNA
After Transcription in PL vs. ML

The regulatory network of miRNA-mRNA after transcription in
PL vs. ML was divided into two main negative networks: the
main upregulated and the main downregulated network. In the
main upregulated network, thyrotropin-releasing hormone

(TRH), co-regulated by oar-miR-379-5p, oar-miR-30b, oar-
miR-152, oar-miR-495-3p, oar-miR-143, oar-miR-106b, oar-
miR-218a, and oar-miR-148a, has been reported to function in
GnRH release (see below). Triclosan in mice was found to reduce
the production of TRH and thyroid-stimulating hormone (TSH),
and this decreased effect could further cause hyperprolactinemia.
Hyperprolactinemia was suggested to cause a suppressive effect
on kisspeptin expression, resulting in deficits in reproductive and
endocrine function (Cao et al., 2018b). In addition, TRH can not
only stimulate PRL release but also inhibit LH release, and this
inhibitory effects may occur through prohibiting the release of
GnRH (Araujo-Lopes et al, 2014). Collectively, TRH in the
hypothalamus may be responsible, at least in part, for the
suppression of GnRH activities.

In the main downregulated network of miRNAs, transthyretin
(TTR) was reversely regulated by oar-miR-432. The expression level
of TTR’s in rats could be enhanced by progesterone via
progesterone receptors both in vitro and in vivo (Quintela et al.,
2011), and a similar upregulated effect of TTR caused by
progesterone in mouse uterus was also observed (Diao et al,
2010). Furthermore, TTR could drive the nuclear translocation of
insulin-like growth factor 1 receptor (IGF-1R) (Vieira et al., 2015),
which could lead to functional changes in insulin-like growth factor
1 (IGF1). Interestingly, the stimulatory effect of IGF1 on GnRH
release has been discovered (Hiney et al, 2009). Therefore, we
speculated that the negative feedback effects of progesterone on
GnRH release may be mediated by TTR, which reduces the binding
probability between IGF1 and its receptor, further resulting in a
suppression of GnRH activities.

All results indicated that several key DEGs and DE miRNAs in
the hypothalamus directly or indirectly participate in hormone
activities associated with reproduction, and further studies
involving gene/miRNA knockout or overexpression could help us
to understand their real functions in female reproductive traits.

CONCLUSION

As far as we know, this study provides the first integral mRNA-
miRNA interactome in sheep without FecB mutation from the
perspective of the hypothalamus. We identified several DEGs (e.g.,
POMC, GNRH1, PRL, TRH, and TTR) and mRNA-miRNA pairs
(e.g., TRH coagulated by oar-miR-379-5p, oar-miR-30b, oar-miR-
152, oar-miR-495-3p, oar-miR-143, oar-miR-106b, oar-miR-218a
and oar-miR-148a and PRL regulated by oar-miR-432) from the
RNA-seq data obtained from sheep hypothalamus, which may
function through influencing the activities of GnRH. Our results
provide novel insights into the prolificacy mechanism of sheep,
which may facilitate the discovery of novel major genes and a deeper
understanding of female sheep reproduction.
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