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5,7,3ʹ,4ʹ‑Tetrahydroxyflav‑2‑
en‑3‑ol 3‑O‑glucoside, a new 
biosynthetic precursor of cyanidin 
3‑O‑glucoside in the seed coat 
of black soybean, Glycine max
Kumi Yoshida1*, Yada Teppabut1,5, Reo Sawaguchi1,5, Yuhsuke Nakane2, Emi Hayashi2, 
Kin‑ichi Oyama3, Yuzo Nishizaki4, Yukihiro Goda4 & Tadao Kondo1

The seed coat of mature black soybean, Glycine max, accumulates a high amount of cyanidin 
3-O-glucoside (Cy3G), which is the most abundant anthocyanin in nature. In the pod, it takes 
two months for the seed coat color change from green to black. However, immature green beans 
rapidly adopt a black color within one day when the shell is removed. We analyzed the components 
involved in the color change of the seed coat and detected a new precursor of Cy3G, namely 5,7,3ʹ,4ʹ-
tetrahydroxyflav-2-en-3-ol 3-O-glucoside (2F3G). Through quantitative analysis using purified and 
synthetic standard compounds, it was clarified that during this rapid color change, an increase in the 
Cy3G content was observed along with the corresponding decrease in the 2F3G content. Chemical 
conversion from 2F3G to Cy3G at pH 5 with air and ferrous ion was observed. Our findings allowed us 
to propose a new biosynthetic pathway of Cy3G via a colorless glucosylated compound, 2F3G, which 
was oxidized to give Cy3G.

Anthocyanins are plant pigments which are often responsible for the colors of flowers, fruits, vegetables, and 
roots, with such colors ranging widely from red through purple to blue1–4. In recent years, the medicinal proper-
ties of these pigments have attracted significant attention in terms of their therapeutic value for the treatment 
of metabolic disorder-related syndromes in humans5–10. Anthocyanins are known to exhibit a vast structural 
diversity through glycosylation and acylation, and among them, cyanidin 3-O-glucoside (Cy3G, 1) is one of the 
simplest and most widely distributed pigments in nature, being found in cherry blossom, autumn red leaves, 
red-colored fruits, and the seed coat of the black soybean, Glycine max3,11–14. Furthermore, the biosynthetic 
pathway of Cy3G (1) has been well studied, and almost all genes and enzymes involved have been identified15–20.

The anthocyanin biosynthetic pathway diverges from the primary metabolites by the action of phenylalanine 
ammonia-lyase (PAL), which leads to the formation of naringenin upon cyclization. Several redox enzymes are 
then involved in its conversion to cyanidin, which constitutes the first colored compound in the pathway15–20. The 
last step in the conversion to cyanidin is catalyzed by anthocyanidin synthase (ANS), for which cis-leucocyanidin 
(2R, 3S, 4S-leucocyanidin) is presumed to be the substrate (Fig. 1a)15,21–26. However, trans-leucocyanidin (2R, 
3S, 4R-leucocyanidin), is employed as the substrate in almost all reactions with recombinant enzymes21–25, as 
cis-leucocyanidin is unstable and commercially unavailable (Fig. 1b). Moreover, the detailed mechanism of the 
enzymatic reaction of ANS is still unclear23,27, and since cyanidin is not the major product in the enzymatic 
reaction of ANS, it has called into question the role of cis-leucocyanidin as the ANS substrate for transformation 
into cyanidin26–31. Furthermore, the enzymatic activity of ANS has been assayed by testing it for the production 
of Cy3G (1) using a mixture of ANS and anthocyanidin 3-O-glucosyltransferase (3GT), wherein the reaction 
sequence is unclear23. In addition, catechin was reported to form cyanidin upon treatment with ANS27. Overall, 
these results warrant a re-examination of the biosynthetic pathway of Cy3G (1) and the role of ANS.
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Since we are interested in the reaction mechanism involved in the transformation of leucocyanidin to cya-
nidin, we undertook the chemical synthesis of Cy3G (1) and found that the oxidation of a cis-leucocyanidin 
derivative did not give Cy3G (1), but delivered a red-colored polymer32. To overcome this problem, we pre-
pared a 3-flavenol derivative by 3,4-dehydration, which possessed the same oxidative level as cis-leucocyanidin 
and underwent facile air oxidation to furnish Cy3G (1) in a good yield32. Furthermore, we showed that the 
Clemmensen-type reduction of flavonol glycosides does not give the corresponding anthocyanin directly, but 
delivers initially a mixture of 2- and 3-flavenol compounds by reduction in the absence of air; these compounds 

