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Network dynamics-based cancer panel
stratification for systemic prediction of anticancer
drug response
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Cancer is a complex disease involving multiple genomic alterations that disrupt the dynamic

response of signaling networks. The heterogeneous nature of cancer, which results in highly

variable drug response, is a major obstacle to developing effective cancer therapy. Previous

studies of cancer therapeutic response mostly focus on static analysis of genome-wide

alterations, thus they are unable to unravel the dynamic, network-specific origin of variation.

Here we present a network dynamics-based approach to integrate cancer genomics with

dynamics of biological network for drug response prediction and design of drug combination.

We select the p53 network as an example and analyze its cancer-specific state transition

dynamics under distinct anticancer drug treatments by attractor landscape analysis. Our

results not only enable stratification of cancer into distinct drug response groups, but also

reveal network-specific drug targets that maximize p53 network-mediated cell death, pro-

viding a basis to design combinatorial therapeutic strategies for distinct cancer genomic

subtypes.
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Cancer is a highly heterogeneous disease not only between
disease types but also different patients with the
same disease1–3. Cancer heterogeneity at the genomic level

has been characterized by a number of comprehensive genome
sequencing and molecular profiling analyses, and various com-
putational methods were since developed to map the genomes of
thousands of cancers to explain cancer complexity and identify
opportunities for cancer prevention, early detection, and treat-
ment3,4. For instance, large-scale genomic studies, such as The
Cancer Genome Atlas (TCGA) and The Cancer Cell Line Ency-
clopedia (CCLE), have curated multi-level genomic information
that can be further analyzed to understand variation in cancer
genotypes and phenotypes5–9. In these studies, a large panel of
cancer cell lines was profiled, using high-throughput measure-
ments, such as genome sequencing, microarray, proteomics, and
drug screening. In addition, the acquired large genomic data sets
were used to establish a model to predict a relationship between
drug sensitivity and genomic alterations of specific cancer cells as
well as to identify response biomarkers to cancer therapeutics6,10.
This approach is primarily based on analyzing genomic altera-
tions at the molecular level and may help preclinical stratification
of patients for more effective anticancer drug treatment. How-
ever, due to the complexity and often unknown effect of genomic
alterations on actual dynamics and functions of specific cellular
network/pathway, this individual molecule-based approach often
falls short to provide comprehensive insight into the mechanistic
origin of drug sensitivity and identify effective biomarker for drug
response prediction.

Many research groups thus set out to develop alternative
computational methods to analyze large genomic data sets based
on cellular network topology, which consists of information of
collective interactions between multiple components, such as
genes and proteins, in an integrated manner. Compared to
genomics analysis based on individual genomic alteration, the
network topology-based approach is proven more effective to
predict drug response (i.e., phenotype) from the genotypes11, as
well as classify and cluster cancer subtypes12,13. For example,
method was developed to extract gene sub-networks from whole
protein–protein interaction (PPI) network, based on which
metastatic breast cancer was successfully classified12. Network-
based stratification (NBS) was also successfully employed to
classify cancers based on their mutation network profiles and
demonstrated improved correlation between cancer subtypes and
clinical outcomes13. However, effectiveness of these stratification
methods is limited, as they often failed to predict clinical outcome
of certain tumor subtypes that show clear clustering of genomic
profiles14. This could partly be due to the fact that the perfor-
mance of NBS analysis depends on the data type, which only took
into account somatic mutation, but not methylation or copy
number alteration (CNA), which likely also contributed to per-
turb the overall cellular responses. Moreover, as drug response is
a highly dynamic process, classification of cancer subtypes based
on only static network topology is evidently insufficient to
identify biomarkers for predicting drug response. There is clearly
a need to investigate dynamics of network and network pertur-
bations at the system level to characterize and stratify cancer
subtypes in terms of drug response.

Here, we present a network dynamics-based approach to sys-
tematically quantify how genomic alterations in cancer cells affect
the function of biological networks and thus result in differential
cellular phenotypes. Cancer cell can be viewed as a rewired net-
work due to endogenous perturbations resulting from genomic
alterations, which subsequently leads to modifications of signaling
networks and their dynamic responses11,15–18. Such network
rewiring is thought to be responsible for key oncogenic processes,
such as uncontrolled proliferation and resistance to apoptosis

induced by both internal and external stimuli, e.g., drug19. Pre-
vious work by us and others showed functional states and
dynamics of a cellular system of networks can be comprehen-
sively studied by attractor landscape analysis20–22. Based on
attractor landscape analysis of network dynamics, viable cellular
phenotypes can be identified as steady states called attractor
states. In this study, we extended the attractor landscape analysis
of network to a large cancer cell panel by combining it with
comprehensive genomic alteration profiles of these cancer cells to
characterize cancer subtypes and developed a computational
framework to evaluate drug efficacies and synergistic effects as a
function of genotype.

We selected the p53 regulatory network for the attractor
landscape analysis, given the importance of p53 network in reg-
ulating various aspects of cancer and anticancer drug response.
Specifically, we first constructed differential p53 regulatory net-
works by mapping cancer genomics data from the CCLE database
to a p53 network model and then analyzed their state transition
dynamics under various perturbations that mimic the mechanism
of drug action. Based on the network dynamics analysis, variable
drug responses of the large cancer cell panel were categorized into
distinct response subgroups. For each subgroup of cancer net-
work response, we further investigated their specific p53 network
dynamics and found that the differential p53 network dynamics
determine the genotype-specific drug responses. Moreover, based
on the network perturbation analysis, we also identified network-
specific combinatorial targets that enhance particularly drug-
induced cell death response and validated the computational
prediction by experiments. Overall, our study established a novel
computational framework to predict anticancer drug response
based on cancer genotypes, which could be employed to design
more effective, cancer-specific combinatorial therapy.

