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ABSTRACT
Moso bamboo has large potential to alleviate global warming through carbon seques-
tration. Since soil respiration (Rs) is a major source of CO2 emissions, we analyzed
the dynamics of soil respiration (Rs) and its relation to environmental factors in a
Moso bamboo (Phllostachys heterocycla cv. pubescens) forest to identify the relative
importance of biotic and abiotic drivers of respiration. Annual average Rs was 44.07
t CO2 ha−1 a−1. Rs correlated significantly with soil temperature (P < 0.01), which
explained 69.7% of the variation in Rs at a diurnal scale. Soil moisture was correlated
significantly with Rs on a daily scale except not during winter, indicating it affected
Rs. A model including both soil temperature and soil moisture explained 93.6% of
seasonal variations in Rs. The relationship between Rs and soil temperature during a
day showed a clear hysteresis. Rs was significantly and positively (P < 0.01) related
to gross ecosystem productivity and leaf area index, demonstrating the significance of
biotic factors as crucial drivers of Rs.

Subjects Ecology, Environmental Impacts, Forestry
Keywords Moso bamboo forest, Environmental determiners, Soil respiration, Leaf area index,
Gross ecosystem productivity

INTRODUCTION
Soils are important sources and sinks in the global carbon budget (Sheng et al., 2010). Soil
respiration (Rs) is a major source of CO2 emissions from terrestrial ecosystem, and as the
second largest carbon flux between the atmosphere and ecosystems it is surpassed only by
gross primary production (Raich & Potter, 1995). Soils release approximately 75–100 Pg
C per year globally (Bond-Lamberty & Thomson, 2010), nearly 10 times of the amount of
CO2 released by the combustion of fossil fuels (Raich & Potter, 1995). Hence, slight shifts
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in Rs may cause profound changes in the atmospheric concentration of CO2 and in
the accumulation of soil carbon (Schlesinger & Andrews, 2000), thus subsequently affect
global climate.

Considering the importance of forest ecosystems in the terrestrial carbon cycle and
their response to global climate, Rs and its dependence on environmental drivers have
been the focus of numerous studies. For instance, soil temperature and moisture of soils
are two of the major environmental drivers regulating Rs (Liu et al., 2016). Additionally,
disturbances, e.g., fire (Muñoz Rojas et al., 2016; Köster et al., 2014), harvesting (Bahn et al.,
2008), artificial warming and precipitation changes (Li et al., 2017a), or land use changes
(Liu et al., 2011; Willaarts et al., 2016) can also have large effects on Rs. Rs is a complex
biogeochemical process highly related to ecosystem productivity, leaf area index, and soil
fertility (Hibbard et al., 2005), proving coupling betweenCO2 assimilation by the vegetation
and emissions from the soil (Bahn et al., 2008; Hibbard et al., 2005). Rs is also influenced
by the amount of litter (Oishi et al., 2013; Wu et al., 2017), vegetation type (Mahecha et
al., 2010; Wang et al., 2011), and composition of the soil microbial community (Luo et al.,
2016). However, many of the environmental drivers are correlated with each other, making
it difficult to distinguish and quantify the contribution of each environmental factor.

Bamboo forests are widely distributed in warm temperate, subtropical and tropical
zones between 46◦N–47◦S (Lu et al., 2014). Globally, bamboo forests cover 31.5 million ha
(FAO, 2010). With more than 500 varieties and 39 species, China hosts the largest diversity
of bamboo in the world, and the 6.16 million ha bamboo forests account for 2.97% of
the total forest area in China (SFAPRC, 2015). Moso bamboo (Phllostachys heterocycla cv.
pubescens) is appreciated for its rapid growth and high rate of timber production (Guan et
al., 2017). Moso bamboo forest is a major forest type of subtropical forests in subtropical
China (Song et al., 2013). Currently, the area covered by Moso bamboo forests increases
annually by approximately 3%, mostly due to afforestation on wastelands (Chen et al.,
2009), but also through conversion conifer and broadleaf forests and farmland (Cui et
al., 2011; SFAPRC, 2015). Moso bamboo provides many benefits, including high income
generation and other ecosystem services, to the forest owners.