Figure 1.   Late-steps in the biosynthetic pathway of cyanidin 3-O-glucoside (1). (a) Proposed pathway via cis-
leucocyanidin (2R, 3S, 4S-leucocyanidin). (b) Structure of trans-leucocyanidin (2R, 3S, 4R-leucocyanidin). (c) 
Conversion of quercetin 3-O-glucoside to cyanidin 3-O-glucoside (1) by Clemmensen reduction followed by air 
oxidation via 2-flavonol 3-O-glucoside (2F3G, 2) and 3-flavonol 3-O-glucosides.
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are then oxidized by air in the second step to yield the corresponding anthocyanins (Fig. 1c)33,34. These findings 
therefore prompted us to study the mechanisms involved in the biosynthetic pathway of Cy3G (1) in the case 
of black soybean.

As reported previously, the green-colored seed matures to a black color over an approximately two-month 
period35, and this black color is known to be caused by the high quantities of cyanidin 3-O-glucoside (Cy3G, 1) 
in the coating, i.e., approximately15 mg/g dried seed coat15,36. However, an accelerated change in the color of the 
beans from green to black was reported in normal pods upon accidental breakage of the shell. Around the same 
time as our synthetic studies, Fukami et al. reported the presence of a glucosylated 2-flavenol compound (i.e., 
5,7,3ʹ,4ʹ-tetrahydroxyflav-2-en-3-ol 3-O-glucoside, 2F3G (2)) in the immature green-colored seed coat of black 
soybean37. They reported that the treatment of 2F3G (2) with hydrochloric acid affords Cy3G (1)37. Therefore, 
we wished to clarify this phenomenon in soybean tissue.

More specifically, we carried out a further examination, and found that immature green beans turned black 
within a day when the beans were removed from the pod and left under light and air, despite the fact that trans-
formation to the black color takes approximately two months when the beans are inside the shell. We therefore 
determined the levels of Cy3G (1) and 2F3G (2) present in the immature seed coats and monitored their contents 
during the rapid color change. To achieve this objective, we synthesized 2F3G (2) from Cy3G (1) and determined 
their absolute purities using a quantitative NMR method (qNMR)36–44. Furthermore, non-enzymatic conversion 
from 2F3G (2) to Cy3G (1) in neutral aqueous solution was achieved. Thus, we herein propose that 2F3G (2) 
may be a biosynthetic precursor of cyanidin 3-O-glucoside (1) in the seed coat of black soybean.

Results and discussion
Rapid color change in the seed coat of immature black soybeans removed from the pod.  To 
investigate the green-to-black color change phenomenon of the seed coat upon removal of the peels at the imma-
ture stage, and to determine whether formation of the black color is due to the presence of Cy3G (1), we culti-
vated G. max cv. Iwaikuro and harvested the immature green pods approximately 60 days after flowering. The 
shell of the right-hand half of the immature pod was removed and the partly peeled pod was incubated under 
light and air at 25 °C for 20 h (Fig. 2). The bean on the peeled side turned black gradually (Fig. 2b), and after 20 h 
of incubation, the black color was comparable to that of the mature beans (Fig. 2c). In contrast, the left-hand 
bean, which remained covered by the shell during the 20 h period, did not show any remarkable color change 
(Fig. 2d). The exposed immature beans that turned black upon incubation were then extracted using a mixture 
of 3% trifluoroacetic acid (TFA)-50% aq. acetonitrile (CH3CN) and analyzed by HPLC with photodiode array 
detection. The obtained chromatogram indicated the presence of one pigment, which was identified as Cy3G (1) 
by comparison with an authentic sample (Figure S1)14. The same phenomenon was observed when using other 
cultivars, i.e., G. max, cv. Murasaki-zukin (Figure S2), therefore indicating that this phenomenon may be not 
specific to cv. Iwaikuro, but could be universal. Since pigmentation of the seed coats of black soybeans in pods 
tends to proceed gradually35, this rapid accumulation of Cy3G (1) may indicate the presence of precursors for 
Cy3G (1) in the immature seed coat.

