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The immunohistochemical definition of estrogen/progesterone receptors dictates
endocrine feasibility in the treatment course of breast cancer. Characterized by the
deficiency of estrogen receptor a, ERa-negative breast cancers are dissociated from
any endocrine regimens in the routine clinical setting, triple-negative breast cancer in
particular. However, the stereotype was challenged by triple-negative breast cancers’
retained sensitivity and vulnerability to endocrine agents. The interplay of hormone action
and the carcinogenic signaling program previously underscored was gradually recognized
along with the increasing investigation. In parallel, the overlooked endocrine-
responsiveness in ERa-negative breast cancers attracted attention and supplied fresh
insight into the therapeutic strategy in an ERa-independent manner. This review
elaborates on the genomic and non-genomic steroid hormone actions and endocrine-
related signals in triple-negative breast cancers attached to the hormone insensitivity label.
We also shed light on the non-canonical mechanism detected in common hormone
agents to showcase their pleiotropic effects.
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INTRODUCTION

Breast cancers predominantly occur in female patients, and the
hormonal milieu lies at the root of the considerable impact on
the etiology and pathogenesis. Given the genetic heterogeneity
and aberrations in breast cancer, the clinically generalized
standard for subtype distinction is based on the expression of
estrogen receptor a (ERa), progesterone receptor (PR), and
human epidermal growth factor receptor 2 (Her2). The
abovementioned molecular biomarkers are also barometers for
therapeutic response assessment; ERa indicates a preference for
estrogen blockage, and overexpression of Her2 suggests
target immunotherapy.

Triple-negative breast cancer, burdened with more than half
of the morbidities in about 15-20% of all breast cancer cases,
holds the most disappointing survival rates, in which resistance
could partly be seen in any targeted therapy in the absence of
target receptors (1). The death rates in an epidemiological survey
reached up to 40% in the chemotherapy-treated cohorts, and
premenopausal female patients with hormones in abundance
were the dominantly susceptible population (2). Besides,
deficiency of ERa, PR, and Her2 deprived the patients of the
benefits of endocrine therapy and limited the response to
cytotoxicity chemotherapy. And the assignment of
chemotherapy was insufficient to weaken the aggressiveness of
the cancer with five-year survival rates less than one-third after
adjuvant chemotherapy (3). Thus, the anchorage-dependent
treatment concept based empirically upon the expression of
target hormone receptors compromised and arrested the
promising treatment applications (4).

Typically, endocrine agents are applied to ERa-positive breast
cancer comprised of selective ER modulators (SERMs), selective
ER degraders (SERDs), and aromatase inhibitors (AI), which are
committed to regional recurrence suppression and long-term
survival benefit. As evidenced by the fact that ERa-negative
breast cancer sheltered from endocrine therapy previously
acquired arousable sensitivity to tamoxifen (5), it was implied
that the endocrine response promised to be a novel mechanism
in TNBC, which the absence of hormone receptors could not
overshadow. Thus, endocrine strategies in TNBC were rewired,
and the underlying signaling cascades triggered downstream
were found to be significant.

The appreciably rising hormone receptors, such as
glucocorticoid receptors (GR), androgen receptors (AR), and
truncated isoforms of ERs, orchestrate crucial contributions to
endocrine response in TNBC, licensing the alternative endocrine
strategies to stretch beyond the traditional ERa-blockage
orientation. Apart from the familiar mechanism of the
estradiol-ER complex transported into the nucleus, rapid
hormone effects mediated by membrane receptors have gained
increasing attention, which were involved in non-genomic
alterations and have the potential to be endocrine-associated
targets (6).

We could embark upon recapitulating the hormone-related
mechanisms and pathways to optimize the endocrine
management of ERa-negative breast cancer, particularly
in TNBC.
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STEROID HORMONE ACTIONS IN TNBC

In general, invasive capacity triggered by steroid hormones was
reported to be nuclear receptor-dependent. However, hormone-
responsive breast cancers share a common transduction
signaling pathway with ERa-negative breast cancers, and the
concept in both of them was not mutually exclusive. Manifold
resident hormone receptors and recruited circulating hormones
enacted their roles in the ERa-independent carcinogenesis
process of TNBC. Thus, hormone disequilibrium is pivotally in
TNBC as in luminal breast cancers (7). In Figure 1, we provide a
schematic summary centered around estradiol and progesterone
and how they functionally exert transcriptional regulations.

Estrogenic Activity
Peripheral circulating steroid hormones, specifically estrogens,
released from their organs, contributed to the tumorigenic effects
in patients with breast cancer. Estrogen was present in three
primary forms: estrone (E1), estradiol (E2), and estriol (E3) (8).
E2, the major isoform, was biosynthesized by aromatase from the
androgenic precursors (9). Lipophilic-natured E2 could mediate
either genomic signaling via classical nuclear-initiated receptor
actions (through ERa and ERb) or non-genomic signaling via
membrane surface and intracellular receptors (10). Typically, the
combined E2-ER complexes exert estrogen-like effects by
binding to estrogen response elements (EREs) at the promoter
of targeted genes.

