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Mutation of chromatin modifiers; an emerging hallmark of
germinal center B-cell lymphomas
MA Lunning1,2 and MR Green2,3

Subtypes of non-Hodgkin’s lymphomas align with different stages of B-cell development. Germinal center B-cell (GCB)-like diffuse
large B-cell lymphoma (DLBCL), follicular lymphoma (FL) and Burkitt’s lymphoma (BL) each share molecular similarities with normal
GCB cells. Recent next-generation sequencing studies have gained insight into the genetic etiology of these malignancies and
revealed a high frequency of mutations within genes encoding proteins that modifying chromatin. These include activating and
inactivating mutations of genes that perform post-translational modification of histones and organize chromatin structure. Here, we
discuss the function of histone acetyltransferases (CREBBP, EP300), histone methyltransferases (KDM2C/D, EZH2) and regulators of
higher order chromatin structure (HIST1H1C/D/E, ARID1A and SMARCA4) that have been reported to be mutated in ⩾ 5% of DLBCL,
FL or BL. Mutations of these genes are an emerging hallmark of lymphomas with GCB-cell origins, and likely represent the next
generation of therapeutic targets for these malignancies.
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INTRODUCTION
Approximately 95% of lymphomas originate from B cells, the
antibody-producing cells of the body. These cells develop through
a complex process of differentiation, with the stages characterized
by the specific structure of the B-cell receptor and the expression
patterns of differentiation markers. Precursor B cells develop in the
bone marrow, where they undergo a process of DNA breakage
and recombination to rearrange the immunoglobulin heavy-chain
and light-chain genes. Cells that produce an intact B-cell receptor
that is not self-reactive are able to differentiation into mature
naive B cells and enter the periphery, while the remainder die by
apoptosis. Upon encounter of antigen that is recognized by their
B-cell receptor, mature naive B cells become activated. For the
majority of antigens, which require T-cell help for robust
responses, activated B cells expand within germinal centers in
secondary lymphoid organs. These germinal center B (GCB) cells
are highly proliferative and edit their immunoglobulin genes via
the introduction of point mutations (somatic hypermutation) and
by performing further recombination to select alternative heavy-
chain genes (class switch recombination). These cells can then
terminally differentiate into memory B cells or antibody-producing
plasma cells.
Molecular profiling studies have revealed similarities between

different subtypes of non-Hodgkin’s lymphomas and normal
stages of B-cell differentiation (Reviewed by Kuppers1). This
includes the alignment of three clinically and histologically
distinct subtypes of lymphoma with normal GCB cells.2 Diffuse
large B-cell lymphoma (DLBCL), the most common form of non-
Hodgkin’s lymphoma, can be stratified into two subtypes that
transcriptionally resemble normal GCB cells (GCB-like) or post-GCB
activated B cells (ABC-like).3 These two subtypes have unique

genetic etiology, with mutations that activate the B-cell receptor
signaling pathway being prevalent in the ABC-like subtype but
largely absent from the GCB-like subtype (Reviewed by
Pasqualucci4). The second most common type of non-Hodgkin’s
lymphoma, follicular lymphoma (FL), is named for its histologic
similarities with normal lymphoid follicles and the malignant cells
also resemble normal GCB cells at the molecular level.1 These
lymphomas also share some genetic similarities to GCB-like
DLBCL, and transform at a rate of 2–3% per year to a DLBCL
histology. Burkitt lymphoma (BL) represents only 2% of lympho-
mas, and is categorized as either endemic, sporadic or immuno-
deficiency related. Endemic BL is driven by Epstein-Barr virus and
most frequently found in areas with endemic malaria, while
sporadic BL is rarely associated with Epstein-Barr virus and has no
geographic bias, and immunodeficiency-related BL is primarily
associated with human immunodeficiency virus infection.5 Spora-
dic BL has long been suggested to align with GCB cells,6 but
recent next-generation sequencing studies have shown it to share
less similarities in genetic etiology than those between GCB-like
DLBCL and FL.7

