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The p63 gene encodes at least 10 isoforms, which can be classified into TA

and ΔN isotypes (TAp63 and ΔNp63 proteins) according to their differ-

ences at the N termini. TAp63c is an important transcription factor. We

previously reported that peptidyl-prolyl isomerase (PPI) Pin1 directly binds

to TAp63c protein and identified that serine 12 (S12) in the transactivation

domain (TAD) of TAp63c is required for regulation of its transcriptional

activity. In the present study, we report that Pin1 stimulates transcriptional

and pro-apoptotic activities of TAp63c; this Pin1-mediated stimulation

may depend on phosphorylation of S12 mediated by JNK1 and results in

striking activation of TAp63c. JNK1 represses transactivity of TAp63c in

cells without abundant Pin1 proteins and enhances it in the presence of

sufficient levels of Pin1. Collectively, our data suggest a novel mechanism

for regulation of TAp63c transactivity: TAp63c with unphosphorylated S12
is moderately active, phosphorylation at this residue (pS12) makes it

hypoactive, and Pin1 binds to the pS12-P13 motif and makes TAp63c
hyperactive. Our findings will aid in the elucidation of the mechanism

underlying modulation of TAp63c.

The p63 gene belongs to the p53 family and encodes

at least 10 isoforms, which can be classified into TA

and ΔN isotypes (TAp63 and ΔNp63 proteins)

according to their differences at the N termini.

TAp63s contain the full transactivation domain

(TAD) at the N termini, while ΔNp63 isotypes have

an incomplete TAD with a weaker transactivity. After

transcription, both TA and ΔN isotypes can be

spliced into mRNAs with different 3’ termini,

generating at least 5 different C termini, a, b, c, d,
and e. Among them, the c types miss the sterile alpha

motif (SAM) and the transinhibition domain (TID) at

their C termini compared with the a isoform of p63

proteins [1–3]. TAp63 proteins express at relatively

lower levels in somatic cells. However, like p53, these

TA isoforms of p63 play key roles in cell cycle arrest

and apoptotic cell death via transactivating pro-apop-

totic factors such as p21, Puma, Bax, and Noxa [4–6].
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A, alanine; CL-PARP1, cleaved PARP1; CoIP, co-immunoprecipitation; IB, immunoblotting; IP, immunoprecipitation; MTT, 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide; P, proline; PPI, peptidyl-prolyl isomerase; pS, phosphorylated serine; S, serine; SAM,

sterile alpha motif; T, threonine; TAD, transactivation domain; TID, transinhibition domain; Y, tyrosine.
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Thus, TAp63s function as quality control factors in

the female germline upon genotoxic stress [7–10].
Studies with mouse models demonstrate that specific