Results
Cancer cell stratification by attractor landscape analysis. Our
method of network dynamics-based stratification of human
cancer cell panel integrates genomic alterations at multiple levels
and is independent of tissue origin and cancer type. Specifically,
cancer cell lines are described by differentially wired networks
with distinct network topology resulted from their genomic
alterations. The different cancer cell lines are subsequently clus-
tered on the basis of their network dynamics in response to the
same network perturbation, e.g., as a result of drug treatment.
Network dynamics of the cell are analyzed by considering its
attractor landscape, which consists of trajectories from all possible
initial network states of the cell to its attractor states. We focus on
the set of attractor states that different cancer cells eventually
reach, which correspond to specific steady states of cellular
phenotypes. In particular, for drug response, the viable steady-
state attractor states include cell proliferation, cell cycle arrest,
and cell death. Moreover, in the attractor landscape, area around
each attractor state is the region of states with trajectories going to
the attractor, which is called the “basin of attraction” or “basins”,
and can be used to measure the relative ratio of the respective
cellular phenotypes.

Our systemic computational approach relies on three key steps:
(1) selecting functional genomic alterations from a large number
of molecular changes reported by the cancer genomics database;
(2) constructing cancer cell-specific network models by mapping
the functional genomic alterations of distinct cancer cell lines into
the interaction network; and (3) stratifying cancer cells based on
the network response profile to perturbations that can change the
network dynamics. The functional genomic alterations that we
selected include both somatic mutations and CNA that are
associated with cancer development. For each cancer cell line, we
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projected the relevant genomic alteration profile onto the
molecular interaction network to produce a differentially wired
network, which represents a simple, but essential, genomic
landscape as observed in distinct cancer cells. Next we analyzed
its state transition dynamics for various perturbations that mimic
the drug action by changing either node activity or interaction
type. These perturbations led to changes of the attractor
landscape and the relative ratios of the distinct attractor states
(i.e., cellular phenotypes). Based on results of the perturbation
analysis, we clustered a large panel of human cancer cell lines
profiled by the CCLE project into drug response subgroups,
according to their major cellular phenotypes (Fig. 1a); and we also
evaluated efficacy of distinct drug (i.e., the trigger of perturbation)
and synergistic effect of drug combinations for the different
cancer cell types.

Network dynamics-based analysis of the p53 network. One of
the most well-characterized genomic alterations associated with
cancer is downregulation of the activity of a tumor suppressor
gene, p53. p53 mutation is observed in about 50% of all cancers

and is believed to be a major cause of drug resistance due to loss
of p53-mediated apoptotic signaling23. However, resistance to
apoptosis is also observed in many cancer cells that have wild-
type p5324,25, indicating p53-mediated cellular response not only
depends on p53 itself but also collective activities of other
p53 signaling pathway components. Mechanistic understanding
of how resistance may arise in cancers with wild-type p53 is very
limited and thus becomes particularly important. To investigate
the dynamic process of variable drug responses with respect to
altered regulation of the p53 network, we applied the above
network dynamics-based analysis to a p53 network model, which
consists of major p53 signaling pathway components and mul-
tiple feedback loops and crosstalk between them (Fig. 1b, upper
panel). Our previous analysis of this p53 network model has
shown that attractor landscape analysis can identify key feedback
loops in the p53 network and predict p53 network-mediated
cellular response to DNA-damaging chemotherapeutics,
etoposide21.

Here we extended the p53 network perturbation analysis for
more drugs and drug combinations. Highly specific small-
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Fig. 1 Network dynamics-based stratification of cancer cells using attractor landscape analysis of network dynamics and application to p53 network.
a Cancer cells are represented as differentially wired networks that have a distinct network topology by mapping functional genomic alterations in cancer
cells onto the nominal network. Network dynamics induced by the perturbation can be analyzed by an attractor landscape, which consists of the
trajectories from all possible initial states to the attractor states. Different cancer cells eventually reach the attractor states that correspond to specific
cellular phenotypes. The area around each attractor state is the region of states with trajectories going to the attractor, which is called the “basin of
attraction” or “basins”, and can be used for measuring the relative ratio of the specific cellular phenotypes, including cell proliferation (P), cell cycle arrest
(A), and cell death (D). Final stratification of the differentially wired network is obtained based on differential network dynamics in response to
perturbation. The node color represents the status of the node activity. For example, a black (white) node means that the node is constantly activated
(inactivated) and a gray node means that the status is dependent on the activity of a given input. b The p53 network is modeled as a simplified Boolean
network, consisting of 16 nodes with multiple feedback loops through p53 (upper panel). We chose to analyze p53 network in response to perturbation of
five druggable network nodes/links (left, middle panel: AKT (A), BCL2 (B), Cyclin E (C), Wip1 (W), and p53-MDM2 (N)), with/without a DNA-damaging
reagent, Etoposide (E). The selected target nodes were further divided into two classes: one corresponds to altered gene in the network that is constantly
activated or inactivated and the other corresponds to wild-type gene (right, middle panel). To evaluate drug response variation, we defined the viable
cellular phenotypes based on attractor states (lower panel)
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molecule inhibitors are currently available for one link and four
nodes of the p53 network, including Nutlin-3 for p53-MDM2,
GSK2830371 for Wip1, MK-2206 for AKT, CDK2 inhibitors for
Cyclin E, and Navitoclax for BCL2 family proteins26–32. We thus
chose to analyze attractor landscape resulted from inhibitory
perturbation of these five targeted drugs, applied either alone or
in pairs, and with or without the DNA-damaging drug, etoposide.
To simulate network perturbation that mimic the mechanism of
drug action, we assigned “OFF” to node or link that is the
inhibitory target of the specific drug treatment in the attractor
landscape analysis. That is, four nodes (AKT (A), BCL2 (B),
Cyclin E (C), Wip1 (W)) and one link (p53-MDM2 (N)) in the
p53 network may be “OFF”, in the presence or absence of the
DNA-damaging drug, etoposide (E) (Fig. 1b, left, middle panel).
By analyzing changes of the attractor landscape with an inactive
node or link as a result of inhibitory perturbation, systemic
variation in responses to drug was investigated. In addition, based
on the status of each network component, the selected drug
targets were further divided into two classes: one corresponds to
altered gene in the network that is constantly activated or
inactivated, and the other corresponds to wild-type gene in the
network (Fig. 1b, right, middle panel). Targeted therapies in
general focus on inhibition of the altered gene, which is an
intuitive and common approach compared to that of wild-type
targets. However, results of our analysis, as elaborated below,
suggested that inhibition of wild-type gene also effectively alters
network dynamics to the desired phenotype.