Albeit with the absence of ERa, estrogens and xenoestrogens
have been identified to act on the tumor microenvironment via
their corresponding receptors. E2 functions in the trigger of
“don’t eat me” signaling by strengthening CD47-SIRPa
interaction and skewing the antiphagocytic effect of the M2
microglia (5, 11). In addition, E2 depletion was of therapeutic
value evidenced by the reportedly increasing tumor cell
tropomyosin kinase receptor B (TrkB) signal regulated by E2
in premenopausal TNBC patients and thus reduced the risk of
brain metastasis (BM) (12, 13). The preclinical model
demonstrated that E2-dependent upregulation of brain-derived
neurotrophic factor (BDNF) in ERa-positive reactive astrocytes
and subsequent activation of TrkB elucidated the carcinogenic
role of estrogen in TNBC. Compared to mice with exhausted E2,
E2 sheltered TNBC cells from the oncosuppressive effects of the
defensive system (13).

Sartorius et al. advanced a novel approach of endogenous E2-
mediated brain metastatic colonization, where upregulation of
characterized EGFR ligands stimulated by the paracrine effects of
E2 in an estrogen-responsive brain microenvironment sensitized
the EGFR downstream pathway (14). These studies revealed the
E2-fueling function and broadened the therapeutic implications
of the tumor immune microenvironment (TIME), such as ER-
positive mesenchymal cells and tumor-associated macrophages
(TAMs). Since E2 can facilitate the process of immune escape in
the BM of TNBC, it could be considered a candidate for
macrophage-targeted therapies in primary breast lesions.

The neuroprotective and anti-inflammatory effects of estrogen in
CNS were mediated by the rapid activation of ERK1/2 independent
from the ER-ERE canonical pathways (15). The tumor
June 2022 | Volume 12 | Article 830894
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microenvironment in CNS evolved and developed an immune-
suppressive property during BM (16), and the TNBC subtype was
also inclined to the immuno-evasion phenotype compared to
luminal subtypes (17). The tumor microenvironment in TNBC
remained unknown with the condition to trigger the anti-
inflammatory and immunosuppression capacity of E2 just as BM
was, which merited research.

Progesterone
Another principal steroid hormone, progesterone (P4),
composed of classical activation of nuclear actions and non-
classical activation of membrane actions, applies its
progestogenic effect to downstream effector targets similar to
estrogen (18, 19). Thus, the progesterone receptor (PR) could be
divided into the nuclear progesterone receptor (nPR) and non-
genomic receptors, such as membrane progesterone receptors
(mPRs) and progesterone receptor membrane component 1
(PGRMC1) (20).

Once evidenced by the whole genomic effect of progesterone
when PR reactivated in TNBC, P4 upregulated the expression of
genes detrimental to cell proliferation and invasion and
consistently dampened the genes in the maintenance of
genomic stability (21). Anticancer properties of P4 target genes
were identified in endocrine-insensitive TNBC, which supplied a
novel option for endocrine strategies. Besides, progesterone
metabolites, named 5a-dihydro-progesterone (5aP) and 3aHP,
exerted the opposite effects on the evolution of TNBC, which
is significantly enhanced by 5aP while suppressed by 3aHP (22),
Frontiers in Oncology | www.frontiersin.org 3
while a high concentration rate of 3aHP:5aP was responsible
for the preservation of physiological conditions in a
nontumorous environment.

In summary, progesterone circumstantially exerted an
antitumor effect in TNBC, and more evidence was required to
unravel the discrepancy in the role of the non-genomic
membrane progesterone receptor in TNBC.
NUCLEAR HORMONE RECEPTORS
ACTING AS TRANSCRIPTION FACTORS

Although TNBC cells do not express ERa and PR, other hormone
transcription factors synergizing to initiate endocrine signaling
cascades are equipped with the capacity to activate endocrine
network transponders via ERa-independent pathways, such as
androgen receptors (ARs) (23, 24), glucocorticoid receptors (GRs)
(25–27), and distinct isoforms of ER. As listed above, ERa-
negative results in immunohistochemical staining (IHC) could
not be responsible for void endocrine efficacy in TNBC.