Survey of 5,7,3ʹ,4ʹ‑tetrahydroxyflav‑2‑en‑3‑ol 3‑O‑glucoside (2F3G, 2) in immature back soy-
bean and its synthesis by the reduction of cyanidin 3‑O‑glucoside (1).  Initially, we attempted the 
isolation of 2F3G (2) from the immature black soybean cv. Murasaki-zukin according to the report by Fukami 
et al.37 but obtained less than 1 mg from 10 g of beans (see Supporting information, Figures S3–S6). As shown 
in Figure S7, the same compound, 2F3G (2), was also detected in black soybean cv. Iwaikuro. This indicates 
that regardless of the cultivar, the same compounds may be involved in the rapid biosynthesis of Cy3G (1) in 
immature black soybean seed coats. Since 2F3G (2) is labile to air and acids, and is easily converted to Cy3G (1), 
the isolation of 2F3G (2) from immature beans is highly challenging, and so we attempted the synthesis of 2F3G 
(2) for characterization and quantitative analysis. As we previously reported, the Clemmensen-type reduction 
of rutin under an argon atmosphere affords a mixture of 5,7,3ʹ,4ʹ-tetrahydroxyflav-2-en-3-ol 3-O-rutinoside 
and 5,7,3ʹ,4ʹ-tetrahydroxyflav-3-en-3-ol 3-O-rutinoside (Fig. 1c), however, the products are a mixture of 2- and 
3-flavenol compounds33,34. On the other hand, the reduction of anthocyanins with NaBH3CN gives 5,7,3ʹ,4ʹ-
tetrahydroxyflav-2-en-3-ol derivatives as the major products33,34. We therefore attempted the reduction of an 
aqueous solution of Cy3G (1) using 1 eq. of NaBH3CN (Fig. 3a). The HPLC chromatogram of the reaction mix-
ture after 1 h indicated that the starting material was completely consumed, and three new peaks were detected. 
Upon comparison with the standard sample, the major peak was determined to be 2F3G (2), while the other 
two peaks were tentatively assigned to be diastereomers at the 2-position of 5,7,3ʹ,4ʹ-tetrahydroxyflav-3-en-3-ol 
3-O-glucoside (Fig. 3b,c)33,34. Following evaporation and preparative HPLC purification of the resulting residue, 
pure 2F3G (2) was obtained in 47% yield (Fig. 3d), and its structure was confirmed by MS and NMR analyses 
(Figure S8 and S9, Table S3).

Determination of the absolute purities of cyanidin 3‑O‑glucoside (1) and 5,7,3ʹ,4ʹ‑tetrahydro
xyflav‑2‑en‑3‑ol 3‑O‑glucoside (2) by qNMR measurements.  Although HPLC is routinely used for 
quantitative analysis, such quantitation is feasible only when the necessary certified standards, which are lim-
ited, are available. For example, certified standards of anthocyanins are commercially unavailable despite their 
routine quantification in functional studies and in horticultural and food research. To address this issue, quan-
titative NMR (qNMR) methods have been developed to determine the absolute purities of organic compounds, 
particularly in the case of natural products, such as the anthocyanins36–44. Since Goda and his group reported 
that the purity of commercially available Cy3G (1) was < 90%43, we analyzed the prepared Cy3G (1) using the 
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1H-qNMR method. We also determined the purity of 2F3G (2), which was obtained from the conversion of 
Cy3G (1), and is highly unstable under acidic conditions, readily oxidizing to Cy3G (1).