Notably, the rate of carbon accumulation by Moso bamboo is high. Moso bamboo
sequesters 4.91–5.45 t C ha−1 each year (Zhou & Jiang, 2004), showing great potential
for alleviating global warming by carbon fixation. Previous studies on Moso bamboo
have concentrated on carbon storage, balance and its distribution in the ecosystem (Li
et al., 2013), productivity of bamboo forest (Cheng et al., 2015; Isagi et al., 1997), and the
variation in soil organic carbon stocks (Guan et al., 2015). Previous studies reported a
close relationship between Rs and biotic factors in other forest types (Hibbard et al., 2005),
suggesting a coupling between forest canopy assimilation and carbon emissions from soil.
However, comparatively little is known about bamboo forests. Thus, given the ecological
importance of Moso bamboo forests at regional scale, there is a need for understanding
the relationships between biotic and abiotic factors and Rs in this kind of ecosystem.

In this study, we used soil respiration measurements from a Moso bamboo stand and
combined these with measurements of abiotic and biotic factors. Our aims were to explore
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Figure 1 Monthly and long-term average air temperature (Ta) and precipitation at the study site.
White circles are monthly air temperature in 2013; black triangles denote long-term average air
temperature; grey rectangles are monthly precipitation in 2013; white ones denote long-term average
precipitation.

Full-size DOI: 10.7717/peerj.5747/fig-1

the temporal dynamics of soil respiration, and to identify the relative importance of the
measured environmental factors.

METHODS
Study site
The measurements were done in a Moso bamboo forest with an eddy covariance flux
tower in Anji, Zhejiang Province, southeast China (30◦28′34.5

′′

N, 119◦40′25.7
′′

E) at 380 m
elevation. The study area has a typical subtropical monsoon climate with distinct seasons
(Li et al., 2018; Peel, Finlayson & McMahon, 2007). The average annual air temperature and
precipitation in 1981–2010 was 15.6 ◦C and 1,413.2 mm, respectively. Monthly average
rainfall and air temperature in the study period are shown in Fig. 1. The soil type in this
area is yellow red soil (Chinese system of soil classification), equivalent to Hapludult in
USDA Soil Taxonomy (Soil Survey Staff of United States, 1999), pH is from 4.4 to 4.8, and
soil bulk density is 1.5 g cm−3 (Chen, 2016).

The study area (1km around the eddy covariance flux tower) was covered by 86.1%
of Moso bamboo forest (Xu et al., 2013). The total area of the forest was 1,687 ha. Stand
density was 3235 culms per hectare, the average canopy height was 11 m with a mean
diameter at breast height of 9.3 cm. There was only a sparse understory in the study
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area. The main management activities were harvesting 6- or 7-year old bamboos, and a
proportion of new bamboo shoots each year. The forest was not fertilized nor weeded
during the study period. Further detailed information of the site is found in Mao et al.
(2017). Moso bamboo has a biannual growth pattern. During ‘‘off years’’ (which are the
even numbers in our site, i.e., 2012, 2014, 2016) few new bamboo shoots are produced,
there is leaf senescence of old leaves, and new leaves grow vigorously (Qiu, 1984). During
‘‘on years,’’ which are years with uneven numbers, more new bamboo shoots are produced
and leaf senescence is limited. In our study site, the study period in 2013 was an ‘‘on-year’’.

