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Background and Objective: This review aims to investigate the ferroptosis mechanism of fumarate 
hydratase (FH)-related tumors for the purpose of possible treatment of tumors. Ferroptosis is an iron 
(Fe)-dependent form of regulated cell death caused by lipid peroxidation on the cell membrane. Studies 
have implicated FH in tumorigenesis. As mutations in the FH gene alter cellular metabolism and increase 
tumorigenesis risk, particularly in the kidneys. As most tumor cells require higher amounts of ferrous 
ions (Fe2+) than normal cells, they are more susceptible to ferroptosis. Recent studies have indicated that 
ferroptosis is inhibited the pathogenesis and progression of FH-deficient tumors by regulating lipid and iron 
metabolism, glutathione-glutathione peroxidase 4 (GSH-GPX4), nuclear factor-erythroid 2-related factor 2 
(NRF2)/heme oxygenase-1 (HO-1) pathways. While the Fe2+ content is significantly lower in FH-deficient 
tumor cells, than that in normal cells. It is promising to promote ferroptosis by increasing the concentration 
of Fe2+ in cells to achieve the purpose of tumor treatment.
Methods: In this study, we searched for relevant articles on ferroptosis and FH-deficient tumors using 
PubMed database.
Key Content and Findings: FH is a tumor suppressor. A number of basic studies have shown that the 
loss of FH plays an important role in hereditary leiomyomas and tumors such as renal cell carcinoma, ovarian 
cancer, and other tumors. This type of tumor cells can through induce ferroptosis, inhibit proliferation, 
migration and invasion of tumor cells, increase the sensitivity of tumor cells to chemotherapy, and reverse 
the drug resistance through various molecular mechanisms. At present, the research on ferroptosis in FH-
related tumors is still in the basic experimental stage.
Conclusions: This article reviews the anti-tumor effects and mechanisms of FH and ferroptosis, in order 
to further explore the medical value of ferroptosis in FH-related tumor therapy.
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Introduction

The mode of ferroptosis-mediated death is unique 
form that of pyroptosis, autophagy, and programmed 
cell death. It depends on the intracellular ferrous ions 
(Fe2+) concentration (1). Ferroptosis is mainly caused 
by increased concentration of intracellular oxidation of 
polyunsaturated fatty acids (PUFAs), iron metabolism 
disorders, and imbalance in the oxidative system (2). As 
ferroptosis is involved in many pathological processes (3,4), 
it provides a novel target for preventing and treating related 
human diseases, including cardiovascular diseases, fibrotic 
diseases, and tumors. Cancer is the leading cause of human 
death worldwide (5,6). However, destroying tumor cells 
effectively while maintaining normal cells are challenging. 
As most tumor cells contain higher concentrations of 
Fe2+, it is easier to induce ferroptosis in these cells than in 
normal cells (7,8). Therefore, ferroptosis can be a potential 
cancer therapy approach. Yang et al. found that promoting 
ferroptosis by inhibiting glutathione peroxidase 4 (GPX4) 
activity and/or promoting glutathione (GSH) metabolism is 
effective for treating triple-negative breast cancer. This not 
only induced tumor cells death but also attenuated tumor 
drug resistance (9). Gao et al. demonstrated that during 
lipstatin-1 mediated degradation of nuclear factor-erythroid 
2-related factor 2 (NRF2), ferroptosis occurs in colorectal 
cancer cells, which inhibits tumor growth in vivo (10). 
Specific knockout of the transferrin gene in the hepatocyte 
of mice with high Fe2+ diet increased the possibility of liver 
fibrosis induced by ferroptosis, and knockout of solute 
carrier family 39 member 14 (SLC39A14) expression in the 
ferroptosis pathway or treatment with ferroptosis inhibitors 
could effectively alleviate liver fibrosis (11). Insufficient 
GPX4 promoted ferroptosis including bronchial and 
kidney epithelial cells and neurons (12). Taken together, 
the results suggest that weather tumor cells or normal cells 
are sensitive to ferroptosis. Hence, mediating ferroptosis in 
cancer cells combined with current treatment methods can 
improve the efficacy of cancer therapy.

Fumarate hydratase (FH) is a key enzyme in the 
tricarboxylic acid (TCA) cycle, regulation of FH activity 
is therefore life-or-death for fumarate turn over and 
mitochondrial metabolism (13). Its deficiency causes several 
changes in cellular metabolism (14), such as decreased 
expression of divalent metal transporter 1 (DMT1) and 
reduced cytoplasmic Fe2+ content (15,16). Renal carcinoma 
with FH deficiency is resistant to ferroptosis (17), and 
hence, its tumorigenesis and metastasis have attracted 

attention (18,19). FH deficiency-induced tumors, which 
are mostly hereditary (20), are highly malignant and show 
early metastasis, which significantly affects the patient’s 
quality of life (21). There is no effective treatment for  
FH-related tumors except early prevention and surgery (22). 
Therefore, triggering ferroptosis in these tumor cells might 
be a promising approach for cancer treatment. However, 
FH-deficient tumor cells are resistant to ferroptosis, which 
requires a better understanding of the ferroptosis pathway 
for the treatment of FH-associated tumors. We present this 
article in accordance with the Narrative Review reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-24-21/rc).