knockout of TAp63 can cause premature aging

[11,12] and metabolic syndrome [13]. These TAp63-

null mice are also highly tumor prone and develop

metastatic diseases [11,14], reaffirming the tumor sup-

pressor functions of TAp63 proteins. Data from

Ernesto Bruno group suggest that TAp63 suppresses

recurrence of nasal polyps [15]. According to reports

from group of Esther H. Chang, miR-130b and

TAp63 form a feed-forward loop, and this miR-130b/

TAp63 axis is a druggable pathway that has the

potential to uncover broad-spectrum therapeutic

options for the majority of p53-altered cancers [16]. It

has been reported that TAp63 may also function as a

repressor of transcription [17]. Recently, Suenaga Y

and Nakagawara A et al found that TAp63 restrains

neuroblastoma growth via repressing MYCN/NCYM

bidirectional transcription [18]. As a short isoform of

TAp63, TAp63c is assumed to have a high activity to

mediate transcription and apoptosis, since it lacks

TID and SAM at the C terminus [1]. Some recent

reports demonstrate that TAp63c promotes myogenic

differentiation, osteoblastic differentiation, and carti-

lage development [19–21].
Due to their key roles in cell cycle control, both

expression levels and activities of p63 proteins are

tightly regulated in cells [2]. According to data from

our group and other laboratories, p63 proteins

undergo various post-translational modifications

including phosphorylation, ubiquitination, and

isomerization [2,22–28]. Particularly, we previously

reported that peptidyl-prolyl isomerase (PPI) Pin1

physically interacts with several protein isoforms of

p63, including TAp63a, ΔNp63a, and TAp63c; Pin1

specifically binds to the T-P-P-P-P-Y motif in the

SAM of p63a proteins and inhibits the proteasomal

degradation of them [22]. However, c isoforms lack

the T-P-P-P-P-Y motif and SAM. Therefore, the

binding sites and effects of Pin1 on TAp63c remain

obscure. In another study, we found that c-Jun N-ter-

minal kinase 1 (JNK1) may phosphorylate TAp63c at

serine 12 and impair its transactivity and pro-apop-

totic activity [27]. In the present work, we find that

Pin1 stimulates transcriptional and pro-apoptotic

activities of TAp63c; S12A mutation in TAp63c
impairs its physical interaction with Pin1 and deprives

Pin1-mediated stimulation of TAp63c; we further find

that Pin1 strikingly reverses JNK1-repressed transac-

tivity of TAp63c and makes it hyperactive. Our find-

ings are helpful to elucidate how transactivity of

TAp63c is modulated.

Materials and methods

Cell culture, transfection, and plasmids

Saos-2, Hela, and H1299 cells were cultured in Modified

McCoy’s 5a Medium (BI) supplemented with 10% FBS (BI)

and 1% penicillin G/streptomycin (Hyclone, Logan, UT,

USA) at 37 °C in a humidified 5% CO2 incubator. Transient

transfection was performed with EntransterTM-H4000

(Engreen Biosystem, Beijing, China), and total amounts of

plasmid DNA were balanced with corresponding vectors for

each transfection. Constructs of pcDNA3.1-HA-TAp63c,
pcDNA3.1-HA-TAp63c(S12A), pcDNA3.1-Pin1, pcDNA3.1-

Pin1(W34A), and pcDNA3.1-JNK1 were previously described

[22,27,29]. JNK1 siRNA and scrambled control were pur-

chased from Santa Cruz Biotechnology (Dallas, TX, USA).

Cell viabilities were determined by 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyl-tetrazolium bromide (MTT; Promega, Madi-

son,WI, USA) as described in the instruction.

Immunoprecipitation and immunoblotting

analysis

Immunoprecipitation (IP) and immunoblotting (IB) analyses

were performed as previously described [22,27]. Antibodies used

were specific for Pin1 (rabbit polyclonal antibody; Cell Signaling

Technology, Beverly, MA, USA; 1 : 1000), JNK1 (rabbit

polyclonal antibody; Abcam, Cambridge, MA, USA; 1 : 1000),

HA (mouse monoclonal antibody; Millipore, Billerica, CA,

USA;1 : 500), p63 (rabbit polyclonal antibody; Zen-bio,

Chengdu, Sichuan, China; 1 : 1000), PARP1 (rabbit polyclonal

antibody; Zen-bio, Chengdu, Sichuan, China; 1 : 2000), and

GAPDH (rabbit polyclonal antibody; Zen-bio, Chengdu,

Sichuan, China; 1 : 1000). Blots were detected using anECL sys-

tem (GEAmershamPharmacia Biotech, Boston,MA,USA).

Luciferase reporter assay

Luciferase assays were performed as described previously

[22,27]. Saos-2 cells were transfected with a mixture of Bax-

Luc and pRL-TK-Renilla plus indicated plasmids or siR-

NAs. Total amount of DNAs or RNAs was balanced with

control vectors or scramble control RNAs. Cells were har-

vested at 48 h post-transfection and lysed in Passive Lysis

Buffer (Promega). Lysates were analyzed for firefly and

Renilla luciferase activities using the Dual Luciferase

Reagent Assay Kit (Promega). Luminescence was measured

in a luminometer. Relative luciferase activity was determined

by normalizing luciferase activity with Renilla.