The reported internal standard, 1,4-bis(trimethylsilyl) benzene-d4 was used43, and the method was slightly 
modified for instrument compatibility. The TFA-salt of Cy3G (1) was purified by re-precipitation and was 
obtained as a Cl-salt. Both Cy3G (1) and 2F3G (2) were dried under reduced pressure. The unfiltered sample 
solutions were then employed for subsequent 1H NMR measurements. The area of the signal corresponding to 
the H-4 proton was employed for the quantitation of Cy3G (1) (Figure S10), and the absolute purity of Cy3G (1) 
was determined in triplicate as 72.4 ± 3.9% (relative standard deviation (RSD), Table S4). Using the combined 
areas of the signals corresponding to H-2ʹ, 5ʹ, and 6ʹ, the purity of 2F3G (2) was determined to be 88.7 ± 0.7% 
(RSD, Figure S11, Table S5).

Since the obtained purity was rather low, the validity of this qNMR method was confirmed by measurement 
of our isolated Cy3G (1) using different instrument and an alternative external standard method. As shown in 
the Table S6 the purity of our isolated Cy3G (1) was the similar value. The purity value of the reagent Cy3G (1) 
quantified by qNMR method was also low (84.5%) compared with that obtained by HPLC analysis (> 98%). 
These data suggest that the low purities of Cy3G (1) and 2F3G (2) determined using the qNMR method may be 
due to the hygroscopic character of these compounds, or to some unknown basic problem in either the NMR 
measurements or during integration of the signal area. Further investigations are therefore required; however, 
for the purpose of this study, further quantification was carried out by HPLC using the obtained purity value 
indicated by qNMR.

Contents of cyanidin 3‑O‑glucoside (1) and 5,7,3ʹ,4ʹ‑tetrahydroxyflav‑2‑en‑3‑ol 3‑O‑glucoside 
(2) in the seed coats at different maturation stages.  We then analyzed the contents of Cy3G (1) and 
2F3G (2) in the black soybean cv. Iwaikuro at different stages of maturation, as determined by the seed coat color 
(Fig. 4). More specifically, the green beans represented stage 1; the partially purple beans represented stage 2; 
the fully purple beans represented stage 3; and the fully black beans represented stage 4 (Fig. 4a). For each state, 
three beans were extracted with acidic and neutral solutions and were analyzed by HPLC. It was noted during 
the acidic extraction process that all of the 2F3G (2) present in the seed coat was converted to Cy3G (1), suggest-
ing that the content of Cy3G (1) in the acidic extract indicates the combined amounts of Cy3G (1) and 2F3G (2). 

Figure 2.   Rapid color change of the immature black soybean cv. Iwaikuro of stage 2. Half of the shell was 
removed and exposed to air under light conditions (20,000 l×) at 25 °C. (a) 0 h. (b) 10 h. (c) 20 h. (d) The 
remaining half was removed from the shell after 20 h. Scale bar: 1 cm.
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In contrast, only 2F3G (2) was present in the neutral extract. Thus, the true content of Cy3G (1) in the seed coat 
was calculated by subtraction of the content of 2F3G (2) from that of total Cy3G (1). The contents of Cy3G (1) 
and 2F3G (2) in the beans at each stage are shown in Fig. 4b. In stage 1, the contents of Cy3G (1) and 2F3G (2) 
are low. Upon maturation of the beans, however, the content of Cy3G (1) increased from 58 nmol/gFW (stage 
2) to 166 nmol/gFW (stage 3) and 1200 nmol/gFW (stage 4), while the 2F3G (2) contents were approximately 
320 nmol/gFW in stage 2, 1130 nmol/gFW in stage 3, and 0 nmol/gFW in stage 4. These results suggested that 
the biosynthesis of 2F3G (2) may begin around stage 2, while that of Cy3G (1) follows next.