Methods

We searched the PubMed databases for original research 
and review articles published in English languages between 
January 2000 and March 2024. The following search 
terms were employed: (“Cancer”) AND (“FH-deficient 
cancer” OR “Fe2+” OR “Ferroptosis” OR “Pathology” OR 
“Prognosis”). Articles cited in the relevant articles were also 
examined as potential sources of information. The database 
resources are summarized in Table 1.

Ferroptosis and tumors

Ferroptosis is a recently discovered non-apoptotic cell 
death program, which is catalyzing the lipid peroxidation 
of unsaturated fatty acids in the cell membrane leading to 
cell death, and is closely related to Fe2+ content (23,24). The 
main underlying mechanism of ferroptosis is the induction 
of unsaturated fatty acid peroxidation by excessive Fe2+ 
concentrations, leading to cell membrane damage (25). 
To increased concentration of reactive oxygen species 
(ROS) and reduced antioxidant (such as GSH) levers are 
prerequisites for ferroptosis (26). Increased Fe2+ cause excess 
production of ROS, by participating in the H2O2 reaction 
(Fenton reaction), which causing DNA and protein damage, 
disrupting cell membranes, and causing cell death (27).  
ROS accumulation promotes the translocation of NRF2 
from the cytoplasm to the nucleus, where it activates 
antioxidant enzymes, such as heme oxygenase-1 (HO-1),  
to exert antioxidant effects and inhibit ferroptosis (28). 
Mitochondria, the core organelles that control metabolism 
and produce ROS, are closely related to ferroptosis (17). 
Ferroptosis involvement in multiple human diseases has 
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been established, such as gastric cancer, kidney diseases, 
and Alzheimer’s disease (29-31). These findings suggest 
that modulating ferroptosis might be potential therapeutic 
approaches in treating cancer or other diseases. According 
to the existing literature, promoting ferroptosis can inhibit 
tumors development through different pathways, such 
as consume intracellular GSH, and induce ferroptosis in 
non-small cell lung cancer cells (32). It promotes lipid 
peroxidation and fosters ferroptosis by inducing ROS 
accumulation, when gemcitabine is used to treat pancreatic 
cancer (33). Increasing Fe2+ in the labile iron pool (LIP) 
induces ferroptosis in breast cancer cells (34). As the 
survival, metastasis, and drug-resistance mechanisms 
of tumor cells are closely related to ferroptosis (35-37), 
regulating ferroptotic signaling pathways can control 
tumors growth.

FH and tumors

Molecular structure and function of FH

FH is widely distributed in living body, one is the dimer 
containing iron-sulfur clusters (4Fe-4S), which is oxygen 
sensitive, heat stable and iron dependent. The second class, 
tetramers, present in human and other eukaryotic cells, have 
a molecular weight of approximately 200 kDa and do not 
carry the cofactor iron (38). FH, involved in the TCA cycle, 
catalyzes reversible hydration between fumarate and malate 
in both plants and animals (39,40). In the mitochondria and 
cytosol of mammalian cells, there are two isoenzymes with 
the same amino terminus. FH is located in the mitochondria 
in a tetramerc form, where it is crucial for the TCA cycle 
and cellular respiration. In the nucleus, FH is involved in a 
nonclassical TCA cycle of metabolic-epigenetic circuits (40). 

Although different domains on FH have been shown to 
have different functions, it has not been fully explored yet.

Mutations in FH, which are hereditary, can terminate 
protein synthesis (41). Mutations in FH genes are not 
necessarily pathogenic (42), but FH tetramerization is 
necessary for enzymatic activity (43). Pathogenic FH 
mutations might occur via the following two mechanisms: 
first, a mutation in the catalytic site most likely in Llys477, 
can affect enzyme binding and/or decrease the FH activity 
(41,44). Second, a mutation can interfere with the formation 
of quaternary structure, can impair FH activity. Experiments 
reconstructing human recombinant FH mutants have shown 
that defects in the quaternary structure render the enzyme 
inactive (45). This indicates that the enzyme is inactivated 
due to improper folding in the quaternary structure, which 
affects the binding site in the enzyme’s active center, than 
changes in the primary structure.

FH in the TCA cycle

During the TCA cycle, acetyl-CoA (come from glucose, 
fatty acids as well as amino acids) is completely oxidized 
into water and carbon dioxide by cells to release large 
amounts of energy and produce adenosine-5’-triphosphate 
(ATP), flavin adenine dinucleotide (FADH2), and produce 
nicotinamide adenine dinucleotide (NADH) to support 
different physiological activities (46). Although energy is 
mainly produced via glucose metabolism in both tumors 
and normal cells, in tumor cells, it resembles the glycolysis 
pathway—and produces lactate as the end product. That 
is known as the Warburg effect (47). This causes a high 
accumulation of lactate in most tumor cells, which is 
associated with increased resistance to ferroptosis inducers, 

Table 1 The search strategy summary

Items Specification

Date of search January 12th 2023–March 31st 2024

Databases PubMed

Search terms used (“Cancer”) AND (“FH-deficient cancer” OR “Fe2+” OR “Ferroptosis” OR “Pathology” OR “Prognosis”)