We defined drug response phenotypes based on attractor states
from the distinct network dynamics so as to evaluate drug
response variation (Fig. 1b, left, lower panel). Due to complexity
of a biological system, it is impossible to describe all phenotypes
comprehensively in any given model. We thus aimed to acquire
the most appropriate level of detail in terms of phenotypes, based
on prior knowledge of the relevant pathways. In the case of drug
response, we consider three cellular phenotypes broadly classified
as: cell proliferation (P), cell cycle arrest (A), and cell death (D),
to be the most relevant. And we defined attractor states with
persistent activation of Cyclin E to be the cellular phenotype of
cell proliferation; attractor states that resulted in persistent
activation or oscillatory activation of p21 were defined as the
phenotype of cell cycle arrest; and attractor states that resulted in
persistent activation of caspase were defined as the phenotype of
cell death (Fig. 1b, right, lower panel, see Supplementary Fig. 1 in
details). Consequently, major cellular response phenotype is
determined by measuring and comparing the basin size of the
attractor states that correspond to each of the three cellular
phenotypes (P, A, and D), i.e., their relative ratio of occurrence, in
each cancer-specific network in response to the drug-induced
perturbation. We elaborated below the key computational
procedures to perform cancer cell stratification based on drug
response mediated by the p53 network. Details of the acquired
drug response profiles of the cancer-specific p53 networks can be
found in Supplementary Data 2.

Mapping genomic alterations to network modifications. The
first step of our computational approach is to construct cancer-
specific p53 networks, using genomic data from the CCLE data-
base for p53 network components from 83 human cancer cell
lines, which all have wild-type p53 and functional caspases, and
represent 14 different tissue origins. The workflow is summarized
in Supplementary Fig. 2. Briefly, we first annotated the thousands
of genomic changes associated with p53 network and then
curated a list of candidate genomic alterations that have direct
functional effect on the network dynamics. We integrated copy
number alterations (CNA) and somatic mutations from whole-

exome sequencing data obtained from the cBioPortal for Cancer
Genomics33,34. To filter out genomic alterations that were unli-
kely functional, only missense mutations that have a high or
medium functional impact score were selected, as well as trun-
cation mutations35. Also, we picked out genes with CNA that
have corresponding changes in messenger RNA (mRNA)
expression levels. In total, we selected 191 candidate functional
genomic alterations for the network analysis. These functional
alterations include mutations (42 truncation mutations and 18
missense mutations) and CNA (50 HOMDEL (homozygous
deletion), 11 LOSS, 28 GAIN, and 42 AMP (amplification). We
think this set of functional genomic alterations provides a concise
description of the genotype of the cancel cell lines with respect to
p53 network function (Fig. 2a; Supplementary Data 1).

We next determined the functional outcome of each genomic
alteration, i.e., whether it is gain of function or loss of function, or
null. The alterations were analyzed in a binary fashion, such that
an altered gene (protein) was either constantly activated (A) or
constantly inactivated (I), depending on its alteration type in a
given cancer cell line (Supplementary Fig. 3). For example, a
particular gene with CNA, such as “AMP” and “HOMDEL”, are
denoted as “CNA_A” and “CNA_I”, respectively. As mutations
can contribute to cancer progression by activating or inactivating
protein function, missense mutation is denoted as “MUT_A” or
“MUT_I”, based on its functional type, e.g., oncogene or tumor
suppressor, as curated by OncoKB34; and nonsense mutation is
denoted as “MUT_I”. These genomic alterations are known to be
not exclusive to one tumor type, nor are they, with few
exceptions, present in 100% of the samples in a particular tumor
type (Fig. 2b).

With all altered genes functionally annotated, we then
projected the selected functional genomic alterations onto the
p53 network model. The selected functional alterations were
considered as endogenous modifications (or perturbation) of the
network. The node status in the p53 network was denoted as
either constantly activated (A), constantly inactivated (I), or
input-dependent (N), based on the functional annotation results
(Fig. 2c). Based on the projection results, we were able to group
cancer cell lines with the same node activity profile to one single
topology of p53 network. In total, we identified 45 differentially
wired p53 networks (DWNs) from the 83 human cancer cell lines,
which involved 1–5 network alterations (Fig. 2d). Our analysis
also immediately revealed a lack of correlation between genotypes
and tissue origins of the cancers, i.e.: (1) cancer cell lines
originated from the same tissue origin vary substantially in node
modifications, and (2) some similar node modification patterns
are observed in cancer cell lines from different tissue origins. In
other words, the differentially wired p53 networks demonstrated
intra-cancer type heterogeneity and cross-cancer type similarity
(Fig. 2c).

Identifying drug response phenotype by network perturbation.
We next clustered the 45 differentially wired networks (DWNs)
based on network similarity calculated by specific combinations
(signatures) of the network components, each taking on one of
the three possible statuses: A, I, or N (Fig. 3a). As a result, the 45
DWNs were clustered into three major subgroups, which have
functionally unique network perturbation. DWNs belonging to
subgroup 1 (denoted in green) all have constantly inactivated
p14ARF. Members of subgroup 3 (yellow) all have constantly
activated AKT. And we grouped the rest of the DWNs, which
share no common similarity, into subgroup 2 (pink) (Fig. 3a).

To assess whether DWNs belonging to the same subgroup have
similar drug response profiles, we conducted perturbation
simulations for the 45 distinct network subtypes, by assigning
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“OFF” to node or link that is the inhibitory target of specific drug
treatment. From the perturbation simulations, systemic variation
in drug response can be investigated by analyzing changes of the
attractor landscape with an inactive node or link as a result of
inhibitory perturbation. Based on the attractor landscape analysis,
we were able to identify specific drug response phenotypes of the
45 DWNs under both single and combinatorial inhibitory
perturbation. The unique strength of our network dynamics-
based approach is that our results allowed us to identify major
cellular phenotype for drug response and the source of variability
in drug response between distinct cancer cells at the functional
network level, beyond individual gene/protein.