Statistical analysis

All experiments were carried out in triplicate. Two-tailed

t-test was used for comparison between two groups. P < 0.05
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was considered statistically significant. All the error bars

indicate SD.

Results

Pin1 enhances TAp63c-induced transcription and

apoptosis

In a previous study, we performed a pull-down experi-

ment and found that TAp63c protein forms a complex

with PPI Pin1; mutation on tryptophan 34 to alanine

(W34A) in Pin1, which was reported to disrupt the bind-

ing of this isomerase to its substrates, significantly

impairs its physical interaction with TAp63c [22]. To

confirm this interaction in mammalian cells, we tran-

siently overexpressed HA-tagged TAp63c (HA-

TAp63c), along with wild-type Pin1 or its W34A

mutant, in human osteosarcoma cell Saos-2, and per-

formed a co-immunoprecipitation (CoIP) assay. The

results demonstrate that Pin1 can form a stable complex

with TAp63c, while W34A mutation in Pin1 signifi-

cantly impairs this interaction (Fig. 1A). Bax is a down-

stream gene of TAp63; luciferase reporter driven by Bax

promoter (Bax-Luc) can be used to measure the transac-

tivity of TAp63 proteins [22]. To further investigate

whether Pin1 modulates transactivity of TAp63c, we

performed a luciferase reporter assay. The results

demonstrate that the wild-type Pin1, but not its W34A

mutant (M), significantly enhances TAp63c-mediated

expression of Bax-Luc (Fig. 1B). On the other hand, we

used MBC1-4-Luc reporter as a nonresponsive promoter

control and found that neither TAp63c nor Pin1 can

activate its expression (data not shown) [30], indicating

the specific regulation of both proteins on Bax-Luc

expression. The IB analysis results reveal that neither

wild-type Pin1 nor its W34A M affects the expression

level of TAp63c; wild-type Pin1, but not the mutant, sig-

nificantly increases the level of cleaved PARP1 (CL-

PARP1), which is a molecular marker of cell apoptosis

and can be induced by TAp63c (Fig. 1B). These effects

of Pin1 and TAp63c are consistent with the results of

cell survival/proliferation assay: wild-type Pin1, but not

its W34A mutant, significantly aggravates cell prolifera-

tion/survival inhibition of TAp63c (Fig. 1C). Further,

we found that Pin1 stimulates TAp63c-mediated expres-

sion of Bax-Luc in a dose-dependent manner (Fig. 1D).

These results suggest that Pin1 stimulates transcriptional

and pro-apoptotic activities of TAp63c.

Serine 12 in the transactivation domain of

TAp63c is crucial to Pin1-mediated stimulation

In another previous report from our group, we found

that serine 12 (S12) is crucial to transactivity of

Fig. 1. Pin1 enhances TAp63c-induced transcription and apoptosis. (A) Saos-2 cells transfected with HA-TAp63c, plus Pin1 or its W34A

mutant, were lysed and subjected to IP with anti-HA. The cell lysates (inputs) or IP products were subjected to immunoblot (IB) analysis

with indicated primary antibodies. (B) Saos-2 cells were transfected with a mixture of Bax-Luc and TK-Renilla plus indicated plasmids. M,

W34A mutant Pin1. Firefly and Renilla luciferase activities were measured, while IB analyses were performed to detect indicated proteins.