Experimental design and measurement
Soil CO2 flux measurement
The soil CO2 flux wasmeasured using an automated system consisting of a LI-8100 analyzer
and a LI-8100-104 chamber and a multiplexer (LI-8150) (all LI-COR Inc., Lincoln, NE,
USA). Soil respiration measurements were done at two hour intervals between 0:00 and
22:00 on selected sunny days for approximately two weeks (usually from day 10 to day
23 of every month) of every month in 2013. The duration of each flux measurement was
2 min and the fluxes were calculated by an exponential fit of CO2 against time by Soil
Flux Pro, version. One 40 m × 40 m plot was established around the flux tower within
the forest. Sixteen sampling polyvinyl chloride (PVC) soil collars (20 cm inside diameter,
10 cm height, and 5 cm plugged into the soil) were randomly placed within the plot. All
collars remained permanently in place throughout the study period. There were few herbs
in the Moso bamboo forest. To reduce the disturbance-induced carbon dioxide emission,
the first measurement started at least 24 h after insertion. The areas inside collars were
kept free of plants by cutting the plants carefully using scissors about monthly during the
year. The data and the performance of the equipment were checked regularly to ensure the
reliability of measurements throughout the year. Soil water content (SWC, m3 m−3) and
soil temperature (Ts, ◦C) were monitored adjacent to each collar at 5 cm depth with 2 theta
probes inserted vertically (ML2x; Delta-T Inc., Cambridge, UK; Omega Inc., Norwalk, CT,
USA) provided with the system. We defined March to May as spring, June to August as
summer, September to November as autumn, and January, February and December as
winter.

Measurements of environmental variables at the eddy covariance site
Ts and SWC were monitored by soil temperature sensors (109SS, Campbell Inc.) and soil
moisture sensors (CS616; Campbell Inc., Logan, UT, USA), respectively, at 5 cm, 50 cm and
100 cm depths (Ts5, Ts50, Ts100, SWC5, SWC50, SWC100) close to the eddy covariance tower.
Air temperature and relative humidity were measured using HMP45C probes (Vaisala,
Helsinki, Finland) at 1 m, 7 m, 11 m, 17 m, 23 m, 30 m, and 38 m above the ground. All the
data were recorded by a data logger (CR1000; Campbell Inc., USA) and saved as 30-min
averages.

Biological factors measurements
Gross ecosystem productivity (GEP) was obtained by eddy covariance (EC) technique. An
open-path infrared gas analyzer LI-7500 (Li-Cor Inc., Lincoln, NE, USA), in conjunction
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with a 3-dimensional sonic anemometer CSAT3 (Campbell Inc., Logan, UT, USA), was
placed at 38 m above the ground. All the raw flux data were sampled at 10 Hz, and
calculated and recorded by a CR1000 data logger (Campbell Inc., USA) as 30-min average
values. The flux data was processed using the EdiRe software (University of Edinburgh). A
double-coordinate rotation was applied and the Webb-Pearman-Leuning correction was
conducted to remove the effects of air-density fluctuations. Daily net ecosystem exchange
(NEE) was calculated as the daily sum of the measured CO2 flux and the daily rate of
change in CO2 storage below the height of the EC system. Ecosystem respiration (RE) was
calculated for each 30-min by extrapolating the exponential regressions between the night
NEE at high-friction velocity and soil temperature at the 5 cm depth and summed into the
daily values. Daily gross ecosystem productivity (GEP) was estimated as the difference of
daily RE and daily NEE (Song et al., 2017).

The flux data were discarded when the following errors were observed (Yan et al.,
2013; Yu et al., 2006; Song et al., 2017): (1) the CO2 flux was beyond the range of −2.0 to
2.0 mg CO2 m−2 s−1, CO2 concentration was < 500 or >800 mg m−3, and water vapor
concentration was outside the range of 0–40 g m−3; (2) abnormal values, i.e., when the
absolute value of the difference between a numerical value and a continuous five points
was >2.5 times of its variance; (3) the measurements occurred during precipitation events;
(4) the number of valid samples was < 15,000; (5) friction velocity was low (u∗ < 0.2 m
s−1). Gaps occurred more frequently at night than during the day. After data filtering, the
annual flux data 64% of the data were retained.

Gaps less than 2 h were linearly interpolated, gaps more than 2 h were filled with the
look-up-table method, which were built up based on the two-adjacent-month periods and
two main environmental factors (photosynthetically active radiation and air temperature).
For details information, please see the literature by Song et al. (2017).