Estrogen Receptor a-36
As a specific isoform of traditional ER-a (ER-a66), ER-a36 was
first mentioned by Wang et al. in 2005 with a truncated length of
36 kDa (28). Compared to the familiar ER-a66, ER-a36 could be
expressed concurrently in TNBC and mediate estrogen signaling
transduction (29), which was first identified to express a specific
FIGURE 1 | Potential modes of genomic and non-genomic approaches of (A) estradiol and (B) progesterone, which cooperated in regulating the carcinogenesis
process. cGMP, cyclic guanosine monophosphate; EGF, epidermal growth factor; ER, endoplasmic reticulum; MAPK, mitogen-activated protein kinase; NFAT1,
nuclear factor of activated T cell; OXPHOS, oxidative phosphorylation; PGC1, proliferator activated receptor-gamma co-activator 1; PKC, protein kinase C; PRE,
progesterone reactive element; TAM, tamoxifen.
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transcriptomic signature in TNBC (30). Although both
transcriptional activation domains are lacking, the retained
DNA-binding domain and dimerization-binding domain
endowed ER-a36 with a dominant-negative regulation of the
transactivation functions signaled through ER-a66 and ERb
(31). ER-a36 was involved in the genomic mechanism of
carcinogenesis and invasion albeit with an inferior proportion
than its non-genomic actions. The integrity of the essential
domain potentiated ER-a36 to dimerize with ERa and
translocate into nuclear ERa to initiate nuclear actions.
However, ambiguous conclusions underlie the counteracting
force between ERa36 and ERa66. Wang et al. revealed that
tamoxifen functioned as an ERa36 agonist to upregulate the
expression of aldehyde dehydrogenase 1A1 (ALDH1A1) in
CSCs, which plays a pivotal role in the maintenance of cancer
stemness properties (32). This finding enriched the genomic
mechanism of ERa36 independent of ERa66 status in response
to E2 and tamoxifen. It was recognized that truncated ERa36
and ERa66 were mutually interactive and restrictive. A previous
study demonstrated the regulatory role of ERa36 to
downregulate ERa66 expression via upregulation of EGFR (33,
34). Besides, ERa66 could interact with the ERE-half site in
intron 1 of the ESR1 coding region and thus lead to the inhibition
of ERa36 transcription activity (35). In addition, a recent study
demonstrated that ERa36, in collaboration with GPER, inhibited
NFkB-mediated pro-inflammatory activity and the expression of
downstream TNFa and IL-6 in TNBC (36).

ERb
Compared to the indicative role of ERa in endocrine
intervention efficacy, ERb was expressed in cancer stem cells,
normal epithelium cells, stromal cells, and even TNBC, the
distribution of which was thought to lack specificity (37–39).
ERa and b have been identified as homologous, sharing a high
degree of similarities in DNA-binding domains despite their
respective ligand-binding distinctions and transcriptional
activating function domains. All the isoforms of ERb (ERb2-5)
except for ERb1 were disabled to combine with bridging ligands
autonomously and could only be dimerized with ligand-binding
ERa/b1 to activate the negatively estrogen-related signaling
pathway. The global genomic landscape regarding the interplay
between ERb and the oncogenic genome in breast cancer
revealed that ERa and b intersect extensively with each other
in target gene regulation. Because of the spatial proximity to the
mitochondrion, ERb was taken to contribute to mitochondrial
DNA-encoded genes ’ function through an ERE-like
sequence (29).

As evidenced by previous literature, ERb was envisioned as a
bifacial factor predictive of breast cancer survival. E2/ERb-
mediated aggressiveness and stemness properties in TNBC
could be in part explained by downstream actions which
promote EGFR, VEGF, amphiregulin, and Wnt-10b secretion
(22). The adverse effect caused by ERb could be reversed by
tamoxifen in ERa-negative tumors. Besides, the presence of ERb
improved tamoxifen-treated ERa-positive breast cancer patients.
As a kind of classical SERM, fulvestrant inhibits growth-
Frontiers in Oncology | www.frontiersin.org 4
stimulating effects of ERb by negatively regulating DNA
methyltransferase (DNMT), widening the scope of the intent-
to-treat population to ERa-/ERb+ breast cancer (40).

When concurrent with ERa, ERb commonly shows an
antagonism against tumor proliferation and invasion (23),
reflected in a restrained output of ERa and its mediated
transcriptional activities by the decreasing recruitment of c-Fos
and c-Jun to the estrogen response promotor (24). In vivo
experiments substantiated the oncosuppressive role of ERb by
the fact that its loss activated the overexpression of ERa and
inducted an aggressive phenotype (32). Mechanism investigation
revealed that the downregulation to cell cycle repressive tumor
protein 53-induced nuclear protein 1 (TP53INP1) by ERa could
be totally reversed by ERb and thus considerably decreased a few
cyclins, such as CCNA2, CCNB1, CCNB2, CCND1, and CCNF
as a result (26). As a regulatory genomic analysis manifested, the
gene profiles which were promoted by ERa while inhibited by
ERb were mainly concentrated in the function of “cell cycle”,
“xenobiotic metabolism”, and “ion transport”, and genes in these
pathways primarily were evidenced as tumorigenesis biomarkers.

In addition to the interplay with ERa, the crosstalk with AR
underlies the contribution made by ERb to anti-androgen
efficacy improvement. The heterodimer constituted by ERb
competitively binding to AR impeded the development of the
AR-AR homodimer and blocked the subsequent PI3K/AKT
oncogenic signaling pathway. Song et al. found out that ZEB1,
an invasion promotor expressed in concert with E-cadherin, was
inhibited by ERb and thus abrogated its original aggressiveness
phenotype (28).

ERb acted more on the proliferation of cancer stem cells than
ERa, given the proportion towards estrogen response. Yet, its
impact on TNBC progression is just beginning to be explored.
Three of the exclusively regulated genes by ERb were associated
with lipid and cholesterol metabolism. Alexandrova et al.
identified the ERb-induced inhibition of cholesterol
biosynthesis mediated by miR-181a-5p in a small non-coding
RNA profile towards TNBC, which testified the cholesterol
metabolism correlation (41).