Recently, the mutation of genes encoding chromatin modifiers
and organizers has emerged as a central hallmark of B-cell
lymphoma, particularly those aligning with the GCB stage of
differentiation. Chromatin is a complex structure of DNA and
histone proteins, with each nucleosome consisting 146 bp of DNA
coiled around a histone octamer (Figure 1). Chromatin can be
modified by covalent modifications of histone proteins and DNA
(that is, epigenetic modifications), or by ATP-dependent mobiliza-
tion of nucleosomes. These processes regulate the formation or
dissociation of higher order chromatin structures that can limit or
promote the accessibility of DNA to transcription factors and DNA
repair enzymes.8 Post-translational modifications of histones can
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induces these changes in two ways; (i) modifications can be
recognized by ‘readers’ that can themselves recruit additional
factors including other chromatin-modifying enzymes, and (ii)
acetylation and phosphorylation can act directly on chromatin
structure by reducing the positive charge of histones and altering
their association with negatively charged DNA. The balance
between different post-translational modifications, the organiza-
tion of nucleosomes and the cross talk within and between these
factors can determine whether chromatin is present within an
active euchromatin state or an inactive heterochromatin state.
Among other marks, the formation of condensed inactive
heterochromatin is associated with loss of histone H3 lysine 4
(H3K4) trimethylation, deacetylation of histones H3 and H4,
trimethylation of histone 3 lysine 27 (H3K27) and dense packaging
of nucleosomes that culminate in hypermethylation of promoter
CpG-islands and inactivation of transcription. Here, we review the
mutations of chromatin modifiers and organizers that have been
found to occur in ⩾ 5% of one of the subtypes of non-Hodgkin’s
lymphoma that align with a GCB-cell stage of differentiation7,9–18

(Figure 2) and discuss how these may affect disease biology.

HISTONE LYSINE METHYLATION
Histone lysine methylation can occur at residues 4, 9, 27, 36 and
79 of histone H3 and residue 20 of histone H4.19 The locations of
these modifications and the degree of methyation (that is, mono-
methylation (me1), di-methylation (me2) or trimethylation (me3))
can be associated with either an active euchromatin or inactive
heterochromatin state. For example, H3K4 methylation is usually
associated with active transcription, but H3K4me3 is commonly
localized around promoter regions whereas H3K4me1 is localized
around enhancer regions. In contrast to H3K4me3, the trimethyla-
tion of lysine 27 on histone H3 (H3K27me3) mark is associated
with transcriptional repression. In addition, the presence of both
H3K4me3 and H3K27me3 marks are associated with a ‘poised’
state that will become inactive or active following removal of
either of the respective marks by histone demethylases. Unlike
acetylation, histone methylation does not have a direct effect on
chromatin structure. The effects are mediated by ‘reader’ proteins
that contain a methyl-binding domain and have a remarkable

degree of specificity in recognizing unique histone modifications.
This allows the recruitment of a variety of proteins, including other
chromatin-modifying enzymes that promote transcriptional acti-
vation/repression and contribute to feed-forward loops and cross
talk between different epigenetic marks. As a result, histone lysine
methylation is a dynamic process that can encode a variety of
chromatin states (reviewed by Black et al.20).