Timeframe 2000–2024

Inclusion and exclusion 
criteria

Inclusion criteria: original articles, review articles, case reports, written in English only

Exclusion criteria: letters to the editor, non-English language

Selection process P.C. independently conducted the search

FH, fumarate hydratase.
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such as RSL3, erastin, and sorafenib (48). Research results 
suggest that the diminished FH activity renders the 
cellular ATP production less dependent on the TCA cycle 
and more dependent on glycolysis (13). Moreover, FH-
deficient cells exhibit increased lactate accumulation due to 
disruption in the TCA cycle pathway. Lactate significantly 
enhances oxidative stress resistance and promotes DNA 
damage repair through ROS signaling (49). Meanwhile, 
as aerobic glycolysis produces less energy, tumor cells can 
only meet their metabolic demands by increasing glucose 
intake. Simultaneously, this produces excessive reduced 
nicotinamide adenine dinucleotide phosphate (NADPH), 
which is an antioxidant. This prompts the conversion 
of oxidated GSH to its reduced form, protect cells from 
the damage of ROS (50). NADPH suppresses oxidizers 
and inhibits ferroptosis (51). Inhibition of NADPH 
production can promote ferroptosis (52). Further, in vitro 
experiments using UOK262 cell culture have shown that 
suppression of UOK262 cell proliferation in the absence 
of phosphogluconate dehydrogenase (PGD). When the 
pentose phosphate pathway (PPP) was impaired, and 
FH is essential for cell growth (53). The conversion of 
glucose to ribose-5-phosphate (R-5-P) which is essential 
for the synthesis of genetic material, also promotes the 
rapid growth of tumor cells. R-5-P can also be converted 
to fructose-6-phosphate (F-6-P) and glyceraldehyde-3-
phosphate (G-3-P), further providing energy for tumor 
cells.

The conversion of fumarate to malate by FH occurs 
in the mitochondria, which also promotes succinate 
accumulation during FH deficiency (54) (Figure 1A). 
Increased concentrations of succinate and fumarate, 
particularly the latter, are genetically toxic to cells, 
dramatically leading to the activation of oncogenic (55). 
Compared to 2-oxoglutarate, fumarate and succinate can 
competitively inhibit α-ketoglutarate (α-KG)-dependent 
dioxygenase, which are essential for DNA repair and 
promotes demethylation of DNA, RNA, and histones. The 
family of α-KG-dependent dioxygenase includes Jumonji 
C-domain lysine demethylases (JmjC-KDMs), ten-eleven 
translocation (TET) DNA cytosine-oxidizing enzymes, and 
others. TET catalyze oxidation of methylated cytosines 
on DNA, thereby facilitating DNA demethylation (56,57). 
JmjC-KDMs can demethylate on histone tails. DNA 
hypermethylation contributes to tumorigenesis, which is 
associated with abnormal gene expression (58). TET also 
can inhibition of RNA demethylation enhances tumor cell 

migration (59,60). Taken together, FH deficiency inhibits 
DNA repair and promotes tumor development.

FH in the amino acid metabolism

Citrul l ine and aspart ic  acid can be generated to 
argininosuccinate by argininosuccinate synthetase, and then 
fumarate and arginine can be catalyzed by argininosuccinate 
lyase. It has been widely reported that fumarate can directly 
bind to GSH, resulting in decrease in reactive GSH (61). 
Knockdown of argininosuccinate lyase (ASL) gene prevents 
fumarate biosynthesis, leading to an elevated GSH level 
and counteracting ferroptosis in the presence of arginine. 
We identify a shared metabolic signature of TCA cycle 
dysfunction in mouse, whereby enhanced GSH synthesis is 
accompanied by a concomitant impairment in de novo proline 
and aspartate synthesis (62). NADPH has been implicated 
as the major cofactor supporting mitochondrial proline 
biosynthesis, mitochondrial NADPH is essential to enable 
proline biosynthesis and short of FH could partly explain the 
decrease in proline (63). Altogether, these findings suggest 
that arginine deprivation elevates GSH and protect cells 
against ferroptosis through reducing fumarate biosynthesis 
(64). Arginine presence reduces intracellular GSH, without 
affecting GPX4 expression. In the current study, which 
reveals the ferroptosis regulation by the arginine metabolism 
(64). In the absence of FH, fumarate accumulation inhibits 
this metabolism. Further, exogenous synthesis of arginine 
and fumarate form argininosuccinate reverses this reaction 
and reduces cytotoxicity (Figure 1B). In summary, the data 
implying that arginine manipulated ferroptosis in a GPX4-
independent manner (64). Re-expression of FH in FH-
deficient mice is essential for reducing intracellular fumarate 
concentration. Arginine is essential for FH-deficient cells 
as it alleviates increased GSH concentrations in these cells. 
In mice tumor allogeneic grafts, the reduction of arginine 
inhibits tumor cells growth (65). Moreover, the uptake of 
arginine efficient in FH-deficient cells than in wild-type 
cells (66). Based on this, reducing the intracellular arginine 
content can alleviate FH-deficient conditions.