Most findings proposed that ERb-mediated tumor inhibition
was through cell arrest at the G1 phase and the downregulated
cyclins. Besides, the negative regulation of ERb towards tumor
suppressor genes could be instantiated in the contribution to
stability failure of EGFR and suppression towards p53
mutagenesis. The accumulating evidence indicated that Erb,
devoted to diminishing the genes encoding key components,
positively related to TNBC aggressiveness. Moreover, the
interplay of ERb and the intranuclear molecular chaperone
instigates the process of gene regulation, RNA splicing, and
chromatin remodeling at the transcriptional and post-
transcriptional level, which was validated by the association
between ERb and the polycomb repressor complexes 1 and 2
(PRC1/2) in the process of cholesterol biosynthesis inhibition in
interaction proteomics (42, 43).

The adaptive strategy in the context of a double-faced role of
ERb still hangs in doubt. A phase II clinical trial (NCT03941730)
aiming at the conundrum above was conducted in the ERb-
June 2022 | Volume 12 | Article 830894
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positive TNBC population, which traded off the activation of the
tumor-suppression effect by E2 against the refrainment of the
tumor-promoting effect by tamoxifen regarding the pros and
cons of ERb.

Glucocorticoid Receptors
As one of the nuclear hormone receptors, GRs act as ligand-
activated transcription factors and require little agonist
dependency on the ligand for signaling activities (26). Ligand-
activated GR phosphorylation modified feedforward signaling
loops with sensory input of TME-derived stress signals for the
persistent activation of stress signaling pathways to actuate
advanced cancer biology in TNBC. Besides, a convergence of
host and tumorous stress stimuli could activate a p38MAPK-led
ligand-independent phospho-GR and form a signal amplifier
mediated by the positive feedforward control towards p38MAPK
(44). Nuclear translocation upon activation, followed by the
combination of glucocorticoid response elements (GREs) and
other transcription factors like NF-kB and AP1, was linked to
regulation of functional gene expression and risk of developing
aggressive modalities of breast cancer.

The GR functioned as a tightly regulated homeostatic
machinery of tumor microenvironment homeostasis
disruption, reflecting on the stress signaling factors and
pathways triggered by solid tumor necrosis and tissue
remodeling, which was indicative of the fact that any
modifications in the alteration of GR activity would cripple the
feedback regulation and contribute to pathogenesis (45).

Overexpression of GR in untreated TNBC predicted a poor
prognosis (HR=1.73), and 24 pS134-GR-dependent genes were
linked to inhibition of apoptosis in breast epithelial cells (46).
However, the presence of GR provided a feasible target towards a
series of advanced tumor phenotypes, chemoresistance, and anti-
androgen resistance in the treatment of TNBC (47, 48).

Androgen Receptor
The presence of an androgen receptor subdivided TNBC into
quadruple-negative breast cancer and AR-positive TNBC, the
latter of which harnessed a different dependency on the
androgen receptor, which was more ubiquitously expressed
than ER and PR (49, 50). In Figure 2, we summarized the
androgen-induced genomic and non-genomic actions in
TNBC cells.

Estrogen response activity via estrogen-regulated genes was
mainly determined by the conditionally essential FOXA1 in the
form of silencing modifications that disrupt all the ERa-related
chromatin and transcriptome activities (51). Albeit with the role
of FOXA1 as a pioneer of ERa actions and the high-baseline
estrogen milieu in female patients, the expression of FOXA1 in
ERa-deficient BCs attained approximately 30% (52). The fact
that more than 80% of FOXA1-attended carcinogenic events did
not overlap with ERa-induced carcinogenesis, increasingly
shifted the focus to the additional endocrine mechanism
beyond its traditional Era dependency. Robinson et al.
reported the participation of FOXA1 in the transactivation of
an AR-mediated downstream program in the molecular apocrine
TNBC, which was gathering endocrine-responsive genes
Frontiers in Oncology | www.frontiersin.org 5
resembling the luminal signature of ERa-positive BC (53).
FOXA1 rechanneled AR binding sites to the objective domain
where ER originally functioned. And thus, AR cistron stood in
the way of carcinogenesis by ERa (54) while emulating the ERa-
leading carcinogenic program when silencing ERa (55, 56).
Although FOXA1 is indeterminate in its role as an endocrine
target spot, a battery of findings indicated its prospect to
intercept hormone signaling in the prerequisite of negative
hormone receptors.

An AR in TNBC cells sufficed to modulate ER-mediated
downstream signaling independent of ER, such as the MAPK/
ERK and PI3K/Akt/mTOR pathways (57). The intersection
between AR- and ER-mediated signal cascades occurred in the
AR-binding motif, PTEN, which suffered from upward control
by ER, and thus ascribed the antitumor function of AR to the
declining output of the PI3K/AKT pathway by upregulated
PTEN (58). Conversely, the activating PIK3CA mutations and
increase in pAKT were abrogated by AR inhibition, which gave
an exposition of the tumor-promoting action of AR. The other
mechanism analysis found that the anchoring of AR at an ARE in
the promoter of the ERb gene resulted in the overexpression of
ERb. Besides, synergistic inhibition was observed in vitro with
combined CDK4/6 inhibition and anti-androgens in luminal and
TNBC cell lines (59).