H3K4 methylation
The KMT2D gene (alias, MLL2) is one of four members in the mixed
lineage leukemia (MLL) family of proteins that have a role in H3K4
methylation. The first gene in this family, KMT2A (alias, MLL1),
was discovered as a consequence of its translocation in the
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Figure 1. Function of chromatin modifying and organizing genes that are mutated in GCB lymphomas. A diagramatic representation shows
DNA wrapped around histone octamers, consisting of histone H2a, H2b, H3 and H4, to form a nucleosome. Linker DNA between nucleosomes
is bound by histone H1, and nuceolsomes are shuffled along the DNA by the SWI/SNF complex that is illustrated to include ARID1A and
SMARCA4. A magnified schematic of the tail of histone H3 shows the addition of activating H3K4me3 (green circles) by KMT2C/KMT2D. This
promotes the addition of activating acetylation marks (green triangles) to multiple residues on the H3 tail by recruitment of the CREBBP/EP300
complex. Activating H3K4me3 and acetylation marks oppose, and are opposed by, the repressive H3K27me3 mark (red circles) that is written
by the PRC2 complex that includes EZH2. Histone H1 genes (HIST1H1B/C/D/E), ARID1A, SMARCA4, KMT2C, KMT2D, EP300, CREBBP and EZH2 are
each recurrently mutated in 45% of one or more subtype of lymphoma that resemble germinal center B cells (Figure 2).
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Figure 2. Frequency of chromatin modifying and organizing gene
mutations in GCB lymphomas. Data from genome, exome and
transcriptome sequencing studies of FL, BL and DLBCL with
sufficient data quality9–18 are summarized. Individual tumors are
represented in columns and genes in rows. Colored bars indicate
the presence of a somatic mutation and the percentage of tumors
with mutations each gene are annotated to the right for each
disease. Mutations of chromatin modifying and organizing genes
are found in 84% (54/64) of FL tumors, 40% (62/155) of DLBCL
tumors and 35% (29/82) of BL tumors. It should be noted, however,
that DLBCL tumor are not divided by cell of origin subtypes within
this diagram, and the majority of these mutations likely stratify
within the GCB-like subtype. FLs are characterized by high
frequencies of CREBBP and KMT2D mutations, DLBCLs are character-
ized by frequent mutations of HISTH1 family genes and EZH2, and
BLs are characterized by high frequencies of SWI/SNF component
(ARID1A, SMARCA4) mutations.
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majority of lymphoid and myeloid leukemias arising in infants.21

These translocations primarily create gene fusions that interrupt
the catalytic SET domain that mediates H3K4 methylation. This
indicates that the oncogenic role of MLL translocations is not via
enhanced H3K4 methylation, but through the recruitment of
secondary factors in tandem with the fusion partner.21 Although
there is redundancy between MLL family members with respect to
their ability to add the H3K4 methylation mark to active
promoters,20 recent findings suggest that KMT2D is unique in its
ability to add this mark to bivalent promoters.21 However, KMT2D
is also bound to active promoters that do not require its presence
for their expression. These include the promoters of genes
encoding the interleukin-7 cytokine and its receptor, which are
important for early B-cell development.22

Germ-line mutations of KMT2D are associated with Kabuki
syndrome, an autosomal dominant disease characterized in part
by immunological defects, but without a significant predisposition
to lymphomas.23 Somatic mutations of KMT2D are found in the
majority of FL9,10,12,14,16 and less commonly in GCB-like
DLBCL.12,13,15 These mutations are most commonly small deletions
creating frameshifts or nucleotide variants that introduce pre-
mature stop codons, indicating that they induce a loss of function.
The role of KMT2D in regulating H3K4 methylation of bivalent
promoters24 suggests that the preferential mutation of this family
member, particularly in FL, may function by changing the
abundance or distribution of these transcriptionally ‘poised’ states.
In addition, the polycomb repressor complex 2 (discussed below)
is unable to methylate H3K27 if H3K4 is trimethylated on the same
histone tail,25 so mutations of KMT2D may also result in altered
H3K27me3 abundance or distribution. The H3K4me3 mark is also
recognized by ‘reader’ proteins such as the product of the ING1
gene, which is deleted in approximately one-third of GCB-like
DLBCL.26 The isoforms of ING1 have multiple roles, including
recruiting the CREBBP/EP300 histone acetyltransferase (HAT)
complex,27 promoting DNA repair by linking proliferating cell
nuclear antigen with EP300, and promoting p53-mediated
apoptosis by linking the NuA4 complex with p53.28 Altered
H3K4 methylation via KMT2D mutation and deletion of the reader
protein ING1may therefore be alternative mechanisms for altering
histone acetylation, DNA repair and p53-mediated apoptosis.
Another member of this gene family, KMT2C (alias, MLL3), is also

found to be mutated at a lower frequency in FL and DLBCL,10,17

providing some suggestion of functional redundancy in lympho-
magenesis. Given that the majority of KMT2D mutations are
heterozygous10 and there is a degree of functional redundancy
within this large family of genes, an important outstanding
question is whether mutation of a single KMT2D allele is sufficient
to affect the level H3K4 methylation. To date, there has been no
functional evidence to show the effect of KMT2D mutation on
H3K4 methylation or to suggest the mechanism by which these
mutations promote lymphomagenesis. This will be an important
and interesting subject to be addressed by future studies.