In the study, we found that growth of UOK262 cells 
with glutamine (Gln) and asparagine (Asn) resulted in a 
nearly 2-fold increase in intracellular fumarate levels. We 
propose that Gln and Asn are important carbon or nitrogen 
source for the production of other amino acids and for the 
TCA cycle (67). The lack of energy or glutamate further 
suppresses tumor growth. Gln uptake flux was markedly 
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Figure 1 Possible mechanism of ferroptosis and fumarate hydratase-related tumors. (A) Regulation mechanism of FH in TCA cycle. 
When the activity of FH decreases, the TCA cycle is inhibited, the concentration of fumarate increases, the concentration of succinate 
increases, and the concentration of malate decreases. (B) Regulation mechanism of FH in UC. The increase in fumarate concentration, 
in turn, disrupts the UC and prevents the conversion of argininosuccinate to arginine and fumarate. Fumarate increases cell toxicity and 
promotes tumors formation. (C) Lipid peroxidation. The TCA cycle is blocked, the ACE-CoA content increases, promoting the conversion 
of PUFAs to LOOHs, and GPX4 promotes the conversion of LOOHs to LOHs, thus inhibiting the occurrence of ferroptosis. (D) GSH-
GPX4 pathway. The inactivation of FH inhibits the metabolism of α-KG and promotes BCAAs to produce nitrogen sources and carbon 
sources for tumor cells through BCAT1 and provides energy for them to compete with the body for the utilization of amino acids; also, 
the glutamate produced by GSH-GPX regulates the axis to produce glutathione, which inhibits the occurrence of ferroptosis and provides 
necessary nutrients for tumors growth and proliferation. (E) NRF2/HO-1 pathways. In the TCA cycle, heme synthesis is promoted. In 
the cytoplasm, fumarate increases the activity of HO-1 and accelerates the degradation of hemoglobin, and leads to the increase of Fe2+ in 
the LIP, which leads to the synthesis of iron-sulfur clusters and promotes DNA repair. (F) Ferrous ions metabolism. Fumarate reduces the 
concentration of Fe2+ in the LIP and inhibits the occurrence of ferroptosis by inhibiting DMT1. At the same time, the increase of ferritin 
synthesis and the decrease of Fe2+ production inhibit ferroptosis and further synthesis of fumarate, which further affect the process of the 
TCA cycle and the UC. FH, fumarate hydratase; TCA cycle, tricarboxylic acid cycle; UC, urea cycle; ACE-CoA, acetoacetyl coenzyme 
A; PUFAs, polyunsaturated fatty acids; LOOHs, lipid peroxides; GPX4, glutathione peroxidase 4; LOHs, lipid hydroperoxides; GSH, 
glutathione; α-KG, α-ketoglutarate; BCAAs, branched-chain amino acids; BCAT1, branched-chain aminotransferase 1; NRF2, nuclear factor  
E2-related factor 2; HO-1, heme oxygenase-1; LIP, labile iron pool; DMT1, divalent metal transporter 1; AMPK, AMP-activated protein 
kinase; ARG, arginine; AS, argininosuccinate; CIT, citrulline; CITR, citrate; CO, carbon monoxide; Cys, cysteine; Glu, glutamate; GSSH, 
oxidized glutathione; IRP2, iron regulatory protein 2; ISO, isocitrate; MAL, malate; OAA, oxaloacetic acid; ORN, ornithine; STEAP3,  
six-transmembrane epithelial antigen of prostate 3; SUC, succinate; SUC-CoA, succinyl-coenzyme A; Tf, transferrin; TfR1, transferrin 
receptor 1.

AB

C

D

E

F



Translational Cancer Research, Vol 13, No 6 June 2024 3131

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(6):3126-3141 | https://dx.doi.org/10.21037/tcr-24-21

decreased by 36% in knockdown of FH cells, research 
suggesting the occurrence of alterations of amino acid 
metabolism or TCA cycle metabolism (13). During amino 
acid metabolism, fumarate is an intermediate product 
of phenylalanine and tyrosine metabolism. Therefore, 
FH deficiency can block these pathways, affecting amino 
acid metabolism and nucleotide synthesis, resulting in 
hyperammonia. Increased fumarate concentrations affect 
the metabolism of α-KG and Gln. α-KG acts as a key 
substrate for the TCA cycle to produce ATP, amino acids, 
nucleotides, and lipids in cancer cells (68). Through 
glutaminase (GLS1) and glutamate dehydrogenase (GDH), 
it produces glutamate and ammonia (NH3), which can 
enter the mitochondria to produce energy. Further evidence 
of Gln is the major energy source in some malignancies 
(69-71). FH-deficiency disrupts the TCA cycle. Tumors can 
be suppressed by controlling the Gln concentration in cells 
and the uptake of branched-chain amino acids (BCAAs).