Leaf area index (LAI) wasmeasured at 6:00–10:00 and 15:00–17:50 of sunny, no cumulus
days and with good visibility days. Measurements were done monthly using digital camera
provided with a fish-eye lens in combination with MODIS LAI following the methods of
Li et al. (2017b). LAI was reported as the average of three sample points chosen within the
20 m × 20 m plot on non-rainy days. The LAI data was calculated as mean values ± SD
(standard deviation).

Data analysis
We analyzed the soil respiration as a function of soil temperature assuming an exponential
Q10 type relationship.

Rs= aebt (1)

Q10= e10b (2)

where Rs (µmol m−2 s−1) is soil respiration, T is soil temperate at 5 cm depth, a and b are
fit parameters, Eq. (1) (Van’t Hoff, 1884). The temperature sensitivity parameter, Q10, was
calculated by Eq. (2) (Sheng et al., 2010; Song et al., 2013).

One-way analysis of variance (ANOVA) and the least significant difference were carried
out to test the statistical significance of differences in soil respiration, environmental
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Table 1 Relationships between soil respiration (Rs) and soil temperature measured by Li-8150 (Ts) in
2013.

Time Equation R2 Q10 F P

Dec.∼Feb. Rs= 0.279exp(0.241∗Ts) 0.684 11.08 73.74 0.000
Mar.∼May Rs= 0.629exp(0.095∗Ts) 0.819 2.59 154.39 0.000
Jun.∼Aug. Rs= 1.427exp(0.058∗Ts) 0.627 1.79 57.08 0.000
Sep.∼Nov. Rs= 0.594exp(0.107∗Ts) 0.983 2.92 1976.33 0.000

Notes.
Rs, soil respiration; Ts, soil temperature measured by Li-8150.

Table 2 Correlation coefficients of monthly mean soil CO2 fluxes and its affecting factors in 2013.

Factors Rs Environmental variables GEP

Ts Ts5 Ts50 Ta Rh SWC5 SWC50

Ts 0.988**

Ts5 0.968** 0.99**

Ts50 0.966** 0.95** 0.97**

Ta 0.966** 0.99** 0.99** 0.946**

Rh 0.21 0.21 0.152 0.133 0.081
SWC5 −0.229 −0.135 −0.153 −0.348 0.337 0.438
SWC50 0.244 0.306 0.296 0.142 0.334 0.688* 0.813*

GEP 0.841** 0.868** 0.863** 0.752* 0.894** 0.198 0.148 0.555
LAI 0.937** 0.89** 0.91** 0.914** 0.901** 0.15 −0.275 0.162 0.761*

Notes.
Ts (soil temperature measured by Li-8150 probe), Rh (air relative humidity measured by flux tower at 1m height), GEP (gross
ecosystem productivity), other variables shown see Fig. 2. Statistical significance with:
** p-values <0.01, * p-values < 0.05; besides, due to no significant correlation between soil moisture and other factors, it was
not shown in Table 1 (expect GEP in July and August).

(Table 1) and biotic factors (Table 2) between seasons. Regression (including nonlinear
and linear regression) and correlation analysis was performed to analyze the relationship
between soil respiration, biotic and abiotic variables. All analyses were conducted using the
PASW software (PASW Statistics 18.0 for windows, SPSS Inc., Chicago, IL, USA).

RESULTS
Seasonal dynamics of environmental and biotic factors in Moso
bamboo forest
In 2013, the annual average air temperature was 1.2 ◦C higher and total precipitation
114.5 mm lower than the long-term averages. The 30.7 ◦C in July and 30.3 ◦C in
August (Fig. 1) were as much as 7.9 and 2.8 ◦C higher, respectively, than the long-term
averages. Precipitation was 57.2% and 31.5% of the long-term average in July and August,
respectively. The annual rainfall in 2013 was 1,298.7 mm, and occurred mostly from May
to October. Additionally, it decreased by 57.18% in July compared with the corresponding
period of long term (Fig. 1), showing exceptionally hot and dry conditions. Temperatures
at different soil depths (Ts5, Ts50) and air temperature at 1m height (Ta) exhibit a similar
seasonal pattern (Fig. 2A): a gradual increase from January to July, maximum in July, and
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Full-size DOI: 10.7717/peerj.5747/fig-2

a slow decrease till December. Ts5 and Ts50 changed comparatively more smoothly and
steadily than Ta. Soil water content at 5 cm and 50 cm depths (SWC5 and SWC50) were
obviously affected by rainfall, and were at the lowest in July and August.