H3K27 methylation
EZH2 functions as a histone methyltransferase as a part of the
polycomb repressor complex 2, and catalyzes the trimethylation of
H3K27. This H3K27me3 mark is associated with transcriptional
silencing and results in the repression of a large number of genes,
including the cell cycle inhibitors encoded by the CDKN1A and
CDKN2A/B genes.29,30 Components of the polycomb repressor
complex 2 are highly expressed in germinal centers,31 and the
EZH2 gene is required for germinal center formation in mice29

indicating that they have a role in normal GCB cellular physiology.
Mutation of EZH2 was the first of chromatin-modifying gene

alteration to be described in FL and DLBCL.11 In contrast to the
inactivating mutations that are spread across the gene in myeloid
and T-cell malignancies,32,33 mutations of EZH2 in B-cell

lymphoma are localized to a ‘hotspot’. The majority of these
nucleotide variants cause a single amino acid substitution of
the tyrosine residue at position 64111,34 and a minority affect
alanine 677.35 In the presence of a wild-type allele that efficiently
adds the first and second methyl group to H3K27, activating
mutants of EZH2 show enhanced activity toward addition of the
third methyl group and thereby promotes the repressive
H3K27me3 epigenetic state.36,37 This was recently shown to result
in lymphoid hyperplasia in a mouse model harboring a tyrosine
641 mutation, but in isolation from other oncogenic events, this
was insufficient to drive overt lymphoma.29 In addition to its role
as a histone methyltransferase, EZH2 can monomethylate RORα, a
DNA damage inducible protein that promotes p53 activity and
apoptosis.38 This EZH2-mediated methylation is recognized by an
E3 ubquitin ligase complex that targets RORα for degradation,
thereby implicating EZH2 in the regulation of DNA damage-
induced p53 activity.38 In addition, a proportion of EZH2 protein is
localized within the cytosol where it associates with and
methylates VAV1, thereby regulating actin polymerization and cell
migration.39 However, the effect of EZH2 hotspot mutations on its
ability to methylate RORα and VAV1 and differentially regulate the
activity of these non-histone proteins has not yet been
investigated.
Activating EZH2 mutations have gained further attention

recently because of the development of small molecule
inhibitors40–42 that show a high specificity for EZH2. These
inhibitors decrease the abundance of di- and trimethylated
H3K27 and impair the growth of lymphoma cell lines carrying
EZH2 mutations. Together, these results suggest that EZH2
mutations may be an ‘actionable’ mutation that can be targeted
clinically. However, these events commonly arise as late events
during disease evolution9,10,14 and are subclonal,10 bringing into
question the degree of clinical efficacy that these inhibitors
may have.

HISTONE ACETYLATION
The acetylation of histone lysine residues is a dynamic process
regulated by the balance between the activity of acetyltrans-
ferases and deacetylases. Acetylation neutralizes the positive
charge of lysine resides and weakens its interaction with
negatively charged DNA, thereby conferring a more open
chromatin structure and allowing active transcription. Two
interacting HAT genes, CREBBP and EP300, are recurrently mutated
in B-cell lymphoma and are most prevalent in subtypes that align
with the GCB-cell stage of differentiation. The products of these
genes are involved in diverse cellular processes including
transcriptional activation, cell cycle progression, p53 activity,
DNA repair and apoptosis.43 Conditional knockout of these genes
within the B-cell compartment of mice revealed that loss of each
gene individually had little effect on B-cell development, but loss
of both genes led to a marked ablation of peripheral B cells.44 In
humans, germ-line mutations of these genes are associated with
Rubinstein–Taybi syndrome, an autosomal dominant disorder
characterized by physical abnormalities and mental retardation,
and associated with increased predisposition to lymphoma.45