If a drug-induced perturbation is able to change the major
cellular response phenotype, we define the drug-targeted node as
“critical target” for the particular network subtype (Fig. 3b).
Furthermore, if an inhibitory perturbation results in different
change of major cellular response phenotype in cancer cell vs.
normal cell (i.e., p53 network with no genomic alteration), we
considered the particular genomic alterations present in the
cancer cell as the determinant of drug response for the network
subtype. We were able to identify a minimal subset of such
genomic alterations for a given inhibitory treatment, which we
termed “critical determinant”. Intuitively, if a drug-induced
perturbation results in the same major cellular response
phenotype in cancer and normal cell, there is no critical
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Fig. 2 Mapping cancer-associated genomic alterations to the p53 network. a Genomic alterations considered in our analysis include copy number
alterations and somatic mutations. To select the functional genomic alterations, we first reduced thousands of genomic alterations to a few hundred
candidate functional events (heatmaps to the left). Copy number alterations (HOMDEL(homozygous deletion): white green; LOSS: light green; DIPLOID:
bright green; GAIN: green; AMP(amplification): dark green, various shade of greens), and somatic mutations (truncation: light purple; missense: dark
purple) define the genetic landscapes of the 83 human cancer cell lines from 14 cancer types (arranged from left to right with groups of columns labeled by
cancer type). The selected alterations tend to involve well-known oncogenes and tumor suppressors (histograms) and the pie charts show the proportion
selected. b Selected functional alterations that are either gain of function or loss of function. The selected alterations were associated with cancer cell lines
in a binary fashion, such that a gene (protein) with the alteration was either constantly activated (A) or constantly inactivated (I), depending on its
alteration type in a given cancer cell line (MUT_I: light purple; MUT_A: dark purple; CNA_I: light green; CNA_A: dark green). c Projection of the selected
functional genomic alterations onto the nominal p53 network. Node status in the p53 network is determined in a ternary fashion, such that node activity is
either constantly activated (A), constantly inactivated (I), or input-dependent (N) (A: black; N: gray; I: white). d The 45 distinct differentially wired p53
networks (DWNs) constructed based on the genomic data. Cancer cell lines that have the same node activity profile were matched to an identical single
network
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determinant in the cancer cell for this drug. The whole response
profiles from simulation of all possible perturbations are
necessary for identifying the “critical determinant” of the various
DWNs. We provided details of these profiles in Supplementary
Data 3. Overall, this systemic analysis allowed us to categorize
and understand the cancer-specific networks in terms of drug
response based on whether the network has critical target and/or
critical determinant. The critical determinants are particularly
interesting, as they provide new angle to understand drug
resistance mechanism and design combinatorial therapeutic
strategy. Examples of drug response profiles for identifying
critical target and critical determinant were provided in
Supplementary Figs. 4 and 5.

The three criteria as discussed above, including the major drug
response phenotype (P/A/D), the presence or absence of critical
target, and the presence or absence of the set of critical genomic
determinant, enabled us to classify the heterogeneous drug
responses of the 45 p53 network subtypes from the 83 human
cancer cell lines into eight distinct response groups (Fig. 3c, d).
Interestingly, we found that clustering based on only network
topology (Fig. 3a) is not sufficient to predict drug responses; and

drug responses can be distinct, even if networks have similar
properties (Supplementary Fig. 6). This illustrates the importance
of analyzing differential network dynamics to predict drug
response. Our network dynamics-based method of stratification
is thus more informative than the previous methods that only
considered the static topology. Our results revealed not only the
drug response phenotypes across different drug treatments and
cancer cell types, but also the critical genomic determinants
relevant to drug resistance. Based on this result, we were able to
identify a set of critical determinant of each DWN for specific
drug perturbation. This set of genomic alterations can be
potentially employed as biomarkers to predict drug response
and also be exploited as drug combination targets to sensitize
treatment response of specific cancer subtypes. We provided the
list of critical determinant that may be used as biomarkers in
Supplementary Data 3.

Predicting therapeutic response based on network dynamics.
To examine variation between cancers and drug treatments more
directly, we next quantified results from the network perturbation
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Fig. 3 Classification of cellular response to single and combinatorial perturbations. a Network similarity-based clustering of 45 differentially wired networks.
They were divided into three subgroups (subgroup 1: green, subgroup 2: pink, subgroup 3: yellow). b A major cellular response phenotype of cancer
network after drug treatment is compared with that before drug treatment to identify the presence or absence of “critical target”. Also, it is compared with
a major cellular phenotype of control (normal) network to identify the presence or absence of “critical determinant”. c, d Based on results of the attractor
landscape analysis, heterogeneous drug responses of the 45 p53 network subtypes from the 83 human cancer cell lines were classified into eight distinct
response groups by three criteria, including the major drug response phenotype (P/A/D), the presence or absence of critical target, and the presence or
absence of the set of critical genomic determinant
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analysis into specific scores, including response phenotype score
(R score), drug efficacy score (D score), and drug synergy score
(S score) (refer to Supplementary Data 4 for details). The
response phenotype score was calculated as sum of the products
of the basin ratio of each attractor state (i.e., proliferation (P), cell
cycle arrest (A), and cell death (D)) and their assigned weighting
(20 for P state, 21 for A state, and 22 for D state). Intuitively, if the
R score is close to 1, proliferation is the major phenotype, while R
score close to 4 indicates a major phenotype of cell death. Based
on the response phenotype score, we calculated the drug efficacy
score as follows,

Drug efficacy score ðD scoreÞ ¼ R scoreafter � R scorebefore
R scoremax � R scorebefore

where R scoreafter and R scorebefore are the response scores with
and without drug treatment, respectively, and R scoremax is 4,
which is the maximal anticancer effect (i.e., all cell death) that a
drug can induce (Fig. 4a).

The derived drug efficacy scores of the 45 DWNs, i.e., the p53
network subtypes, showed that DWNs have distinct drug efficacy

score and major cellular phenotype under the same inhibitory
treatments. When drug efficacy score is larger than 0.5, the
corresponding inhibitory perturbations mainly trigger cell death,
with only a few exceptions (Fig. 4b, upper panel). We thus
selected network perturbations that showed a high drug efficacy
score (>0.5) and mainly induced cell death as effective drug
targets. These effective drug targets include both altered genes
and wild-type genes in the network (Fig. 4b, lower panel). The
altered gene targets of each network acquired from our analysis
are largely intuitive, as these are mostly oncogenes and thus
known targets of anticancer therapy. However, the wild-type gene
targets revealed by our analysis are highly novel and provide new
candidate targets for cancer-specific treatment development.