NON-GENOMIC ACTIONS

Although with empirically proven predilection of nuclear
transcriptional ERa for genomic carcinogenesis, alternate
isoforms of canonical receptor induce rapid non-genomic
actions (60). Non-genomic actions were inclined to drive a
rapid alteration via membrane fluidity and the accompanying
activation of second messenger pathways, thus mediating various
biological responses. For example, the following receptors
received increasing attention in the area of investigation.

ERa36
As an extranuclear-acting isoform of ERa, ERa36 mainly
mediates rapid non-genomic actions by converging on two
principal signaling pathways, A) direct phosphorylation of the
MAPK/ERK pathway by activation of c-Src (61, 62), and B)
activation/phosphorylation of the PI3 kinase (PI3K)/Akt axis
and inhibition/phosphorylation of glycogen synthase kinase 3b
(GSK3b), which secures the stability and nuclear translocation of
transcription factor nuclear factor-E2-related factor 2 (Nrf2) (63).
Nrf2 enacted its essential role in metabolic reprogramming and
antioxidation regulation via binding with the antioxidant
responsive element (ARE) and subsequently regulating
metabolic-associated genes (64). In addition, Zhang et al.
demonstrated the mitogen-activated estrogen- and antiestrogen-
dependent signaling pathway through the phosphorylation of
EGFR and Src by physical interaction (35), which could be
suppressed in ER-a36-knocked out TNBC cells using short
hairpin RNA with the bypass activation of the PI3K/AKT
signaling pathway (65). Besides, the signals which ER-a36
transmitted through the EGFR/HER-2/ERK pathway converged
towards cisplatin resistance (66).
June 2022 | Volume 12 | Article 830894
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Estrogen-Related Receptor a
The orphan receptor, known as estrogen-related receptor a
(ERRa), was highly homologous to classical ERa in the aspect
of target nodes, regulatory elements, and sites of action (67). In
hormone receptor-negative SKBR3 cell lines, a physiological dose
of E2 could motivate the expression of ERRa to regulate
estrogen. Together with peroxisome proliferator-activated
receptor g co-activator 1a (PGC-1a), ERRa acted to regulate
substantial metabolic-associated molecules. The PGC-1a/ERRa
axis has been recognized as the crucial regulator for
mitochondrial biosynthesis and function and is pertinent to
the Warburg effect and high-energy metabolism (68). The
Frontiers in Oncology | www.frontiersin.org 6
cholesterol-ERRa axis functioned in disturbing purine
anabolism and folate metabolism by one-carbon resource
suppression. As the endogenous ligand of ERRa, cholesterol
initiated an auto-induction loop of ERRa and strengthening of
target genes expression via the interplay with its co-stimulator
PGC-1a (69–71). Furthermore, metabolic reprogramming in an
ERRa-dependent manner encompassed increased oxidative
phosphorylation (OXPHOS), TCA cycle intermediate levels,
and the pentose phosphate pathway, which constituted
metabolic vulnerabilities in TNBC (72). ERRa augmented the
NADPH level by the process of malate-aspartate shuttle and
glucose-6-phosphate dehydrogenase (G6PD), which was further
FIGURE 2 | Model of androgen-induced genomic and non-genomic actions in TNBC cells. Classical AR was divorced from the HSP and formed the homodimer
once activated by a ligand, which was then transferred into nuclear actions and binding to the promotor of ESR2 gene linked to regulation of ERb expression.
Further, the expressed ERb dimerized with AR then impeded the nuclear translocation of AR-AR homodimer and thus blocked downstream oncogenic signaling.
In addition, androgen stimulation activated the classical AR/Src complex assembly, rapidly recruiting PI3K and FAK, which triggered the downstream
phosphorylation and the consequent cytoskeleton changes. Besides, the G protein-coupled form of AR activated downstream MAPK/MEK/ERK signaling and
induced the phosphorylation of cAMP and PKA. ARE, androgen receptor element; Egr-1, early growth response 1; GRCP, G protein coupled receptor; HSP,
heat shock protein; ZEB1, zinc finger E-box binding homeobox 1.
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employed to extend the actions of biomass synthesis and ROS
detoxification, and orchestrated the malignant phenotypes in
TNBC (73–75). Notably, inhibition actions to ERRa, known as
the metabolic energy sensor, acted to set back epithelial-
mesenchymal transition by directly targeting fibronectin (76).