Changes of the contents of cyanidin 3‑O‑glucoside (1) and 5,7,3ʹ,4ʹ‑tetrahydroxyflav‑2‑en
‑3‑ol 3‑O‑glucoside (2) during incubation outside the pod.  Subsequently, we analyzed the color 
changes of the beans and the changes in the Cy3G (1) and 2F3G (2) contents at each stage outside the pod. We 
removed the shells of the immature beans at stages 1–3, and exposed them to air under light conditions for 12 h. 
As shown in Fig. 4a, the beans at stage 1 did not show any remarkable color change, but the beans at stages 2 
and 3 turned black following incubation. The contents of Cy3G (1) and 2F3G (2) in the various seed coats were 
then quantified (Fig. 4c–e). As mentioned above, the contents of both Cy3G (1) and 2F3G (2) were low, less than 
10 nmol/gFW, at stage 1, with minimal changes in their content being observed; however, a decrease in the level 
of 2F3G (2) and an increase in that of Cy3G (1) were observed (Fig. 4c). At stage 2, the content of 2F3G (2) at 
0 h was 305 nmol/gFW, and this decreased upon incubation to 220 (3 h), 100 (6 h), 100 (9 h), and 2 nmol/gFW 
(12 h) (Fig. 4d). In contrast with the decrease in 2F3G (2), the content of Cy3G (1) increased from 65 nmol/
gFW (0 h) to 115 (3 h), 305 (6 h), 310 (9 h), and 415 nmol/gFW (12 h) (Fig. 4d). The total amount of Cy3G (1) 
and 2F3G (2) at each incubation time were 370, 405, 410, and 417 nmol/gFW, respectively, indicating that the 
total amount was constant. These results strongly indicate that the conversion of 2F3G (2) to Cy3G (1) occurs 
in the seed coat. At stage 3, a similar decrease in the level of 2F3G (2) correlating with an increase in that of 

Figure 3.   Synthesis of 5,7,3ʹ,4ʹ-tetrahydroxyflav-2-en-3-ol 3-O-glucoside (2F3G, 2). (a) Scheme showing 
the reduction process. (b) HPLC chromatogram of the reaction mixture at the starting point. (c) HPLC 
chromatogram after 1 h. (d) HPLC chromatogram of purified 2.
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Cy3G (1) was observed (Fig. 4e). The content of 2F3G (2) at 0 h was 1130 nmol/gFW and decreased rapidly as 
216 nmol/gFW (3 h), 126 nmol/gFW (6 h), 59 nmol/gFW (9 h) and 40 nmol/gFW (12 h). The content of Cy3G 
(1) at 0 h was 164 nmol/gFW and increased to 1164 nmol/gFW at 3 h. However, the total amounts of Cy3G (1) 
and 2F3G (2) were almost constant value as 1400 nmol/gFW (0 h), 1450 nmol/gFW (3 h), 1106 nmol/gFW (6 h), 
909 nmol/gFW (9 h) and 1051 nmol/gFW (12 h), respectively. These results strongly support that conversion 
from 2F3G (2) to Cy3G (1).

Oxidation of 5,7,3ʹ,4ʹ‑tetrahydroxyflav‑2‑en‑3‑ol 3‑O‑glucoside (2) to cyanidin 3‑O‑glucoside 
(1) by ferrous ions.  Although it was previously reported that 2F3G (2) was converted to Cy3G (1) under 
acidic conditions, such as MeOH containing hydrochloric acid37, 2F3G (2) was found to be relatively stable in 
neutral aqueous solution. To determine whether an enzyme, such as ANS, may be involved in the conversion 
from 2F3G (2) to Cy3G (1) in the immature seed coat, we prepared a crude protein extract of the seed coat of 
an immature soy bean (stage 2) according to the report by Ohgami et al.46 Using the obtained protein extract, 
the conversion of 2F3G (2) to Cy3G (1) was examined using the conditions reported by Saito et al.22 More spe-
cifically, 2F3G (2) and the crude protein were added to the assay medium at pH 7 and reaction was monitored 
by HPLC (Figures S15a–c). After 48 h, 2F3G (2) remained in the mixture, although only a very small amount 
of Cy3G (1) was detected (Figure S15b). The presence of the crude protein did not affect the results, with the 
addition of heated protein giving similar results (Figure S15c). It was therefore concluded that the enzymatic 
reaction is likely not involved in the conversion reaction. In this context, we note that ANS was considered to be 
present in the cytosol, where the oxidation of cis-leucocyanidin to cyanidin was assumed to take place; however, 
if glycosylated substrate, 2F3G (2), is present in the vacuole, the pH should be < 7.0, i.e., around 5.0. We therefore 
attempted the assay at pH 5.0, and as shown in Figures S15e–f, after 48 h, the majority of 2F3G (2) had been 
consumed, and Cy3G (1) was found to be present (Figure S15e). The addition of heated protein resulted in a 
decrease in 2F3G (2) and an increase in Cy3G (1), although the reaction was slow compared to when the crude 
protein was employed (Figure S15f.).