The Bax-Luc activity was normalized to Renilla activity and presented as Bax-Luc expression level with SD (n = 3). Bax-Luc expression in

cells transfected with Bax-Luc/TK-Renilla mixture alone was set as 1. Two-tailed t-test was used for comparison between two groups;

**P < 0.01; NS, nonsignificant. (C) Saos-2 cells transfected with indicated plasmids were subjected to cell survival measurement with

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT). Cell viabilities were presented as optical density values at the wavelength

of 490 nm (OD490) with SD (n = 3). Two-tailed t-test was used for comparison between two groups; **P < 0.01; NS, nonsignificant. (D)

Saos-2 cells were transfected with a mixture of Bax-Luc and TK-Renilla plus HA-TAp63c and increasing amounts of Pin1 plasmid as

indicated. Bax-Luc expression levels were measured and presented as mentioned above, while IB analyses were performed to detect

indicated proteins. The error bars indicate SD (n = 3).
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TAp63c [27]. S12 is followed by a proline residue

(P13), composing a putative Pin1 modification site

[22]. It is well known that phosphorylation of the ser-

ine or threonine followed by proline is essential for

the binding of Pin1 [31]. As a PPI, Pin1 mediates iso-

merization of proline, which is prevented by phospho-

rylation of the adjacent serine or threonine residue

(pS-P or pT-P) [32]. This isomerization offers a

molecular switch for recruitment of protein binding

or post-translational modification and modulates

transactivity of multiple transcription factors [33–35].
To investigate whether this pS12-P13 site is involved in

Pin1-mediated stimulation of TAp63c (Fig. 1B,D), we

tested the effect of Pin1 on expression of Bax-Luc

mediated by S12A mutant TAp63c, which loses phos-

phorylation at this site. The results demonstrate that

though S12A mutation enhances transactivity of

TAp63c, the expression of Bax-Luc mediated by the

mutant cannot be stimulated by Pin1 (Fig. 2A). The

results of CoIP show that TAp63c readily binds to

Pin1 and this physical interaction can be significantly

impaired by S12A mutation (Fig. 2B). These results

reveal that serine 12 in the TAD of TAp63c is crucial

to its interaction with Pin1 and Pin1-mediated stimu-

lation.

Pin1 strikingly reverses JNK1-repressed

transcriptional and pro-apoptotic activities of

TAp63c and makes it hyperactive

In our previous report mentioned above, we found

that JNK1 can phosphorylate TAp63c at serine 12,

resulting in a repression of its transcriptional and pro-

apoptotic activities [27]. To further investigate the

effects of JNK1 and Pin1 on TAp63c, we transfected

JNK1 and (or) Pin1 along with TAp63c into Saos-2

cells. The results of luciferase reporter assay show that

TAp63c-mediated Bax-luc expression is repressed by

JNK1 but boosted by Pin1; unexpectedly, simultane-

ous overexpression of JNK1 can further enhance Pin1-

mediated activation of TAp63c (Fig. 3A). The IB

analysis reveals that overexpression of JNK1 or Pin1

has no significant effects on the protein level of

TAp63c; JNK1 significantly impairs the production of

CL-PARP1 induced by TAp63c; on the contrary, Pin1

obviously promotes TAp63c-induced CL-PARP1;

intriguingly, simultaneous overexpression of Pin1 and

JNK1 can strikingly exacerbate cleavage of PARP1

induced by TAp63c (Fig. 3A). In line with the PARP1

cleavage results, TAp63c-induced inhibition of cell sur-

vival/proliferation is rescued by JNK1 and intensified

by Pin1, while further exacerbated by simultaneous

overexpression of Pin1 and JNK1 (Fig. 3B). Next, we

knocked down endogenous JNK1 with siRNA used

previously [27] and tested the Pin1-mediated activation

of TAp63c. The results of IB analysis show that the

specific siRNA can effectively ablate endogenous

JNK1 in Saos-2 cells; TAp63c induces the production

of CL-PARP1, which can be further increased by the

ablation of JNK1; overexpression of both TAp63c and

Pin1 makes an even higher CL-PARP1 level, while

simultaneous knockdown of JNK1 impairs the effect

of Pin1 on TAp63c-induced production of CL-PARP1

(Fig. 3C). The luciferase reporter assay demonstrates

that ablation of JNK1 significantly increases TAp63c-
mediated expression of Bax-Luc; ablation of JNK1

abrogates the effect of Pin1 on TAp63c-mediated

expression of Bax-Luc (Fig. 3C). These results suggest

that Pin1 strikingly reverses JNK1-repressed transcrip-

tional and pro-apoptotic activities of TAp63c and

makes it hyperactive.