G-Protein Coupled Estrogen Receptor
G-protein coupled estrogen receptors (GPER), well established as
membrane-bound and cytoplasm-located sex steroid hormone
receptors, are yet fully defined in TNBC (77, 78). Particularly
remarkable is that SERDs and SERMs with ER-degrading effects
were reported to be the agonists of GPER, except for the original
E2 ligand, which elaborated the partial mechanism for tamoxifen
escape although this effect is not universally accepted. In
addition, GPER intermediated the regulation of E2-binding
ERRa, and a positive impact to ligand-activated ERRa
function was observed in the context of overexpressed GPER,
which could be nullified by siGPER by the transfecting plasmid.
GPER participated in the ligand-initiating rapid non-genomic
actions in TNBC via interfacing with phospo-ERK (pERK),
phospo-focal adhesion kinase (pFAK), and cell cycle proteins,
such as cyclin A and cyclin D1, which retains responsiveness to
mitogenic estrogen signaling in the circumstance of hormone
repletion (79). A large proportion of analysis revealed that GPER
was burdened with maintaining stem cell-like and self-
perpetuated properties via induced phosphorylation of PKA
and BAD-Ser118 in tumor tissues (80) and compromised
prognosis and survival in TNBC. The in vitro experiment
demonstrated that targeting GPER in SKBR3 cell lines
endogenously expressing GPER kept tumor cells arrested in
the G2/M cell cycle (81), wherein dormant tumors were
susceptible to a cytotoxicity effect. Consequently, endocrine
therapy is expected to be orientated in the multi-direction
blockade on cytoplasmic and intranuclear estrogen receptors.

Based on the extensive studies of GPER-binding endocrine
actions, the evidence to date evoked substantially different
standpoints which were dissociated from the fixed role as a
carcinogenesis promotor and unfolded the antitumor activity of
GPER in a diverse collection of tumor responses. To begin with,
the mechanism against tumor progression of GPER partly
consisted in the attenuation of mitogenesis activity by estrogen
and the GPER-mediated stimulation of histone H3 and caspase-3
that subsequently brought about the consequence of cell
apoptosis. A recent study elucidated that activation of GPER
via its specific agonist G-1 suppressed the proangiogenic factor,
such as interleukin 6 (IL-6) and vascular endothelial growth
factor (VEGF), and NF-kB, and thus directed at the angiogenesis
and invasiveness was perceived as the critical conundrum of
aggressive TNBC (82).

Discrepancies of GPER-mediated proliferation effects on breast
cancers included the growth inhibition of endocrine-sensitive
MCF7 cells and the growth-promoting effect of ER-negative
SKBR3 cells (83). Notas et al. identified the interplay of ER and
GPER in extra-nuclear ER actions via the pharmacological
approach towards human breast cancer cell lines T47D and
MDA-MB-231 (84), which was in concert with the previously
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reported clinicopathological evidence that correlated ER and
GPER expression in breast cancer either in a positive (85, 86) or
a negative way (87, 88). In a word, early membrane-initiated
actions of estrogens in breast cancer are governed in a complicated
manner, in which the effects of GPER on transcription mainly
depend on the concurrent activation of ER variants.

Non-Genomic PR Signaling
For the past several decades, a limited pool of PR approximating
to the plasma membrane has been extensively observed to exert
rapid progestogenic effects in a canonical PR-independent
manner. The non-genomic mediator was predominantly
affiliated with the progestin and adiponectin Q receptor family
(PAQR), which was constituted by the non-canonical G-protein
coupled mPRs (89). The mainstream pathways initiated in rapid
non-genomic PR signaling were the PI3K/Akt and Src/MAPK
pathways dependent on the direct interaction, which functioned
in the progestin-mediated angiogenic switch via VEGF secretion
and the formation of the advanced metastasis phenotype (90–
94). In the absence of classical PR in TNBC, P4 initiated a non-
classical membrane signal with the P4-PGRMC1 conjugate in the
disservice of intracellular calcium homeostasis in TNBC cell
lines, where the P4-dependent Ca2+ mobilization pathway
encountered the block of PGRMC1-mediated nuclear factor of
activated T-cells 1 (NFAT1) intranuclear downregulation (95).
Overexpression of PGMRC1 was further linked with the invasion
phenotype and poor prognosis in widened signaling of the PI3K/
AKT/mTOR and EGFR pathways (96, 97). Besides, PR could
indirectly upregulate the proliferation-associated genes with the
STAT3 binding region in their promotor instead of PRE via the
PR-initiated signaling complex involving Src, ErbB-2, JAK1, and
JAK2 (98).

Narayanan et al. indicated that the cytoplasmic pool-localized
PRs gathering predominantly in the G1 phase experienced
relocalization into the nucleus in the S phase, which partly
explained why the non-genomic activity of mPR tightly
regulated the transition of the G1/S phase and the subsequent
activation of cell cycle proliferation (99).

Research revealed the biphasic effects of progestin and the
non-canonical PR complex in the TNBC cell lines. Progesterone
suppressed the tumor proliferation and brain metastasis
convergently via mPR (16) and reversed the mesenchymal
to epithelium-like phenotype in the MDA-MB231 cell
line. In addition, PGRMC1 was certified to increase the
chemotherapeutic resistance and abrogate the apoptosis effect
of doxorubicin (100).

Non-Genomic AR Signaling
AR was generally proposed as an androgen-activated
transcriptional factor equipped with genomic and non-
genomic actions, the latter of which was mainly specified in
this chapter.