CREBBP is targeted by inactivating mutations and deletions in
FL, BL and GCB-like DLBCL.10,13,15,18 CREBBP associates with EP300,
which is itself also mutated at a lower frequency in FL and
DLBCL.10,15 The CREBBP/EP300 complex acts to acetylate multiple
lysine residues upon all four histones,43 suggesting that their
mutation may have broad effects on cellular phenotypes. Somatic
mutations of the CREBBP cluster within the substrate-binding
pocket of the acetyltransferase domain10,46 and have been shown
to decrease affinity for their substrate, acetyl-coA, resulting in a
net reduction in the H3K18 acetylation mark.15,46 An important
target for CREBBP-mediated histone acetylation in antigen-
presenting cells, including B cells, are the MHC class II genes.

Chromatin-modifying gene mutations in B-cell lymphoma
MA Lunning and MR Green

3

Blood Cancer Journal



CREBBP is recruited to these genes by the master regulator of
MHC class II gene expression, class II transactivator (CIITA), and
acetylates chromatin at their promoters to activate expression.47,48

Dominant-negative isoforms of CREBBP induce a 10-fold decrease
in MHC class II expression in B-cell lines,49 and somatic mutations
of CREBBP in FL are associated with a similar magnitude of
decrease in MHC class II expression on primary tumor cells.10 This
results in decreased T-cell proliferation and reduced numbers of
T cells within CREBBP-mutant FL tumors, highlighting immune
evasion as a key mechanism of lymphomagenesis associated with
these mutations. However, the broader patterns of altered histone
acetylation associated with CREBBP mutations remain to be
defined.
In addition to its role in histone acetylation, CREBBP also

acetylates the products of other genes that are themselves
targeted by somatic alterations in B-cell lymphoma such as TP53,
BCL6 and FOXO1. The TP53 gene is a well-defined tumor
suppressor gene and is mutated and targeted by DNA copy
number loss at a low frequency in a range of B-cell lymphomas.
Acetylation of the TP53 gene product by CREBBP and EP300
promotes its activity. This activation allows TP53 to recruit another
HAT complex (NuA4) and activate expression of its target genes
via histone H4 hyperacetylation.28 The BCL6 gene encodes a
transcription factor that regulates germinal center development
and is targeted by genetic translocations and DNA copy number
gains in DLBCL.50,51 The activity of BCL6 is repressed via
acetylation by CREBBP, and mutations of CREBBP have been
linked with decreased BCL6 acetylation and increased activity.15

BCL6 itself also regulates chromatin modification via the recruit-
ment of histone deacetylase complexes,52,53 and the epigenetic
modifications imparted by BCL6 may be sufficient for transforma-
tion even in the absence of its continued expression.51 FOXO1 is a
PI3K-regulated transcriptional repressor that is mutated in
DLBCL.54 Phosphorylation of FOXO1 by AKT as a result of B-cell
receptor signaling has an essential role in mature B-cell survival55

and leads to its nuclear export, resulting in the inactivation of
target genes that suppress proliferation and other key processes.56

Lysine acetylation within the DNA-binding motif of FOXO1 by
CREBBP interferes with its DNA-binding activity and increases its
sensitivity to phosphorylation, thereby contributing to its negative
regulation.57 The activity of CREBBP to acetylate both histone and
non-histone proteins that themselves regulate epigenetic and
transcriptional programs suggest that inactivating mutations of
this gene likely have broad phenotypic consequences at the
epigenetic level, and other effects that extend beyond epigenetic
programming.
In addition to TP53 and BCL6, other genes that are frequently

mutated or deleted in B-cell lymphoma also have a role in
recruiting chromatin-modifying enzymes. For example, the well-
defined tumor suppressor gene RB1 is mutated or deleted at low
frequency in B-cell lymphoma58–60 and recruits histone deacety-
lases to repress transcription of E2F target genes.61 Recent high-
throughput sequencing studies have also identified recurrent
mutations of two MEF2 family member genes, MEF2B and MEF2C,
in DLBCL and FL.12,62,63 These transcription factors recruit HATs
and histone deacetylases, indicating that their mutation may
thereby alter the balance of histone acetylation.64