JNK1 may repress or promote transactivity of

TAp63c depending on Pin1 level

As shown in Fig. 4A, there is a high level of endoge-

nous Pin1 in Hela cells, while a moderate level in

H1299. shRNA-based knockdown of Pin1 can signifi-

cantly impair TAp63c-mediated expression of Bax-Luc

Fig. 2. Serine 12 in the TAD of TAp63c is crucial to Pin1-mediated

stimulation. (A) Saos-2 cells were transfected with a mixture of

Bax-Luc and TK-Renilla plus indicated plasmids. S12A, S12A

mutant TAp63c. Bax-Luc expression levels were measured and

presented as mentioned above (n = 3), while IB analyses were

performed to detect indicated proteins. The error bars indicate SD.

Two-tailed t-test was used for comparison between two groups;

**P < 0.01; NS, nonsignificant. (B) Saos-2 cells transfected with

HA-TAp63c, plus Pin1 or its W34A mutant, were lysed and

subjected to IP with anti-HA. The cell lysates (inputs) or IP

products were subjected to IB analysis with indicated primary

antibodies.
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in Hela cells (Fig. 4B). On the other hand, overexpres-

sion of JNK1 enhances TAp63c-mediated expression

of Bax-Luc in a dose-dependent manner in Hela cells

(Fig. 4C). This is contrary to our previous study in

H1299 cells [27], as well as the results in Saos-2 cells in

the present study (Fig. 3). Intriguingly, in Hela cells

Fig. 3. Pin1 strikingly reverses JNK1-repressed activity of TAp63c and makes it hyperactive. (A) Saos-2 cells were transfected with a

mixture of Bax-Luc and TK-Renilla plus indicated plasmids. Bax-Luc expression levels were measured and presented as mentioned above

(n = 3), while IB analyses were performed to detect indicated proteins. Two-tailed t-test was used for comparison between two groups;

**P < 0.01. (B) Saos-2 cells transfected with indicated plasmids were subjected to cell survival measurement with MTT. Cell viabilities were

presented as mentioned above (n = 3). Two-tailed t-test was used for comparison between two groups; **P < 0.01. (C) Saos-2 cells were

transfected with a mixture of Bax-Luc and TK-Renilla plus indicated plasmids or siRNAs. Bax-Luc expression levels were measured and

presented as mentioned above, while IB analyses were performed to detect indicated proteins. Two-tailed t-test was used for comparison

between two groups; **P < 0.01; NS, nonsignificant. The error bars (A–C) indicate SD (n = 3).

Fig. 4. JNK1 may repress or promote transactivity of TAp63c depending on Pin1 level. (A) Saos-2, Hela and H1299 cells were lysed and

indicated proteins were detected by means of IB analysis. (B) Hela cells were transfected with a mixture of Bax-Luc and TK-Renilla plus

indicated plasmids. Bax-Luc expression levels were measured and presented as mentioned above (n = 3), while IB analyses were

performed to detect indicated proteins. Two-tailed t-test was used for comparison between two groups; **P < 0.01. (C, D) Hela cells, or

Hela cells stably ablated with Pin1, were transfected with a mixture of Bax-Luc and TK-Renilla, plus HA-TAp63c and increasing amounts of

JNK1 plasmid as indicated. Bax-Luc expression levels were measured and presented as mentioned above (n = 3), while IB analyses were

performed to detect indicated proteins. (E) H1299 cells were transfected with a mixture of Bax-Luc and TK-Renilla plus indicated plasmids.