To clarify the mechanism of this reaction, we prepared a simplified assay medium reducing the number of 
reagents one by one, and examined the conversion of 2F3G (2) to Cy3G (1). Interestingly, it was found that 

Figure 4.   Contents and their changes of cyanidin 3-O-glucoside (Cy3G, 1) and 5,7,3ʹ,4ʹ-tetrahydroxyflav-2-
en-3-ol 3-O-glucoside (2F3G, 2) in the beans at different maturation stages upon exposure to air under light 
conditions (20,000 l×) at 25 °C. (a) Color change of the seed coat in each developmental stage. (b) Contents of 
Cy3G (1) and 2F3G (2) in the seed coat of black soybean at each stage. Changes in the contents of Cy3G (1) 
and 2F3G (2) in the beans at stage 1 (c), the beans at stage 2 (d) and the beans at stage 3 (e). Each piece of data 
is a mean of three biological replicates displayed with the standard error of the mean. Significant differences 
(P < 0.05) observed between the data are indicated by different capital letters. Similarly, small letters indicate 
significant differences (P < 0.05). Scale bar: 1 cm.
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ferrous ions could catalyze the oxidation reaction at pH 5.0 (Fig. 5). In a buffered solution at pH 5.0, 2F3G (2) 
(1 mM) and 0.4 mM FeSO4 were dissolved and the resulting solution maintained at 30 °C. The contents of 2F3G 
(2) and Cy3G (1) in the reaction mixture were then quantified. At pH 5, both in the presence and absence of 
sodium ascorbate, the content of 2F3G (2) decreased, and this was accompanied by the corresponding increase 
in Cy3G (1) (Fig. 5a,b). In contrast, at pH 7, the content of Cy3G (1) was particularly low (Fig. 5c,d), and in the 
absence of ferrous ions, no conversion was observed at either pH 5 or 7. At both pH values, Cy3G (1) is stable 
over 24 h incubation, thereby indicating that the difference in the content of Cy3G (1) in the reaction mixture 
was not caused by any differences in stability. Furthermore, at both pH 5 and 7, the addition of sodium ascorbate 
slightly suppressed the decrease in 2F3G (2) and conversion to Cy3G (1). Chemically, the oxidative conversion 
of 2F3G (2) to Cy3G (1) may involve a radical reaction, and so the difference in reactivity between pH values of 
5 and 7 may be due to differences in the degree of radical generation.

We herein reported our investigation into the color change taking place from green to purple-black in the 
immature seed coat of black soybean upon removal of the shell and exposure to light and air. We detected the 
presence of 5,7,3ʹ,4ʹ-tetrahydroxyflav-2-en-3-ol 3-O-glucoside (2) in the immature seed coat, and during the color 
change, a decrease in the content of 2F3G (2) was observed along with a simultaneous increase in the content 
of cyanidin 3-O-glucoside (1). These results strongly suggest the rapid conversion of 2F3G (2) to Cy3G (1) in 
the immature seed coat after removal of the shells. It was also observed in vitro that 2F3G (2) was oxidized to 
Cy3G (1) in the presence of air and ferrous ions at pH 5.0, and that the crude protein extract of the immature 
seed coat did not affect the conversion. These findings indicate that 2F3G (2) may exist in vacuoles, and that it is 
oxidized non-enzymatically by the ferrous ion acting as a catalyst, although the oxidizing agent involved in this 
transformation has yet to be clarified. Finally, based on our results, a new biosynthetic pathway to Cy3G (1) was 
proposed via a 3-O-glucosylation reaction prior to oxidation to the corresponding anthocyanidin.