Potential mechanism of action of FH in tumors

The presence of fumarate makes cells highly dependent 
on glucose and creates a pseudo-hypoxic environment. 
This enhances the cells’ antioxidant capacity, providing 
suitable environment for tumor cells and promoting tumor 
growth (72). Further, the increase in intracellular glutamate 
concentration can inhibit ferroptosis. It promotes cystine 
into the cell through system Xc, which increases the activity 
of GPX4 (73). GSH acts as a co-factored for GPX4, which 
promotes the survival of tumor cells by converting lipid 
hydroperoxide into non-toxic fatty alcohols.

Renal tumors caused by mutations of the FH gene, occur 
primarily in young adults, who have a short survival rate 
(74,75). The loss of FH is associated with the development 
of hereditary leiomyomas and renal cell carcinomas 
(HLRCCs). It is uncertain whether other carcinogenic 
factors are required (76). FH-related tumors can be caused 
by mutations in the FH gene. R190H mutation is the 
most commonly described FH variant in renal cell cancer  
(RCC) (42). On the cBioPortal website, a mutation rate 
of 6.45% in the FH gene was observed in 62 patients with 
unclassified renal cell carcinomas. Most of these mutations 
occurred at G401V and S41T. However, a study consisting 
of 35 patients with clear cell carcinomas showed a mutation 
rate of only 2.9% for the FH gene, and the mutation site 
was N64C (Table 2).

A homozygous mutation in FH causes fumarateuria, 

an autosomal recessive condition (96), characterized by 
impaired growth, dystonia, epilepsy, and cerebral atrophy, 
eventually causing death (97). This disease can only be 
treated symptomatically as there is no proper treatment  
for it.

FH chromosome 1q42.3-43 mutations cause HLRCC, 
such as uterine leiomyomas (ULMs), RCC, cutaneous 
leiomyomas (CLMs), bladder cancer, and Leydig cell 
tumors. However, the last two tumors are less common (72).  
HLRCC varies widely among families and even among 
individuals within a family (98). There are various 
histopathologic features associated with FH-deficient 
tumors, including peri-nucleolar halos, bizarre nuclei, 
eosinophilic inclusions, and stag-horn vasculature (99). 
Early diagnosis of cancer is an efficient strategy to 
improve the survival rate of patients and prevent tumor  
progression (100). Therefore, it is imperative to prevent, 
diagnose, and treat HLRCC at an early stage.

In most cases, women with HLRCC syndrome present 
with ULMs, a dominant genetic disorder (101), associated 
with atypical pathological characteristics (102). In women 
of childbearing age, uterine-like mass is the most common 
benign tumor (103). FH-mutated ULM accounts for 1% 
of all leiomyomas, while FH-mutated uterine fibroids are 
often associated with loss of FH expression, as shown by 
immunohistochemistry (104). However, HLRCC cannot be 
diagnosed solely based on immunohistochemical staining 
as mutations in some parts of the FH gene do not affect the 
expression of the corresponding protein in more than 1/3rd 
of patients (105). The cells exhibit various growth patterns, 
such as papillary, tubular papillary, and infiltrative types. 
Morphologically, the nucleoli have a body-like appearance 
with gaps surrounding them (21,106,107). In FH sub-type 
leiomyomas, NRF2 target genes are activated, and NRF2 
plays a vital role in fighting ferroptosis. In order to prevent 
misdiagnosis and to delay the progression of the disease, 
patients with high suspicion of HLRCC should undergo 
genetic testing. Earlier medical and surgical treatment is 
recommended for women with HLRCC syndrome (108), 
in order to prevent further pathogenicity of FH gene 
mutations.

CLM is a benign tumor that usually occurs in people 
approximately 25 years of age. Both single and multiple 
lesions can be seen, rarely occurring in the genital area, 
areola smooth muscles, and vascular smooth muscles (109). 
They are light brown protuberant nodules that measure 
approximately 1 cm. Although the symptoms are not 
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Table 2 Relationship between fumarate hydratase and tumors

FH-deficient 
tumors

Patient 
number

Frequent 
(%)

Mutation site Potential mechanisms Related molecules References

URCC 62 6.45 G401V, S41T, 413DUB Invasion mucin production, EMT CD10, PAX2, CAIX, CK7, 
AMACR

(77-79)

ccRCC 35 2.9 N64C DNA/RNA methylation, abnormal 
histone modifications, migration, 
tumor metastasis, angiogenesis, 
cell adhesion

IL-17, BCAM, BAP1, 
MECP2, MBD3, TET2, 
PBRM1, VHL

(80,81)

pRCC 283 1.42 X464-splice, Q439 EMT, VEGF, mTOR pathway, 
chemotaxis, cell proliferation

SETD2, Merlin, KDM6A, 
FAT1, BAP1, PBRM1, 
TP53, SMARCB1, NRF2, 
STAG2, TFE3, CD133

(82,83)

WT 657 0.0 – MAPK pathway, EMT TP53, CD56, CCT, IGF2, 
STAT3, CCT4

(84,85)

csCC 39 7.69 H204N Invasive, metastatic, MAPK 
pathway, JAK/STAT pathway, SHH 
pathway

PD-1, EGFR, HER-2, 
TP53, NF-κB, RAS, FGFR, 
PDGFR, SHHP

(86,87)