Seasonal variation in net ecosystem exchange (NEE), ecosystem respiration (RE) and
gross ecosystem productivity (GEP) showed several peaks during 2013. The lowest mean
daily NEE was detected in August (0.76 g C m−2) (Fig. 2C), and highest in June and
September. Additionally, NEE was positive on some rainy and cloudy days. Mean daily
NEE, RE and GEP was −2.11 g C m−2 day−1, 5.36 g C m−2 day−1 and 7.48 g C m−2

day−1, respectively. Due to the impact of drought, GEP decreased significantly in July and
August, being 59.9% and 80.0%, respectively, of GEP in the corresponding period in 2011
(Chen, 2016). LAI remained at approximately 3.6 in winter and spring, increased gradually
starting from March, and reached a maximum (5.92) in July (Fig. 2D). Thereafter, LAI
decreased slowly, exhibiting the typical growth characteristic of Moso bamboo in an ‘‘on
year’’ (Chen, 2016).

Diurnal variation of soil CO2 fluxes and its response to temperature
Soil respiration (Rs) in our forest presented similar diurnal dynamics across all seasons
(Fig. 3A). After a daily minimum occurring between 05:00 to 07:00, it increased slowly
reaching the maximum value between 14:00 to 16:00, and then decreased gradually. There
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were, however, big differences in Rs between months. Monthly maximum values of Rs

ranged from 0.75 in January to 7.52 µmol m−2 s−1 in August.
Monthlymean values ofRs correlated positively with both soil temperature at 5 cm depth

(Ts5) measured by the EC system and air temperature (Ta) (P < 0.01, not shown), with the
correlation with Ts5 being higher (Fig. 3B, Table 2). An exponential relationship was used
to estimate Rs based on Ts (Table 1). Ts explained 69.7% variation of the variation in Rs

at a diurnal scale, whereas Ts5 explained 63.9% (not shown). Both exponential regression
models were statistically significant (P < 0.01). Plotting the diurnal variation of Rs against
Ts, and Ts5 (Fig. 4) showed a clear hysteresis. Additionally, there was slight discrepancy in
the elliptic shape of Ts and Ts5, and the subtle difference in elliptic shape of both could
explain the coefficient or determination (R2) of exponential regression in the relationship
of Ts and Ts5 (not shown).

Seasonal dynamics of soil CO2 fluxes and its driving factors
Soil respiration followed a clear seasonal pattern in soil respiration (Fig. 3A), being highest
in summer with 5.77 µmol CO2 m−2 s−1, followed by autumn (3.50 µmol CO2 m−2 s−1),
and spring (2.42 µmol CO2 m−2 s−1), and lowest in winter (0.76 µmol CO2 m−2 s−1).
The average annual soil CO2 flux was 3.11 µmol CO2 m−2 s−1, equating to an annual Rs

of 44.07 t CO2 ha−1 a−1. Temperatures at different heights and depths presented similar
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Figure 4 Mean diurnal changes of Rs in response to Ts and Ts5 in different months of Moso bamboo
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seasonal dynamics, being highest in summer and lowest in winter (Fig. 3C). Furthermore,
Q10 values were small in summer and large in winter (Table 1).

Monthly mean values of LAI, soil temperature and GEP were all significantly related to
soil respiration (Table 2 and Fig. 5).

Within each seasonal, there was a complex linear relationship between SWC and Rs, with
significant (P <0.01) negative correlation in summer (R=−0.796, Rs=−19.101*SWC +
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Table 3 Relationship between Rs, Ts and SWC . Coefficients of determination (R 2) and root mean square error (RMSE) were given.