The somatic alteration of HATs, as well as the alteration of genes
that recruit HATs and/or histone deacetylases, point to a broad
deregulation of histone acetylation in B-cell lymphoma that
currently remains unmapped. A potential avenue for therapeutic
intervention toward deregulated histone acetylation is through
the use of histone deacetylase inhibitors. Inhibitors such as
Vorinostat have shown some efficacy in phase II clinical trials of
relapsed/refractory FL, the disease in which CREBBP and EP300
mutations are most prevalent.65,66 However, a recent study that
interrogated CREBBP and EP300mutation status within the bounds
of a phase II trial found no significant difference in the change in

tumor size between those patients with these mutations
compared with patients with wild-type genes.65 This suggests
that CREBBP/EP300 mutations may not be ‘actionable’ through the
use of histone deacetylase inhibitors, and that alternative avenues
for targeting these mutations need to be defined. Delineation of
the precise mechanism(s) by which CREBBP and EP300 mutations
contribute to lymphomagenesis will be a complex task, but
remains an important undefined step in understanding lymphoma
pathobiology.

HIGHER ORDER CHROMATIN STRUCTURE
The positioning of nucleosomes along the DNA strand and the
organization of nucleosomes into higher order chromatin
structures is a dynamic process involving multiple protein
complexes and non-coding RNAs, and has a crucial functional
role in cellular physiology.67,68 Recently, high-throughput sequen-
cing studies have identified mutations in SWI/SNF complex and
linker histone genes. These encode proteins that have a role in
shuffling nucleosomes and promoting condensation of chromatin,
respectively.

Nucleosome positioning
The SWI/SNF complex is a multi-subunit complex that utilizes the
energy from ATP to remodel chromatin by shuffling nucleosomes
along the DNA.8 This regulates the accessibility of DNA to other
proteins involved in replication and repair, and can allow the
activation or the suppression of gene transcription. There are
multiple subfamilies of SWI/SNF chromatin remodelers that are
determined by their respective utilization of paralagous subcom-
ponents. ARID1A and SMARCA4 (alias, BRG1) associate with several
other proteins to form BRG1-associated factor complexes, and are
together mutated in 32.5% of BL tumors and less frequently in FL
and DLBCL. Mutations of these genes are largely mutually
exclusive and are commonly small deletions causing frameshifts,
or nucleotide substitutions that introduce premature stop codons,
indicating that they are deleterious to protein abundance/
function. This implicates these genes as tumor suppressors, in
line with prior observations that BRG1-associated factor com-
plexes can inhibit cell cycle progression by repressing the activity
of several E2F-repsonsive promoters via their association with
RB1.8,69,70 ARID1A can also directly bind p53, enhance its
transactivation activity and promote the expression of the cell
cycle inhibitor CDKN1A.71 Interestingly, ARID1A also regulates
cellular functions associated with B-cell biology. A genome-wide
short hairpin RNA pool screen revealed that it may have a role in
regulating sensitivity to Fas-mediated apoptosis, a central
mechanism for clonal deletion of GCB cells.72 In addition,
conditional knockout of ARID1A in B cells resulted in a relative
decrease in proliferation in response to lipopolysaccharide
compared with wild-type B cells.73 However, the degree to which
the observations of SMARCA4 and ARID1A activity relate to the
physiologic role of their mutations in lymphomagenesis remains
undetermined. Notably, synthetic lethal screens of ARID1A mutant
and SMARCA4-deficient cells has revealed that they are particularly
vulnerable to interference with other paralagous SWI/SNF com-
plex components.74,75 This suggests that specific inhibitors of
these components may represent a future avenue for therapeutic
targeting of these mutations in lymphoma and other diseases.