CM 444 4.74 S49F, F497L HIF-1α/NOL7/RAS/PI3K/PKB/ERK 
pathway, chemokine signaling 
pathway, apoptosis, Toll-like 
receptor signaling pathway, MAPK 
pathway, migration

DR6, TP53, RAS, AIM2, 
MMP2, CASP3, GSDMD, 
IFN, EGFR

(88,89)

UCEC 529 6.05 R87H, D179N, E488K, P369S, 
A104T, R343Q, P359S, A104T, 
R343Q, P359S, H235R, A320T, 
S399I, V435M, G97S, E224Q, 
V255L, N284H, E499K,  
X413-splice

Migration, mTOR/4EBP1 pathway, 
metastasis, invasion, RTK-RAS 
pathway

USP5, ARID1A, MUC16, 
PTEN, ALDH, TP53, 
KMT2D, ER, OBSCN, 
GATA3, PAX2, FDX1, 
CD10, DLAT, TTN

(90,91)

UCS 22 4.55 V206L EMT, phosphatidylinositol-3-
kinase pathway

POLE, TP53, PTEN,  
HER-2, RAS

(92,93)

EC 197 3.05 K61N, Y110H Defects in DNA repair PI3K-PKB-
mTOR pathway

POLE, TP53, HER-2, 
PAX2, PTEN, TLRs

(94,95)

FH, fumarate hydratase; URCC, unclassified renal cell carcinoma; EMT, epithelial-mesenchymal transition; CD10, cluster of differentiation 10; PAX2, 
paired box 2; CAIX, carbonic anhydrase IX; CK7, cytokeratin 7; AMACR, alpha-methylacyl-CoA racemase; ccRCC, clear cell renal cell carcinoma; 
IL-17, interleukin 17; BCAM, basal cell adhesion molecule; BAP1, BRCA1-associated protein 1; MECP2, methyl CpG binding protein 2; MBD3, 
methyl CpG binding domain 3; TET2, Tet methylcytosine dioxygenase 2; PBRM1, polybromo 1; VHL, Von Hippel-Lindau; pRCC, papillary renal cell 
carcinoma; VEGF, vascular endothelial growth factor; mTOR pathway, mammalian target of rapamycin pathway; SETD2, SET domain containing 2;  
Merlin, moesin-ezrin-radixin-like protein; KDM6A, lysine-specific demethylase 6A; FAT1, FAT atypical cadherin 1; TP53, tumor protein 53; 
SMARCB1, SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily B, member 1; NRF2, nuclear factor-erythroid 
2-related factor 2; STAG2, stromal antigen 2; TFE3, transcription factor E3; CD133, cluster of differentiation 133; WT, Wilms’ tumor; MAPK pathway, 
mitogen-activated protein kinase pathway; CD56, cluster of differentiation 56; CCT, chaperonin-containing tailless; IGF2, insulin-like growth 
factor 2; STAT3, signal transducer and activator of transcription 3; CCT4, chaperonin containing tailless complex polypeptide subunit 4; csCC, 
cutaneous squamous cell carcinoma; JAK/STAT pathway, Janus kinase/signal transducer and activator of transcription pathway; SHH pathway, 
Sonic Hedgehog pathway; PD-1, programmed cell death protein 1; EGFR, epidermal growth factor receptor; HER-2, human epidermal growth 
factor receptor-2; NF-κB, nuclear factor-κ-binding; RAS, renin-angiotensin system; FGFR, fibroblast growth factor receptor; PDGFR, platelet-
derived growth factor receptor; SHHP, Sonic Hedgehog protein; CM, cutaneous melanoma; HIF-1α, hypoxia inducible factor-1α; NOL7, nucleolar 
protein 7; PI3K, phosphoinositide3-kinases; PKB, protein kinase B; ERK, extracellular signal-regulated kinase; DR6, death receptor 6; AIM2, absent 
in melanoma 2; MMP2, matrix metallopeptidase 2; CASP3, caspase 3; GSDMD, gasdermin D; IFN, interferon; UCEC, uterine corpus endometrial 
carcinoma; 4EBP1, 4E-binding protein 1; RTK, receptor tyrosine kinase; USP5, ubiquitin specific peptidase 5; ARID1A, AT rich interaction domain 
1A; MUC16, mucin 16; PTEN, phosphatase and tensin homolog deleted on chromosome ten; ALDH, acetaldehyde dehydrogenase; KMT2D, 
histone-lysine N-methyltransferase 2D; ER, estrogen receptor; OBSCN, obscurin; GATA3, GATA binding protein 3; FDX1, ferredoxin 1; DLAT, 
dihydrolipoamide acetyltransferase; TTN, titin; UCS, uterine carcinosarcoma; POLE, polymerase-epsilon; EC, endometrial cancer; TLRs, Toll-like 
receptors.
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obvious, these nodules on the skin can be painful under 
harsh environments, such as emotional stress and cold 
temperatures (110-112).