Moreover, our results predicted not only effective single target
but also combined targets across the 45 DWNs. Inhibition of the
combined targets showed a high drug efficacy score (>0.5) and
mainly induced cell death. Interestingly, most network perturba-
tions involving AKT inhibition are effective regardless of the
network subtypes, indicating AKT is an attractive therapeutic
target to overcome cell-type specific drug resistance. Nonetheless,
targets, such as AKT and Cyclin E, may be difficult to inhibit
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Fig. 4 Quantitative scores of differential cellular response to perturbations. a An example of the predicted drug efficacy score. b (upper panel) Distribution
of the predicted drug efficacy (D score). Each box plot shows the distribution of drug efficacy scores of 45 distinct networks. The bold lines and the boxes
represent the median and the interquartile range (25th and 75th percentiles) and the whiskers extended to 1.5 times the interquartile range. If D score>
0.5, we consider the corresponding drug is effective. Dot color denotes major cellular phenotype of each differentially wired network (DWN) in response to
perturbation (red: P, green: A, blue: D). (lower panel) Distribution of the effective drug targets (i.e., high drug efficacy, when death is the major cellular
phenotype). Effective drug targets are divided into all altered gene target, combination of altered gene target, and wild-type gene target and all wild-type
gene target. c An example of the predicted drug synergy score. Y-axis is the ratio of corresponding DWNs to total DWNs for the effective inhibitory
treatment. d (upper panel) Distribution of the predicted drug synergy score (S score). S scores are converted to z-scores to facilitate comparison and
definition of the synergistic (upper line)/antagonistic (bottom line) thresholds. Box plots show the median (the bold lines), the interquartile range (the
boxes), and the lowest and highest scores within 1.5 times the interquartile range (the whiskers). Dot color denotes major cellular phenotype after
perturbation (red: P, green: A, blue: D). (lower panel) Distribution of the selected synergistic/antagonistic drug combinations, consisting of altered gene
target and wild-type gene target. Y-axis is the ratio of corresponding DWNs to total DWNs for the effective inhibitory treatment. e Selected synergistic or
antagonistic drug pairs that comprise wild-type gene targets based on the drug synergy score. f Prediction of effective network-specific drug target(s) that
comprise wild-type gene targets
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completely due to their multiple functional sites and/or
redundancy of the kinase signaling pathways36. Recent study
has indeed shown that strong cell death is only induced by triple
inhibition of AKT, but not by single inhibition37–39. In such case,
one needs to look for other targets that are effective and easy to
inhibit as alternative therapeutic strategy. And our results
revealed some possible alternative targets, whose simultaneous
inhibition could be highly effective. For instance, combinations,
such as inhibition of p53-MDM2 and Wip1 with or without
DNA-damaging drug, inhibition of p53-MDM2 and BCL2 with
DNA-damaging drug (N_W, E_N_W, E_B_N), all showed effect
in triggering cell death in more than 50% of the DWNs. Hence,
systemic computational analysis of cancer cell response, such as
our network dynamics-based analysis, can be particularly
informative in terms of identifying non-intuitive, wild-type gene
targets for developing new treatment strategy.

To further zero in on drug combinations that are synergistic,
we calculated a drug synergy score (S score), which is defined as
follows40,

Drug synergy score S scoreð Þ ¼ DAB � DA � DB þ DA � DB

where DAB, DA, and DB are the extent of cell death induced by
combinatorial treatment and individual treatment, respectively
(Fig. 4c). Intuitively, if two inhibitory treatments act indepen-
dently and do not induce synergistic effect when combined, S
equals to 0. And S score> 0 indicates synergy and S score < 0
indicates antagonism (Fig. 4d). We calculated S scores for a total
of 1000 drug pairs and plotted the distribution, which follows a
normal distribution (Supplementary Fig. 7). We subsequently
converted the distribution to z-scores to facilitate comparison and
selection of synergistic/antagonistic thresholds. Based on the
distribution, we defined drug pairs that have z-scores of <−1.645
or >1.645 (corresponding to the 5th and 95th percentile of a
normal distribution, respectively) as having significant synergistic
or antagonistic effects (Fig. 4d, upper panel). Results of this
synergism analysis showed that although drug combinations
involving AKT triggered strong cell death (i.e., major cellular
response phenotype is D), the combined effects are mostly
additive (S score is close to zero). On the other hand, we found
that combination of inhibition of p53-MDM2 and Wip1 (i.e.,
N_W, E_N_W) exhibited the strongest synergistic effect in
activating cell death, regardless of network subtypes (Fig. 4d,
lower panel). Figure 4e shows synergistic or antagonistic drug
pairs that consist of wild-type gene targets based on the drug
synergy scores. This result again illustrates that the network
dynamics-based approach can not only identify network-specific
effective drug pairs but also reveal wild-type gene targets for novel
drug combinations.

In Fig. 4f, we summarized the effective drug(s) that targets
wild-type gene and drug combination(s) for the cancer-associated
p53 network subtypes. The effective wild-type gene targets share
three common properties in changing the network dynamics: (1)
they induced mainly cell death, (2) the resulting drug efficacy
score is high (D score> 0.5), and (3) strong synergistic effects
arise when they are combined. The effective wild-type gene
targets clearly depend on the network subtypes. Overall, network
dynamics-based analysis of the p53 network demonstrated the
effectiveness of our approach to computationally investigate
therapeutic strategy across a large number of cancer types that
have been genotyped. And such systematic stratification of
cancers, based on network dynamics induced by targeting
therapeutically actionable network alterations, provides a poten-
tially useful method to quantitatively predict drug combination
that can reduce cell-type-specific response variation as well as
design more effective combinatorial treatment strategy.