Model References R2 a b c d RMSE

Rs= exp(a+b∗Ts)∗SWC Gao, Guo & Liu (2011) 0.895 1.07 0.09 – – 0.663
Rs= (c∗SWC+d)∗a∗exp(b∗Ts) Han, Zhou & Xu (2008) 0.918 0.64 0.08 1.13 0.97 0.591
Rs= exp(a+b∗Ts+ c∗SWC+d∗T ∗s SWC) Li et al. (2000) 0.919 0.22 0.05 −1.97 0.14 0.588
Rs= exp(a+b∗Ts+ c∗SWC+d∗SWC2) Tang & Baldocchi (2005) 0.922 1.88 0.08 −18 39 0.578
Rs= a+b∗Ts+ c∗SWC+d∗T ∗s SWC Wang et al. (2003) 0.929 −3.74 0.47 13.45 −0.9 0.542
Rs= a+b∗exp(c∗Ts)+d∗T ∗s SWC Zhou et al. (2008) 0.936 −4.73 4.76 0.03 −0.04 0.515

Notes.
The abbreviation was shown in Fig. 1. P value of every model was 0.000.

10.368), positive linear correlational in autumn (P < 0.01, R= 0.552, Rs= 47.663*SWC-
7.012) and spring (P<0.05, R= 0.331, Rs = 36.661*SWC-6.708), but no correlation
(P > 0.05) in winter (R= 0.008), indicating that SWC played crucial role in Rs at the
growing period of Moso bamboo. Soil temperature and soil moisture showed significant
linear relationship in the summer (R=−0.939, Ts=−0.013∗SWC+0.559, P < 0.001).

An exponential equation model was used to fit the relationship between different
temperatures (Ts, Ts5) and soil respiration (Fig. 3C). The equations of Ts5-Rs (R2

= 0.954)
and Ts50- Rs (R2

= 0.929) both showed higher R2 than that of Ts- Rs (R2
= 0.915), possible

because of the relative stability of soil temperature profile measurement in eddy covariance
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system. Furthermore, due to the complex relationship between SWC and Rs, as well as
considering combination of temperature and soil moisture, six models were compared
that predict Rs based on soil temperature and soil moistures (Table 3). Based on RMSE
and R2, the model (Rs= a+b∗exp(c ∗Ts)+d ∗Ts ∗SWC) showed best result, suggesting
Ts and SWC could explain 93.6% temporal variation of Rs in 2013. Compared with a soil
temperature(Ts)-soil respiration(Rs) equation (Fig. 3C, R2

= 0.915), It showed a slight
increase R2 (Table 3, R2

= 0.936).

DISCUSSION
Our work demonstrates the importance of three factors that affect soil respiration in Moso
bamboo: temperature, soil water content and either productivity or LAI. The importance
and interactions of the factors will be discussed subsequently.

Of the three factors, soil temperature was the dominant driver of soil respiration with
an R2 of over 0.8 (Figs. 3C and 5B). Seasonal change of Rs has been investigated in varying
ecosystems. Soil temperature and soil water content are commonly considered to be two
major determinants of seasonal variations in measured Rs (Davidson, Belk & Boone, 1998;
Davidson, Janssens & Luo, 2006; Davidson et al., 2012; Sihi et al., 2018). In this study, soil
respiration increased with the rising of soil temperature. Similar results were explored by
Shi, Wang & Liu (2012) on a global scale. However, soil temperature explained only 62.7%
variation of soil respiration during summer (June, July and August). This was not only due
to a lower variation of soil temperature during summermonths, but also, as shown in Table
1, the temperature sensitivity of soil respiration was markedly lower in the summer, which
was likely caused by low SWC values. Additionally, plots of soil respiration against daily
temperature patterns show a rather flat relationship for the summerwith a strong hysteresis.
Similar findings have been reported in Moso bamboo forest of subtropical China by Tang
et al. (2016) and Song et al. (2013). Depth of the soil temperature measurement affected the
explanatory power of soil temperature. The explanatory power of the temperature in the
organic layer was highest and decreased with the depth of the measurements. This indicates
that most of the respiration originates from the organic layer (Davidson et al., 2006). Zhang
et al. (2016)made similar observations in winter wheat ecosystems. While Dai et al. (2004)
found soil respiration of wheat was highly correlated with soil temperature at 10 cm depth.