G-protein coupled receptors (GPCRs) known to mediate
androgen actions via the second messenger effect, such as
Ca2+ efflux and ERK phosphorylation, were perceived as
membrane ARs (mARs).
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The evidence so far suggested that androgen-induced mAR
responses were circumstantially dependent on different cell
subtypes and cellular environments (101–104). Giovannelli et al.
identified a classical AR/Src/PI3K complex assembly, which
triggered cytoskeleton changes and resulted in motility and
migration in TNBC-derived MDA-MB453 cells with different
levels of AR expressions (101). In comparison, previous research
reported a pro-apoptosis role of membrane-initiated AR in both
luminal and TNBC cells contrary to the abovementioned
carcinogenesis promotor (102, 105). In detail, the upregulation
of intrinsic apoptosis molecules, like Bax, cytochrome C, and
caspase 3, were exerted by activation of G proteins and the
subsequent MAPK/ERK pathway as well as increases in
intracellular zinc concentrations in MDA-MB468 cells (105).
Besides, the androgen-stimulated pro-apoptosis mechanism
governed by mAR could be reflected in the actin restructuring
and stasis via AR/Src/FAK/PI3K signaling and downregulation of
FAK and Akt (102). The abovementioned androgen-specific zinc
transport and pro-apoptotic function of zinc transporter member
9 (ZIP9) was mediated by concentration-dependent zinc transport
activity through the stimulatory Gas protein. In addition,
Kalyvianaki et al. comprehensively discussed the alternative
forms of mAR through affinity binding with testosterone-BSA,
such as G protein coupled oxo-eicosanoid receptor 1 (OXER1)
and G protein coupled receptor family C group 6 member A
(GPRC6A). They proposed the significance of incorporating these
receptors into the design of future therapeutic targets (106). OXER
acting as a specific mAR in breast cancer was antagonized by
testosterone for its original cytoskeletal re-arrangement, thus
modulating the adhesive and migratory capacity (107).
GPRC6A, well known as the regulatory element of complex
endocrine and metabolic networks, was reported to activate
downstream ERK and dampen the output of Egr-1 pathways
when binding with Gai protein (108).

The fact that mAR was trapped in the controversy with
divergent evidence suggesting both inhibitory and promotive
actions in breast carcinogenesis could be in part restricted to the
unintelligible preference of the mAR ligands towards the trigger
of non-genomic or genomic actions in breast cancer cells.

Non-Genomic GR Signaling
GR was well defined in the rapid non-genomic pathway
associated with auto-immune diseases and cancers (109).
However, little evidence was proposed regarding the non-
genomic effects in cancers, especially breast cancers.

Clarisse et al. lately overviewed the non-genomic mechanism
of GR-mediated apoptosis in lymphoid malignancies, primarily
associated with the consequences of cytosolic K+ and Ca2+
mobilization, and production of reactive oxygen species (ROS)
paralleled by the oxidative stress (110). Leis et al. show that GR
could counteract the carcinogenic actions of the PI3K/Akt
pathway in skin tumorigenesis, and the co-expression of GR
and AKT in keratinocytes repressed the AKT-driven tumor
pathways (111). They attributed the non-genomic GR-
mediated PI3K/AKT downregulation to the transcription-
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independent activity using the transcriptionally defective GR
mutant. The unique mechanism of GR revealed that GRs were
dissociated from a complex containing Src upon the
combination with GCs, and the release of Src subsequently
caused the phosphorylation of iNOS and the activation of the
oxidative pathway in a non-genomic manner (112).
ESTROGEN RESPONSIVE GENES AND
SIGNALING PATHWAYS

ER served as a determinant to regulate cell fate, and the
downstream cyclin-dependent kinases (CDKs) were expected
to participate in the target chain of endocrine blockage. The
CDK4/6 antagonists were certified to abrogate the progression of
mitogenic activities in TNBC in in vitro and in vivo studies,
which elucidated the nullification of the cell division cycle as the
endocrine blockage directed at CDK4/6 was in an ER-
independent manner (113).

A distinct TNBC subtype, identified as luminal-AR (LAR),
manifested itself in tight relevancy on highly activated hormone-
associated signaling pathways, including steroidogenesis,
porphyrin metabolism, and androgen metabolism in particular.
Comprehensive genomic analysis elaborated the molecular
evidence of activated estrogen downstream signaling. It indicated
the responsiveness of the LAR subtype towards traditional anti-
estrogen/androgen strategies independent of ER status (114),
which could be in part explained by the inconsistency between
the weakly expressed ER protein and ER-coded gene (115).
Besides, Williams et al. identified a 32-gene centroid signature
derived from ESR1 (encoding ERa) and its downstream targets
gene, thus correlating TNBC with ER response (116). The breast
cancer subtype phenotypically recognized as ER-negative was
equipped with hormonally transcriptional genes in ER-positive
cancers, which could be directed by endocrine strategy in an ER-
independent but AR-dependent manner.
EPIGENETIC REGULATION