Experimental validation of network dynamics-based analysis.
To validate our method in predicting anticancer drug response in
cancer cell lines with distinct genetic backgrounds, we compared
the predicted drug response profiles with experimental results of
eight distinct cancer cell lines in the panel, including A549 (derived
from lung cancer), MCF7 and CAL51 (derived from breast cancer),
U2OS and SJSA1 (derived from bone cancer), A2780 (derived from
ovarian cancer), A375 (derived from skin cancer), and 769P (derive
from kidney cancer). Based on their specific genomic alterations,
these cancer cell lines (A549, MCF7, CAL51, U2OS, A375, A2780,
and 769P) are matched to the p53 network subtypes of
DWN_3_11, DWN_3_8, DWN_2_4, DWN_3_12, DWN_3_5,
DWN_2_7, DWN_3_5, DWN_2_3, respectively. Moreover, in
terms of network similarity, A549, MCF7, U2OS, and A375 belong
to subgroup 1 (denoted in green in Fig. 3a); 769P and SJSA1 belong
to subgroup 2 (denoted in pink); and A2780 and CAL51 belong to
subgroup 3 (denoted in yellow) (Fig. 5a). However, as discussed
above, clustering based on network topology alone does not
implicate DWNs in the same subgroup have the same drug
response profiles. In Fig. 5b, we investigated the critical determi-
nant for each drug treatment in the eight distinct cancer cell lines.
Clearly, network subtypes in the same topology subgroup did not
show the same response phenotype. For instance, inhibition of
BCL2 (B) with DNA-damaging drug (E) resulted in a major
response phenotype of proliferation in A549 and MCF7, but a
major response phenotype of cell death in A375 and U2OS. Fur-
thermore, although A549 and MCF7 share two alterations (con-
stantly inactivated p14ARF and constantly activated AKT), their
critical determinant was different: Cyclin E(A) for A549, while
p14ARF(I) and AKT(A) or Wip1(A) and AKT(A) for MCF7. This
result again demonstrates that the variable cancer cell-specific drug
responses are determined by differential p53 network dynamics,
not simply their network topology.

We chose to particularly look at effect of three inhibitory
treatments experimentally, i.e., BCL2 (B), Wip1 (W), and p53-
MDM2 (N), and their combinations, as BCL2 is the common
wild-type gene target in the eight distinct cancer cell lines, and
Wip1 and p53-MDM2 are frequently altered gene targets. (Fig. 5a;
Supplementary Data 4). For validation, we focused on the cell
death phenotype, as cell death is the key therapeutic response
where the distinct cancer types vary the most. Detailed results
from simulation and experimental measurements were provided
in Supplementary Figs 8–10 and Supplementary Data 5. To
evaluate the agreement between model predictions and experi-
mental results, we calculated the Pearson correlation coefficient as
well as the root mean square error (RMSE) for drug responses of
the eight cell lines (Fig. 5c). Intuitively, a higher Pearson
correlation coefficient with the experimental results and a lower
RMSE indicate better performance of the network dynamics-
based approach in predicting drug response of a given cell line-
specific network. The overall Pearson correlation across all the
cell lines combined is high (correlation coefficient: 0.75, p<
0.001), indicating that the drug responses are well predicted by
our network dynamics analysis. In addition, Fig. 5d plotted values
of 1/RMSE with respect to the Pearson correlation coefficients for
each cell line, illustrating that our method performs quite well in
both statistical measures, in particular for cell lines at the upper
right-hand corner of the graph.

However, we do note significant discrepancy between some
modeling and experimental results. For example, a relatively high
RMSE of CAL51 was observed as compared to the other seven
cancer cell lines, even though the Pearson correlation of CAL51
was high. For CAL51, the experimentally observed cell death
responses were larger than the predicted responses under all drug
treatments, including the DNA-damaging drug alone (E). We thus
suspect the discrepancy may arise from deficiency of the CAL51
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network that we curated due to: (1) incomplete information from
the genomic data that limits the accuracy of network mapping and
subsequent network simulation analysis; and/or (2) the use of a
simplified p53 network in our study, where genomic alterations of
additional p53 network components that are not included in our
network model may play an important role in regulating drug
responses. For instance, our CAL51 network model does not
include some critical genomic alterations observed in CAL51, such
as mutations of MAP2K4 and CHEK1. MAP2K4 is known to
activate JUN kinase and p38 signaling pathways, and is involved in
p53-mediated response, such as cell cycle arrest and cell death41.
CHEK1 is also known to coordinate cell cycle checkpoint response
and DNA damage response. Mutation of CHEK1 could lead to the
loss of CHK1, resulting in increased sensitivity to DNA-damaging
agents, such as etoposide42.

To further examine the predictive power of our network
dynamics analysis, we compared our cell line-specific predictions
with random predictions acquired by shuffling alterations of each
cell line such that the number of alterations is preserved, while
their locations are randomized (Fig. 5e, f). For all random
predictions, we observed relatively weak correlations between the
experimentally observed and randomly predicted responses,
compared to that between the experimental data and predicted
responses by our approach (p< 0.001, Wilcoxon rank sum test).
In addition, each RMSE of our cell line-specific predictions
is significantly smaller than that of the random prediction
(p< 0.001, Wilcoxon rank sum test). Overall, these results
demonstrate that our network dynamics analysis performs substan-
tially better in predicting drug response than random prediction.

Discussion
Previous computational approaches to predict drug response
phenotype from cancer genotype in general involve using statis-
tical models that project genomic alteration profiles onto a

molecular interaction network, without explicitly considering
activation/inhibition (Fig. 6a). Despite progress made by these
statistical approaches, our knowledge and mechanistic under-
standing of cancer heterogeneity and its impact on variable drug
responses remain limited. In this study, we proposed a new
method to analyze the existing cancer genomics data by con-
sidering dynamic response of a specific molecular network crucial
for mediating drug response. We used the p53 network as an
example to illustrate the effectiveness of our method in eluci-
dating how genomic alterations in cancer cells rewire the topol-
ogy of a signaling network and thereby change its dynamics upon
stimulation, such as pharmacological perturbations. This network
dynamics-based approach allowed us to not only stratify cancer
cells in terms of functional dynamics but also predict cell-specific
drug responses. As our study demonstrated that network
dynamics, rather than network topology, determine distinct drug
responses, stratification based on network dynamics is likely
capable of better predicting clinical outcome than previous
methods.