The relationship between soil carbon efflux and soil temperature showed a diurnal
hysteresis (Fig. 4). This indicates that there is a delayed effect of the rapidly varying
temperature and diurnal variation of soil respiration, similar to the studies by Högberg et
al. (2008), Abramoff, Davidson & Finzi (2017) and Savage et al. (2009). One explanation is
different diurnal temperature pattern at different depths and delays due to the transport of
CO2 from the sites of respiration to the soil surface (Graf et al., 2008). Furthermore, other
research suggested that the length of the delay could vary among different species (Raich &
Schlesinger, 1992). The hysteresis could also be an artifact for measuring soil temperature
at a different depth than respiration is occurring. However, we tried different depths
to measure soil temperature. Since the depth of the measurements of soil temperature
varies between studies, it might be difficult to compare the sensitivity of soil respiration
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to soil temperature between studies (Zhang et al., 2016). Previous research suggested
diurnal variation of Rs was out of phase with corresponding Ts at 2 cm depth, resulting
in significant hysteresis (Gaumont-Guay et al., 2006). As discussed above, there may be
two possible reasons: (1) effects of diurnal variations of root respiration supplied by newly
produced photosynthetic products and (2) diurnal variations of soil water content near the
critical value (Bahn et al., 2008; Davidson et al., 2012; Wang et al., 2015; Sihi et al., 2018),
while further reasons for this (especially in winter) are needed controlled experiments to
explore and demonstrate.

The relationship between soil respiration and soil moisture was more complicated in
our study. Soil moisture improved marginally our models of soil respiration with a better
fit of the models particularly in the dry summer 2013. No significant correlation was found
between soil respiration and soil moisture in 2013 (Fig. 3D). Similar findings had been
reported for Moso bamboo forest in Zhejiang province (Song et al., 2013). However, soil
moisture had a negative statistically significant (P < 0.001,R=−0.796,Rs=−19.101*SWC
+10.368) correlation with soil respiration in summer while correlation in the other seasons
was positive. Previous observation indicated a pronounced correlation between Rs and
SWC in subtropical forests (Sheng et al., 2010; Liu et al., 2011). The negative correlation of
soil respiration and soilmoisture in our studywas probably caused by a spurious correlation
of soil temperature and soil moisture during summer (R=−0.939, Ts =−0.013*SWC
+0.559, P <0.001). The cause of a nonexistent or negative linear correlation between SWC
and Rs could be that natural variation of SWC covers only a part of response curve (at
low to medium SWC, Rs depends positively on it because water is limiting, then there
might be a plateau and at high SWC oxygen transport to the soil depth and transport of
CO2 back might be blocked) (Linn & Doran, 1984; Xu, Baldocchi & Tang, 2004). When we
fitted non-linear models to soil respiration using temperature and soil moisture we got
only a small increase in the R2 when soil moisture was included into the model. We have
also checked the interaction between SWC and temperature (shown in Table 3) and our
best model (last row in Table 3) shows that a model which includes interactions was the
best. This indicates that soil moisture was, even in the dry year of 2013, not an important
limitation of soil respiration.

The models of soil respiration suggest that the temperature sensitivity of soil respiration
declines when soil moisture is decreasing (Almagro et al., 2009; Jassal et al., 2008; Wang
et al., 2006), this may be due to the diurnal variation of soil moisture near the criticality
value. Also, Q10 varied over the different seasons (Table 1). Due to smaller amplitude of
soil temperature in deeper layers (Pavelka et al., 2007), Q10 values estimated from deeper
soil layers tended to be larger than those of shallower layers. This can partly explain the
discrepancy between Ta, Ts, and Ts5. Q10 was about 2.80 in our study, within range of
1.33∼5.53 estimated for forests in China (Chen et al., 2008), lower than 4.09 in Moso
bamboo forest of central Taiwan (Hsieh et al., 2016), but higher than median of 2.0∼2.4
(Hashimoto, 2005).