FH-RCC tumors account for 19–30% of all HLRCC. 
Although the number of FH-RCC mutations usually low, 
widespread genomic changes are observed and some genes 
are missing entirely (113). Currently, due to the lack 
of effective treatment for FH-RCC, DNA sequencing 
is recommended for patients who are suspected of 
this condition. Further, early prevention and surgery 
should be performed immediately after the diagnosis 
(114). As RCC is aggressive during early metastasis, 
treatment is  usually ineffective (67,115,116),  and 
immediate surgical resection should be performed (117).  
FH-RCC is highly immunogenic, involving high T-cell 
infiltration. Therefore, detecting immune targets in 
tumors, developing drugs for these targets and promoting 
immune cells in the body to recognize the corresponding 
tumor cells for clearance are some therapeutic approaches 
(67,118). We will discuss how ferroptosis can influence 
the growth of FH-associated tumors in the following 
section.

Ferroptosis in FH-deficient tumors

FH-deficient tumors inhibit lipid peroxidation in 
ferroptosis

Lipids are essential for maintaining cell function and 
membrane structure (119). During ferroptosis, the lipid 
bilayer is disrupted due to increased peroxidation PUFAs, 
affecting normal cell membrane functions. GPX4 reduces 
cytotoxic peroxides to their corresponding alcohols, and 
regulates lipid peroxidation. Inhibition of GPX4 activity can 
exacerbate lipid peroxidation and promote ferroptosis (120). 
Contrarily, it suppresses ferroptosis. 

In FH-deficient cells, the acetyl-CoA left over after the 
TCA cycle is used for fatty acid synthesis. Peroxidation 
of PUFAs on the membrane phospholipids contributes 
to ferroptosis. Studies have shown that the abundance 
and localization of PUFAs in cells influence the degree of 
lipid peroxidation, thus affecting ferroptosis (120-122). 
Simultaneously, lipid peroxidation can directly cooperate 
with GPX4 synthesis, which eventually inhibits ferroptosis 
(Figure 1C) (123). In conclusion, to varying degrees, 
metabolic pathways can influence the effect of ferroptosis 
on tumor cells.

FH-deficient tumors inhibit ferroptosis through the GSH-
GPX4 pathway

System Xc consists of heterodimers [the light chain subunit 
solute carrier family 7 member 11 (SLC7A11) and the heavy 
chain subunit solute carrier family 3 member 2 (SLC3A2)]. 
Ferroptosis on the cell membrane can be prevented via a 
1:1 exchange of cystine and glutamate in and out of the cell 
through system Xc. The amino acids glutamate, cysteine, 
and glycine participates in GSH synthesis and functions as 
a major antioxidant to neutralize cellular stress caused by 
ROS (124). As GSH is a key intracellular antioxidant, its 
depletion triggers ferroptosis. NADPH is known to inhibit 
ferroptosis by mediating the conversion of glutathione 
disulfide (GSSG) to GSH via GSSG reductase (52). It also 
promotes GPX4 activity to inhibit ferroptosis.

In FH-deficient cells, accumulate fumarate that 
complexes with GSH, thus depleting cells of NADPH and 
ultimately elevating ROS level (125). It is well-known that 
ROS can be detoxified by GSH. Meanwhile, Fe2+ levels 
decrease and NRF2 is elevated to promote overexpression 
of GPX4, which is the only known enzyme capable of 
scavenging lipid peroxides. It requires NADPH via GSH 
to degrade lipid peroxides (124). Inactivation of GPX4 is 
fatal in RCCs (126). In addition, cellular experiments have 
demonstrated that FH−/− tumor cells are more sensitive 
to ferroptosis inducers and regulate tumor cells growth 
through multiple pathways. Down regulation of GPX4 
activity accelerates tumor cell death through succinylation 
of GPX4 in FH−/− tumor cells. However, it also protects 
against ferroptosis by activating NRF2 and GSH activities 
and reducing Fe2+ concentration. Overall, multiple pathways 
are involved in the inhibition of ferroptosis in FH−/− tumor 
cells (127). These toxic lipid peroxides can be converted 
into non-toxic phospholipids by GPX4 to protect the cell 
membrane. Thus, system Xc is an effective antioxidant 
system for regulating ferroptosis, which reduces GSH and 
GPX4 production and promotes ferroptosis (128). The 
reduction of intracellular glutamate concentration inhibits 
system Xc, reducing GSH production, and promoting 
ferroptosis (129).  Oxidative stress promotes ROS 
production and excess ROS cause mitochondrial oxidative 
damage (130). The SLC7A11-GPX signaling axis is the core 
defense mechanism for ferroptosis in cells. After entering 
through system Xc, the intracellular cystine is used to 
synthesize GSH, which can promote GPX4 and inhibit lipid 
peroxidation (Figure 1D). Reducing the protein expression 
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level of SLC3A2 and SLC7A11 has been shown to inhibit 
system Xc activity. The overexpression of SLC7A11 
promoted GSH synthesis and inhibited ferroptosis, 
indicating that system Xc is integral in ferroptosis-treated 
diseases (41). System Xc activity is closely related to the 
intracellular antioxidant capacity. The lower the activity, 
the weaker the cellular antioxidant capacity (131). Previous 
studies have shown that the increase in GPX can promote 
chemotherapeutic resistance in tumor cells. Whereas 
the inactivation of GPX causes ferroptosis in tumor 
cells, restraining tumor metastasis and recurrence (132).  
Therefore, when GPX4 is reduced, it can inhibit the GSH-
GPX4 pathway, which suppresses drug resistance and 
increases ferroptosis in tumor cells.