A key contribution of our study is that we developed a method
to functionalize genomic data onto dynamic response of a sig-
naling network based on attractor landscape analysis and were
able to categorize network response profile to distinct perturba-
tions for a large panel of cancer cell lines. Our analysis results
clearly show that individual components of the network or net-
work topology alone are not sufficient to predict drug responses.
Members of the same network subgroups clustered by common
network characteristics often exhibit different responses to the
same drug perturbation. This suggests that collective alterations
in the signaling network have to be considered for evaluating
efficacy of the drugs and designing biomarkers to predict drug
response. One interesting finding from our analysis is the sets of
“critical determinant” for different cancer network subtypes that
can effectively determine drug responses and thus may be
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employed as collective biomarkers and/or targets for combina-
torial treatment. For instance, for drugs that mostly induce pro-
liferation or cell cycle arrest when used alone, one may combine
them with inhibitors of their critical determinants, to activate
strong cell death.

In this study we used a simplified p53 network model for the
attractor landscape analysis, which clearly has its limitation. The
network analysis cannot be applied to cancer cells with mutant
p53; and the simplified model may miss p53 network compo-
nents, whose genomic alterations could play an important role in
regulating p53 pathway-mediated drug response. Moreover, as
our study is based on Boolean modeling that discretized genomic
alterations as either on or off, our method cannot distinguish
between weakly and strongly activating mutations or consider
varying efficiencies of the inhibitors. Nonetheless, we think our
approach provides a foundational framework that can be further
developed to address the above limitations. For instance, we can
easily expand the simplified p53 network to a larger, more
comprehensive functional network that incorporates additional
components crucial to oncogenesis, metastasis, and/or tumor
response. We could also expand the Boolean network model to
multi-valued logical model or use fuzzy logic instead of Boolean
logic to describe varying degrees of activation/inhibition and drug
efficacy43,44. As for cancer cells with mutant p53, the drug effect
is likely mediated by alternative signaling pathway so the network
dynamics-based analysis should be developed and performed
beyond the p53 network. As more quantitative genomic data
become available for diseases and disease-associated cellular
processes, we think our approach, which is capable to capture
more precise phenotype from genotype, is highly adaptable for
different systems and diseases to investigate effects of genomic
alterations on response to disease treatment and identify appro-
priate, patient-specific drug treatment (Fig. 6b).

Methods
Curating the functional genomic data and mapping to p53 network. DNA copy
number, somatic mutation, and mRNA expression data were analyzed for all
cancer cell lines from CCLE. We selected 83 human cancer cell lines from 14
distinct tissue origins and these cell lines all have wild-type p53 and caspases. We
consider all available genomic data types in our analysis, including genome-wide
DNA copy number information, and mutation data for genes associated with the
p53 pathway. Mutation frequencies were calculated as the ratio of mutation counts
to number of bases covered. To focus on mutations most likely to be functional,
mutations in introns, untranslated regions, flanking, and intergenic regions, as well
as silent and RNA mutations, were excluded. The CCLE database provides the
number of reads per base in the sequenced regions, so the number of bases covered
was given by the number of positions with one or more reads. To filter out events
that were likely non-functional, only genes with CNA that have concordant

changes in mRNA expression levels, when compared to wild-type cases, were
selected. In total, we curated 191 candidate functional alterations. These alterations
were considered in a binary fashion, such that an alteration either occurred or did
not occur in a given cancer cell line. The resulting set of functional genomic
alterations thus provides a concise genomic description of the cancel cell lines.

Differentially wired networks and defining cellular phenotypes. Functional
genomic alterations were projected onto the nominal p53 network. Node status of
the p53 network was determined based on the genomic data, and assigned in a
ternary fashion, such that node activity is either constantly activated (A), con-
stantly inactivated (I), or input-dependent (N). Through this mapping process, 45
differentially wired p53 networks (DWNs) were constructed from the 83 human
cancer cell lines. They each include one perturbation to four perturbations. The
DWNs were denoted by the number of perturbations that they have. For example,
“DWN_3_1” represents one of the differentially wired networks that have three
perturbations. For cancer cell lines that have the same node activity profiles, they
are mapped to an identical single network.

For the 45 distinct network subtypes, we analyzed their state transition
dynamics for various anticancer drug treatments. First, we defined the cellular
states known as “attractors” in the attractor landscape. Considering anticancer drug
effects are mainly in cell growth and cell death, we chose to define the “attractor”
cellular states as P, A, and D. In the view of attractor landscape, each attractor
indicates one of the three defined cellular states.

Boolean network modeling of the p53 network. A p53 network model was taken
from an updated version of that in our previous study21. It is a simplified Boolean
network model consisting of 16 nodes with multiple feedback loops through p53
for analyzing the p53 network dynamics and predicting cellular response to DNA
damage. With the simplified p53 regulatory network, we modeled the network
dynamics using a deterministic Boolean network with a set of state transition logics
defined on the basis of biological evidence. In the Boolean network model, each
node is associated with a logic table that determines the output node for a given
input. Network dynamics were modeled by updating the Boolean functions, trig-
gering system transits from the initial state to the final state, in which a network
state is a collective binary representation of all variables. The state of each node can
be either ON (1) or OFF (0) at each time step. To compute the network dynamics,
we transformed the state transition logic into a weighed sum logic with the weight
and of each link and the basal level of each node. There are multiple sets of
interaction weights and basal levels for the weighted sum logic of each node that
satisfy the same transition logic. Among all the possible parameter sets for weights
and basal levels, we chose the minimal integer values for our study. For pertur-
bation simulation, targeted inhibition of specific node or link is reflected in the
network model by assigning the corresponding node or link to be constantly “0”.
More details on the state transition logic together with the interaction weights and
basal levels are provided in Supplementary Note 1 and Supplementary Data 6.