Bax-Luc expression levels were measured and presented as mentioned above (n = 3), while IB analyses were performed to detect

indicated proteins. Two-tailed t-test was used for comparison between two groups; **P < 0.01. The error bars (B–E) indicate SD.
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ablated with Pin1, overexpression of JNK1 represses

TAp63c-mediated expression of Bax-Luc in a dose-de-

pendent manner (Fig. 4D). In H1299 cells, overexpres-

sion of Pin1 strikingly reverses effects of JNK1 on

TAp63c transactivity (Fig. 4E), just like it does in

Saos-2 cells (Fig. 3A).

These results suggest that JNK1-mediated phospho-

rylation of TAp63c at serine 12 can repress its transac-

tivity, in the absence of abundant Pin1 (e.g., in Saos-2

and H1299 cells, or Hela cells ablated with Pin1); in cells

rich in Pin1 (e.g., Hela and Saos-2 or H1299 ectopically

overexpressing Pin1), the peptidyl-prolyl isomerization

of this phosphoserine-proline (pS12-P13) motif in the

TAD of TAp63c can strikingly activate its transcrip-

tional activity (depicted as Graphical abstract figure).

Discussion

The p63 gene encodes multiple transcription factors [3].

Despite its low expression, TAp63c plays key roles in

quality control of germline cells, tumorigenesis, and

aging, via its potent transactivity [7–14]. We previously

reported that Pin1 physically interacts with several iso-

forms of p63, including TAp63c; Pin1 stabilizes

TAp63a and ΔNp63a via mediating the isomerization

of pT-P-P-P-P-Y motif in the SAM and consequently

impairing their affinity to E3 ligase WWP1 at this

motif; however, the effect of this protein–protein inter-

action between TAp63c and Pin1 was unknown [22]. In

the present study, we find that Pin1 enhances transcrip-

tional and pro-apoptotic activities of TAp63c (Fig. 1).

On the other hand, we and others previously found that

serine 12 (S12) in the TAD is critical to regulation of

TAp63c transactivity [24,27]. S12 and the adjacent resi-

due, proline 13 (P13), compose a potential Pin1-binding

site, which is supposed to lose the putative interaction

by S12A mutation. We find that S12A mutant TAp63c
cannot be stimulated by Pin1 (Fig. 2A). Our further

data show that this point mutation in TAp63c signifi-

cantly impairs its interaction with Pin1; the residual

interaction between TAp63c(S12A) and Pin1 indicates

other binding sites of Pin1 than S12 in TAp63c
(Fig. 2B). Together, these results suggest that Pin1 pro-

motes transactivity via binding to S12-P13 in the TAD

of TAp63c. Since TAp63a and TAp63b also have this

site, we speculate that Pin1 and JNK1 may regulate

them in the same way. However, this regulation may

not exist in MNp63 proteins, because they do not have

the S12-P13 motif in their truncated TAD [1].

S12 in TAp63c is phosphorylated by IKKb or

JNK1, leading to an impairment of its transactivity

[24,27]. In our present study, we find that this inhibi-

tion of transactivity mediated by phosphorylation at

this residue can be strikingly reversed by Pin1; in com-

bination with JNK1, Pin1 can even enhance the tran-

scriptional and pro-apoptotic activities of TAp63c to

an extent that is higher than that in the absence of

JNK1 (Fig. 3). JNK1 exhibits negative effects on

TAp63c activity in cells lacking abundant Pin1 pro-

teins, while stimulates TAp63c in cells rich in Pin1

(Fig. 4). Based on these results, we propose the follow-

ing model to interpret the regulation of TAp63c trans-

activity (as shown in Graphical abstract figure):

TAp63c with S12 unphosphorylated is moderately

active; phosphorylation at this residue (pS12) mediated

by IKKb or JNK1 can repress its activity; in the pres-

ence of Pin1, isomerization of this pS12-P13 motif

makes TAp63c hyperactive. Our data are helpful to

elucidate the regulation of TAp63c, which is an impor-

tant transcription factor in tumorigenesis and germline

quality control, as well as a potential therapeutic tar-

get against p53-altered tumors [10,16].
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