Figure 5.   In vitro conversion of 5,7,3ʹ,4ʹ-tetrahydroxyflav-2-en-3-ol 3-O-glucoside (2F3G, 2) to cyanidin 
3-O-glucoside (Cy3G, 1) in aqueous solutions with FeSO4 at 30 °C. Solid line: 0.4 mM FeSO4 + 4 mM sodium 
ascorbate, broken line: 0.4 mM FeSO4, dotted line: 4 mM sodium ascorbate. (a) Decrease in 2F3G (2) w/wo 
FeSO4 and sodium ascorbate at pH 5.0. (b) Increase in Cy3G (1) w/wo FeSO4 and sodium ascorbate at pH 5.0. 
(c) Decrease in 2F3G (2) w/wo FeSO4 and sodium ascorbate at pH 7.0. (d) Increase in Cy3G (1) w/wo FeSO4 
and sodium ascorbate at pH 7.0.
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Methods
General procedure and chemicals.  All the procedures of instrumental analysis and chemicals used were 
written in supporting informaion.

Plant material and treatment.  Black soybeans (Glycine max) cv. Iwaikuro were donated by the Hokkaido 
Agricultural Research Center and were further cultivated at the Research Center Togo Field, Nagoya University, 
and Botanical Garden, Nagoya University Museum between 2015 and 2019. G. max cv. Murasaki-zukin was 
donated from Dr. Furuya of the Kyoto Prefectural Experimental Station. G. max cv. Hikariguro was purchased 
in a market. The beans were stored at 4 °C until required for use.

Qualitative color change observation was carried out by using an immature green colored pod of which half 
of the shell was peeled. Then, the pod was stood under a fluorescent light at 25 °C for 20 h.

For quantitative analysis, the immature black soybean pods were harvested approximately 60 days after 
flowering, and were maintained at 4 °C until required for use. The beans were then removed from the pod and 
separated into four stages according to the seed coat color: green, stage 1; partially purple, stage 2; purple, stage 
3; and black, stage 4 (Fig. 4a). Each bean was placed in a glass bottle (10 mL) and incubated at 25 °C for 0, 3, 6, 
9, or 12 h under light conditions (20,000 lx) in a plant incubator (MLR-350, SANYO Electric, Osaka, Japan). 
Each of the three treated beans was subjected to extraction with acidic and neutral solvents for the quantitative 
analyses of Cy3G (1) and 2F3G (2), respectively.

Cyanidin 3‑O‑glucoside (Cy3G, 1).  Cyanidin 3-O-glucoside (1) was isolated as its trifluoroacetic acetate 
(TFA) salt from the seed coat of G. max cv. Hikariguro according to our previously reported procedure14. The 
obtained Cy3G (1) was dissolved in 1% HCl-MeOH (10 mL), filtered (pore size: 0.45 µm), and diethyl ether 
(Et2O, 80 mL) was added to the filtrate. The resulting solution was maintained at room temperature and the 
obtained dark red precipitate was gathered as the chloride salt of Cy3G (1). The desired cyanidin 3-O-glucoside 
(1), obtained as a chloride salt, was dried over under reduced pressure.