Response phenotype score for cellular response to perturbations. Using cel-
lular states as defined above, distinct attractors in the attractor landscape under
specific perturbation were assigned to a cellular state. The overall cellular response
to specific perturbation is measured as the sum of products that multiply the basin
ratio of attractors belonging to same cellular state and the distinct weight corre-
sponding to the specific cellular states (WP:20, WA:21, and WD:22). Therefore,
response phenotype score was defined as follows:

Response phenotype score R scoreð Þ ¼ P �WPþA �WAþD �WD;

DWN_3
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(DWNs) from individual patient data
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Network dynamics-based
patient-specific therapeutic strategies 

Cell deathCell proliferation Cell cycle arrest

a b

Molecule-
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Network dynamics-
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Attractor landscapes

Fig. 6 Network dynamics-based therapy. a Various approaches to stratify cancer patients based on their genomic profiles. b The workflow of employing
network dynamics-based analysis to design patient-specific therapeutic strategies
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where P is the basin ratio of cell proliferation attractor, A is the basin ratio of cell
cycle arrest, and D is the basin ratio of cell death attractor. The response phenotype
score ranges from 1 to 4 and is used to estimate the drug sensitivity.

Drug efficacy score for cellular response to perturbations. Drug efficacy score
is calculated as the difference in cellular phenotype score before and after drug
treatment, normalized by the difference between maximum cellular phenotype
score and the phenotype score before drug treatment:

Drug efficacy score ðD scoreÞ ¼ R scoreafter � R scorebefore
R scoremax � R scorebefore

:

Drug synergy score for cellular response to perturbations
To evaluate synergistic and antagonist effects of combined perturbations, we

employed a synergy score as follows40:

Drug synergy score S scoreð Þ ¼ observed combined effect� expected additive effect;

observed combined effect ¼ DAB;

expected additive effect ¼ 1� 1� DAð Þ � 1� DBð Þ;
S score > 0 : synergistic; S score < 0 : antagonistic; and S score ¼ 0 : additive

where DAB, DA, and DB denote the ratio of cell death induced by drug A plus B, and
the ratio of cell death induced by each drug, respectively. The observed
combination effect, expressed as a probability (0 ≤DAB ≤ 1), can be compared to
the expected additive effect for probabilistic independence, i.e., DA +DB −DA ·DB,
where 0 � DA � 1 and 0 ≤DB≤1. This multiplicative model and formula are
widely used in gene knockout studies of model organisms to score quantitative
genetic interactions between gene deletions45,46. A deviation of S from zero
provides evidence for a non-additive interaction between the two perturbations,
where S> 0 indicates synergy and S< 0 indicates antagonism.

Experimental measurement of drug response in eight cancer cell lines. All cell
lines were purchased from American Type Culture Collection (ATCC, USA) and
cultured under 37 °C and 5% CO2 in appropriate medium supplemented with 10%
fetal calf serum (FCS), 100 U/ml penicillin, and 100 g/ml streptomycin. MCF7,
A2780, SJSA1, and 769P were maintained in RPMI; A375 and CAL51 were
maintained in DMEM; U-2 OS was maintained in McCoy’s; and A549 was
maintained in F-12K. Etoposide was purchased from Sigma, Nutlin-3 from Tocris,
and Navitoclax from Selleck. For all drug treatment experiments, Etoposide was
used at 10 μM, Nutlin at 10 μM, and Navitoclax at 0.5 μM. Small interfering RNA
(siRNA) for knocking down Wip1 (UUG GCC UUG UGC CUA CUA A) was
custom synthesized by Dharmacon and used at 40 nM. Dharmacon On-Target plus
siControl (#D-001810-01) was used as non-targeting siRNA control. siRNA
transfections were performed using Hiperfect (Qiagen) according to manu-
facturers' instructions, and experiments were conducted 36 h after gene silencing.

To quantify the percentage of cell death induced by drug/RNAi treatment, we
treated cells with single or combined drug/RNAi and then imaged the cells by time-
lapse microscopy. For the imaging experiments, cells were plated in 24-well
imaging plate (Cellvis, USA) and cultured in phenol red-free CO2-independent
medium (Invitrogen) supplemented with 10% FCS, 100 U/ml penicillin, and 100 g/
ml streptomycin. Cell images were acquired with the Nikon TE2000-PFS inverted
microscope enclosed in a humidified chamber maintained at 37 °C. Cells were
imaged every 20 min for 48 h using a motorized stage and a ×10 objective. Images
were viewed and analyzed using the MetaMorph software (Molecular Dynamics).
Based on phase-contrast images of the cells, we scored cell death by cell blebbing
and lysis. Percentage of cell death was calculated by normalizing the number of
dead cells to the total cell number at time 0. Data were averaged from two
independent imaging experiments and the total number of cells analyzed ranges
from 66 to 256, varied between conditions and cell lines.

Statistical analysis of model predictions vs. experimental data. We quantified
the difference between model predictions and experimental measurements, using
the Pearson correlation coefficient and the RMSE for drug responses of each cell
line. The RMSE between the observed and predicted drug responses for 13 drug
treatment conditions in a given cell line is defined as follows:

RMSE C;O; Pð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

X

n

i¼1

Oi � Pið Þ2
s

where n is the number of total drug treatment conditions, Oi is the observed cell
death ratio of a given cell line C for a treatment i, and Pi is the predicted cell death
ratio of a given cell line C for a treatment i.

We further compared our cell line-specific predictions with random predictions
acquired by shuffling alterations of each cell line such that the number of
alterations is preserved, while their locations are randomized. Briefly, 480 and 4480
random networks, which are all possible networks that have two node or three
node alterations, were generated by shuffling the alterations of A375, 769P, CAL51
which have two node alterations and A549, MCF7, U2OS, SJSA1, and A2780,
which have three node alterations, respectively. The RMSE between the
experimentally observed and randomly predicted drug responses for the 13 drug

treatment conditions in a given cell line is defined as follows:

RMSE C;O;Rð Þ ¼ 1
m

X

m

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

X

n

i¼1

Oi � Ri;j
� �2

s

where n is the number of total drug treatment conditions, m is the number
of random networks, Oi is the observed cell death ratio of a given cell line C
for a treatment i, Ri,j is the predicted cell death ratio of random network j for a
treatment i.

Code availability. All codes are available from the authors upon request.

Data availability. All relevant data are available from the authors upon request.
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