H1 linker histones
There are eight genes belonging to the H1 family of linker
histones that are functionally redundant but differ in their
expression patterns during development.76 These are thought to
reside outside of the core nucleosome particle and protect inter-
nucleosome ‘linker’ DNA.77 Knockout experiments of H1 variants
have revealed that eukaryotic cells can survive in the absence of
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these proteins and individual variants do not significantly alter
cellular phenotypes.78–80 H1 proteins have a role in chromatin
condensation and may function by recruiting DNA methyltrans-
ferases (DNMT1 and DNTM3A) and inhibiting methylation of
H3K4.81 In addition, these proteins interact with the polycomb
repressor complex 2, and oligonucleosomes that are assembled
with H1 are better substrates for EZH2 than mononucleosomes
that lack H1.82 Together these observations suggest that somatic
alteration of histone H1 genes may potentially result in altered
nucleosome packing, as well as affecting DNA and/or histone
methylation. Mutations of the H1 family member gene HIST1H1C
were first described by Morin et al.,12 and mutations within this
and other genes in this family (most prevalently HIST1H1D and
HIST1H1E) have been observed in multiple subsequent
studies.10,13,62,63 Although there has been some suggestion that
these mutations result in decreased association with DNTM3A,62 it
remains to be determined what the epigenetic consequences of
these mutations may be, or whether they confer any measurable
phenotype at all given the degree of functional redundancy
between this large family of proteins.

DISCUSSION
The mutation of chromatin-modifying genes is likely to have a
broad impact of the cellular phenotypes of B-cell lymphomas.
However, despite the clearly important role for these events in
lymphomagenesis, the exact mechanisms by which they promote
malignant transformation remains largely undefined. An insight to
this has been provided by high-throughput sequencing studies
that have shown that there is a remarkable preference for specific
mutations within B-cell malignancies corresponding to discrete
stages of differentiation. For example, most chromatin-modifying
gene mutations show the greatest recurrence frequencies in FL
tumors; a malignancy that aligns with the GCB stage of
differentiation.9,10,14,16 In line with this, the most frequent
chromatin modifier mutations in DLBCL (EZH2, MLL2, CREBBP
and EP300) are largely restricted to a subtype of tumors that also
aligns with the GCB differentiation state, and are absent from
tumors that align with the later stages of differentiation (ABC-like
subtype).12 Multiple myeloma, a malignancy aligning with the
plasma cell stage of differentiation, is also devoid of these
mutations, but instead possesses translocations and mutations of
the H3K36 methyltransferase WHSC1 and mutations of the H3K27
demethylase KDM6A (alias, UTX).83,84 KDM6A mutations are also
found in a precursor B-cell malignancy, B-cell acute lymphoblastic
leukemia and relapses of this disease also acquire CREBBP
mutations.46,85 These patterns of representation for chromatin-
modifying gene mutations among B-cell malignancies aligned
with discrete differentiation states suggest that these mutations
may either (i) have effects that are only oncogenic within
specific cellular contexts or (ii) have roles in stalling differentia-
tion at specific states. A recent investigation into the role
of EZH2 suggests that the latter may apply; EZH2 hotspot
mutation promotes the accumulation of GCB cells29 and EHZ2
inhibition promotes transition from a GCB to a memory B-cell
transcriptional signature.42 However, these mutations are often
acquired as late events in the evolution FL and may, therefore,
occur secondarily to stalled differentiation.9,10 The precise
mechanism(s) by which mutations in chromatin modifiers
promote lymphomagenesis and become associated with B-cell
differentiation states are, therefore, still uncertain. Future studies
that identify the role of wild-type chromatin-modifying genes in
normal B-cell development, and elucidate the mechanisms by
which somatic mutations of these genes drive transformation,
will therefore be important for advancing our understanding of
normal and malignant GCB-cell biology and in advancing
therapy for lymphoma.
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