Synthesis of 5,7,3′,4′‑tetrahydroxyflav‑2‑en‑3‑ol 3‑O‑glucoside (2F3G, 2).  The cyanidin 
3-O-glucoside (1) TFA salt (105.0 mg, 0.187 mmol) was dissolved in H2O (3.0 mL) and NaBH3CN (12.4 mg, 
0.197 mmol) was added to the solution. After stirring at room temperature for 1 h, the reaction mixture was 
filtered using a cartridge (pore size: 0.45 µm) and the filtrate was purified by preparative HPLC (RPAQUEOUS-
AR-5 20 mm i.d. × 250 mm) with a 15% solution of CH3CN in water. The fraction containing 2F3G (2) was 
evaporated under reduced pressure to afford pure 2F3G (2) (39.2 mg, 47%) as a colorless mass.

Quantitative NMR analysis (qNMR).  The absolute purities of Cy3G (1) and 2F3G (2) were obtained 
by 1H-qNMR analysis as reported by Uchiyama et  al. with slight modifications43. An internal standard, 
1,4-bis(trimethylsilyl) benzene-d4 (1,4-BTMSB-d4, 1  mg), and Cy3G (1) (5  mg) in 5% TFA d-CD3OD were 
transferred to an NMR tube without filtration, and the 1H-NMR spectrum was acquired using the parameters 
described in Table S2. The areas of the signals corresponding to the standard and to the H-4 proton in Cy3G (1) 
were calculated and used to obtain the absolute purity of Cy3G (1) (Figure S10, Table S4) based on Equation S1. 
For the measurement of 2F3G (2), the internal standard (0.5 mg) and 2F3G (2) (5 mg) were weighed precisely 
and dissolved in CD3OD. For calculation of the absolute purity of Cy3G (1), three protons on the B-ring (H-2ʹ, 
H-5ʹ, and H-6ʹ) were used (Figure S11, Table S5). Samples were prepared in triplicate and measured indepen-
dently.

Quantitative analyses of Cy3G (1) and 2F3G (2) by HPLC.  For quantitative analysis, three immature 
beans at different stages and different exposure treatments were weighed and frozen using liq. N2. The extraction 
solvent (3% TFA-50% CH3CN aq, 3.0 mL/g FW) was added to the beans, and the sample was allowed to stand 
at room temperature in the dark for 24 h. The extract was then diluted five-fold with 3% TFA-H2O, subjected to 
cartridge filtration (pore size: 0.45 µm), and the filtrate analyzed by HPLC. For the quantitative analysis of 2F3G 
(2), three immature beans of different stages and different exposure treatments were weighed, frozen using liq. 
N2, and extracted with 50% aq. CH3CN (3.0 mL/g FW). The extract was then diluted five-fold with H2O, filtered 
through a cartridge (pore size: 0.45 µm), and analysis of the filtrate carried out by HPLC. For calibration, the 
dried 2F3G (2) was weighed precisely in triplicate, and the individual samples were diluted with MeOH. Each 
sample was analyzed by HPLC in triplicate (Table S7), and the obtained peak areas were used for construction 
of the calibration curve (Figure S14).

Preparation of crude protein extract from immature seed coat and conversion of 2F3G (2) 
in vitro.  From the immature seed coat of black soybean G. max cv. Iwaikuro, the crude protein extract was 
prepared and the conversion of 2F3G (2) to Cy3G (1) was carried out and monitored by HPLC (Figure S15). 
For detailed investigations, the composition of the assay medium was simplified, and the effect of the ferrous 
ion was examined. In an assay medium composed of sodium ascorbate (4 mM), FeSO4·7H2O (0.4 mM) in phos-
phate buffer (20 mM, pH 7.0), or acetate buffer (20 mM, pH 5.0), 2F3G (2) (1 mM) was added and the resulting 
mixture was incubated at 30 °C for 24 h. The reaction mixture was then diluted with 3% TFA aq. 5 times and 
analyzed by HPLC using the elution conditions outlined in Table S8.

Statistical analysis.  The quantitative analyses of Cy3G (1) and 2F3G (2) in the immature black soybean 
sample were performed in triplicate. The data were analyzed by one-way ANOVA with the post hoc Scheffe 
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test. The significant differences are indicated in the figures using different characters as explained in the figure 
legends.
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