In parallel with the deletion alterations of hormone receptors in
metastasis during distant dissemination, the regain of hormone
receptors via modifications in epigenetic regulation should also
be acknowledged. Preclinical and clinical studies exhibited a
disproportionately higher rate of genetic aberrations in TP53,
BRCA1, and EZH2 (117). Yomtoubian et al. found that EZH2
inhibition differentiates EZH2-high basal cells to an endocrine-
sensitive subtype by derepressing GATA3, which provided a
novel target resensitized to the endocrine agents and unconfined
by sole chemotherapy (118). A recent study investigated the
inducible regain of functional ERa and AR in the SKBR3 cell line
by combining the DNA methyltransferase inhibitor (DNMTi)
and histone deacetylase inhibitor, which revealed the availability
of endocrine sensitivity in prospect (119).
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NON-CANONICAL MECHANISM OF
ENDOCRINE AGENTS

Since the predominant perspectives proposed that the presence
of classical ERa and PR was fundamental to endocrine
deprivation therapy, previously little evidence linked existing
endocrine agents, as well as the hormone signaling transfer
system, to the potent research directions and therapeutic target
in the triple-negative aggressive subtype of breast cancer, which
merited concentration. Steroidal AIs, such as formestane and
exemestane, could conquer the endocrine resistance of
nonsteroidal AI in an ER-independent but AR-dependent
manner for their direct absorption into TNBC, which could be
dictated by their androgenic metabolites hindering the
accessibility of CCND1 by histone modification in G1/S
transition (120).

Gonadotropin-releasing hormone receptors (GnRHR) are
ubiquitously expressed in both normal glandular tissue and
malignancies. Researchers found that GnRHRs frequently
emerged in more than half of TNBC, which were inspired as
an immediate target assaulted by GnRH analogs (GnRHa), such
as goserelin (121). And a multitude of studies have shown that
GnRHa was involved in the disruption of an autocrine
stimulatory loop wherein the agonists imposed restrictions on
the output of the gonad axis and sheltered the ovarian function
from chemotherapy toxicity in ER-negative patients (122–124).
In addition to preventing premature ovarian failure for young
breast cancer patients, concurrent usage of GnRHa with
chemotherapy- induced ear ly-onse t suppress ion of
progesterone, and in turn, the level of RANK/RANKL, rallied
the sensitivity to chemotherapy attack in TNBC (125).
Furthermore, Nishiwaki et al. recently unveiled that raloxifene
and bazedoxifene but not tamoxifen acted as ERb agonists in
hepatocellular carcinoma cells to attenuate the transforming
growth factora (TGFa)-induced migration by specifically
inhibiting phosphorylation of AKT (126).

Tamoxifen was usually taken as a frequently used anti-
estrogen agent, and Morad et al. exploited its potentialities to
promote lysosomal membrane permeability irrespective of
estrogen receptor status and effectively modulated ceramide
metabolism to maximize the cytotoxicity effect (127).

The tamoxifen-regulated transcriptional analysis shows that
tamoxifen positively induces pluripotency of breast cancers
(128). Further, the clinical ATLAS trial proved that a
prolonged tamoxifen regimen achieved clinical benefits via an
alleged sleeping strategy that put all the cancer cells in the
dormant state shunning local or metastatic relapse (129).

However, the controversial mechanism of tamoxifen, whether
it acted as an agonist on non-classical ER (such as GPER) or an
antagonist on classical ERa in breast cancers, still existed.
Ascenzi et al. demonstrated that the context-specific capacity
of tamoxifen binding with the extra-nuclear protein interactors
accounted for the different transcriptional outcomes, where
tamoxifen recruited transcriptional co-repressors in the breast
and transcriptional co-activators in the endometrium (130). In
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ERa/GPER-positive estrogen-responsive breast cancer cell line
MCF7, Zekas et al. identified that tamoxifen predominantly
functioned as a GPER-selective agonist to rapidly transactivate
EGFR and consequently inactivate GFP-fused Forkhead box O3
(FOXO3) in a GPER-mediated and ERa-independent manner
on a transient time scale (131). Another study recently lent
support to the carcinogenic role of tamoxifen, which was devoted
to the [Ca2+] mobilization and overexpression of kinin B1
receptor, another G protein-coupled receptor (GPCR)
demonstrated to facilitate proliferation and metastasis of breast
cancer cells (132). In the context of GPER-positive cell lines
irrespective of ERa, tamoxifen was endowed with an off-target
effect that upregulated the aromatase expression by recruiting the
c-fos/c-jun complex to responsive elements located in the
promoter region of aromatase via GPER and sustained
endocrine resistance (133).

The presented studies tend to recognize the non-classical ER-
mediated mechanism of tamoxifen in TNBC, and tamoxifen
should be repositioned to boost its adaption and application in
the tumor environment of TNBC.
CONCLUSIONS

Our work recapitulated the essential points by which the
underappreciated endocrine network could be recharged and
vitalized in an ERa-negative surrounding, and hormone analogs
(including agonists and antagonists) play crucial roles in
preventing carcinoma evolution, which proposed a fresh
inspection into the hormone signal transduction and crosstalk
with genetic codes. Complicated tumor microenvironments and
intratumoral heterogeneity decreased the efficacy of traditional
chemotherapy considerably in the receptor-deficient subtype,
admittedly shedding light on the transitional and upgraded
endocrine landscape of TNBC instead. Endocrine strategies
could be interpreted with the medicine for maintenance and
even strengthening during the interval of chemotherapy with
chemotoxicity in recession, which awaits replication by
future studies.
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