Previous observation pointed out that annual Q10 value was not only an indicator
of the response to soil temperature, but also a comprehensive response to variations of
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other factors (i.e., SWC, root biomass, root growth, amplitude of Rs, and other seasonal
processes, (Yuste, Janssens & Carrara, 2004)).

Another driver of soil respiration is the phenology of Moso bamboo which shows a large
variation in below ground activities. In the spring, carbon is allocated to the production
of new bamboo shoots. After bamboo has completed its main growth period in summer
and new leaves are fully-expanded, it accumulates nutrient substance and allocates its
main growth to the rhizome. Then in autumn Moso bamboo starts to hatch bamboo
shoots for the next year (Chen, 2016). In this growing phase, soil moisture was a key factor
for soil respiration. Subsequently, the stand got into overwintering stage. Soil moisture
became less important in this period. Consequently, the importance of soil moisture for
soil respiration varies among seasons and was more important during the time of active
growth of Moso bamboo. However, soil temperature rather than soil moisture remained
the most important drivers of soil respiration (Janssens & Pilegaard, 2003).

The explanation for the differences in soil respiration and Q10 values are driven by the
seasonal pattern of gross primary production which drives substrate supply to the root
and rhizosphere (Bahn et al., 2008). Currently several authors have reported productivity
should be considered to improve the prediction of soil respiration (Bahn et al., 2008;
Hibbard et al., 2005; Vargas et al., 2011; Zhang et al., 2016). Numerous studies have shown
close relations between soil respiration and canopy photosynthesis at different timescales.
Högberg et al. (2008) reported that soil respiration was largely driven by recent primary
production of the vegetation. Monthly soil respiration was significantly related to LAI and
GEP in our study (Figs. 5A, 5C and 5D). The finding agreed with the view of a coupling of
photosynthesis and soil respiration. Likewise, Yuste, Janssens & Carrara (2004) found that
seasonal Rs was positively related to LAI. Bahn et al. (2008) suggested Rs was closely related
to LAI across grassland sites. In our study, LAI was closely related to the productivity of
vegetation. There was similar monthly variation pattern of LAI and Ta in our study, which
in turn increased the difficulty to detect relationships of Rs in relation to biological variable.
Soil respiration is a complex biological process, composed of several processes from both
autotrophic and heterotrophic organisms. Besides soil temperature and soil water content,
it is known that soil respiration is partly explained by forest type, stand age and altitude in
subtropical forests (Wang et al., 2011). Additionally, other variables such as management
(i.e., fertilization, thinning and harvesting activities, Gao et al., 2014; Liu et al., 2011), litter,
soil microbial (Linn & Doran, 1984) and physical properties, root biomass and extreme
weather (e.g., warming, precipitation events, short-term drought events), all have indirect
and direct effects on soil respiration. However, how these influence autotrophic and
heterotrophic processes is not well understood and should be a subject of further research.

CONCLUSIONS
Soil respiration (Rs) in the Moso bamboo forest exhibited both daily and seasonal dynamic
patterns, with its highest values in summer and lowest values in winter. Soil respiration
correlated positively with soil temperature (P < 0.01), which explained 69.7% of variation
in Rs at a diurnal scale and 91.5% of variation in Rs for the whole year. Rs correlated
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positively with soil moisture in spring, autumn, and negatively in summer, implying that
moisture played a crucial role in different growth phases, but did not correlate significantly
on daily scale, this may result from soil carbon substrate supply limiting soil microbial
respiration in summer, and enhancing soil respiration in winter given substrate diffusion
to the reaction site, which is generally driven by the thickness of the soil water film. The
model that included soil temperature and soil moisture explained 93.6% of the seasonal
variation in Rs. The relationship between Rs and different soil temperatures exhibited
a clear hysteresis. Soil respiration correlated positively (P < 0.01) with gross ecosystem
productivity and LAI in our study, showing the significance of biotic factors in affecting
soil respiration, and a need for future research to analyze the relationship between canopy
photosynthesis and soil CO2 flux.
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