FH-deficient tumors inhibit ferroptosis through NRF2/
HO-1 pathway

To control the high ROS level, FH-deficient cells increase 
the antioxidant transcription factor NRF2 (133). NRF2, a 
crucial regulator of ferroptosis, also maintains intracellular 
redox status. NRF2 target genes act through the p62-Kelch-
like ECH-associated protein 1 (KEAP1)-NRF2 pathway 
to prevent lipid peroxidation and iron accumulation, thus 
inhibiting cellular ferroptosis. When translocated into the 
nucleus, NRF2 binds to small Maf (sMaf) and thus increases 
antioxidant response elements (AREs) transcription and 
promotes oxide metabolism (134). Tumor cells lacking 
NRF2 are sensitive to ferroptosis (135). NRF2 activity is 
mainly regulated by the redox sensor protein KEAP1, which 
is usually hyperactive in human tumors and contributes to 
tumor progression (136). In HLRCC, NRF2 coordinates 
cellular responses to oxidative stress (137) and is critical for 
tumor growth and survival. Fumarate accumulation elevates 
the levels of NRF2, which acts on HO-1 and increases the 
synthesis of iron-sulfur clusters to promote DNA damage 
repair (Figure 1E). Wang et al. have shown that SLC7A11, 
a transcriptional target of NRF2, along with other 
related genes might be involved in preventing ferroptosis 
by transporting cystine into cells and increasing GSH 
concentration (138). In HK-4 cells overexpressing NRF2, 
the expression of GPX4 increased at both transcription and 
translation levels (139). A similar situation in HEK293T 
cells upregulated NRF2 binds to the antioxidant response 
elements in GPX4 and SLC7A11, subsequently increasing 
their expression and inhibiting ferroptosis (140). Therefore, 
reducing NRF2 expression might be a potential approach to 
treat FH-related tumors.

In bladder cancer cells, HO-1 expression increased 
with increasing abietic acid concentration both in vitro and 
in vivo. This promoted ferroptosis and inhibited tumor 
growth. However, the HO-1 gene knockout increased 
GPX4 expression, which promoted tumor cells growth. 
HO-1 activity is essential for cells death (141). Certain 
stimuli can upregulate NRF2 in the nucleus, which can bind 
to the HO-1 promoter and increase HO-1 expression (142). 
However, in ovarian cancer cells, the carboxymethylated 
pachyman induces ferroptosis by inhibiting HO-1 
expression to promote tumor cell death (143). Therefore, 
the effect of HO-1 on ferroptosis varies in different cells. 
NRF2 is upregulated in both FH-deficient cells and 
mouse models. Translocation of activated NRF2 from 
the cytoplasm to the nucleus increases HO-1 expression, 
which is a transcriptional target of NRF2. Knocking down 
NRF2 prominently decreases HO-1 expression, regulating 
lipid peroxide production (144). Further, silencing HO-1 
results in the upregulation of GPX4, which further inhibits 
ferroptosis to promote tumor growth. HO-1 is a powerful 
antioxidant enzyme that effectively clears ROS activity by 
producing porphobilinogen (reduced to bilirubin), which is 
beneficial for various diseases and normal cells (28,142,145). 
In FH-deficient cells, knocking out HO-1 using siRNA 
causes cell death (146). Studies showed that inhibiting of 
HO-1 activity accelerated FH-deficient cell death in FH-
deficient mouse models. Elevated expression of HO-1 is 
observed in various types of tumors. Therefore, inhibition 
of HO-1 expression can be a breakthrough point in cancer 
treatment (146). HO-1 promotes ferroptosis by increasing 
Fe2+ production under certain conditions (119). These 
results suggest that inhibition of HO-1 activity might 
control FH-deficient tumors. In HLRCC, overexpression of 
HO-1 increased the Fe2+ content in the LIP, which activated 
ferroptosis and caused tumor cells death. This information 
indicates that the high expression of HO-1 is crucial for the 
survival and development of tumor cells. Simultaneously, 
elevated HO-1 promotes the production of antioxidants 
to facilitate cells to resist oxidative stress. Therefore, this 
therapeutic approach is still worth considering.

FH-deficient tumors inhibit ferroptosis through ferrous ion 
metabolism 

Elevated Fe2+ concentration is the primary causative 
factor. This can be achieved by increasing the uptake 
and decreasing the consumption of Fe2+ (138). In FH-
deficient tumors, fumarate has been shown to increase 
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AMP-activated protein kinase (AMPK) phosphorylation. 
Lowering AMPK levels in cells (147), results decreased 
expression of DMT1, which, in turn, reduces the Fe2+ 
content in the LIP. While accelerating the transport of Fe2+ 
from the LIP to the mitochondria to produce heme and 
iron-sulfur clusters to reduce Fe2+. Iron-sulfur clusters act as 
cofactors for DNA repair (148), contributing to the repair 
of the genetic material in tumor cells and promote tumor 
growth and metastasis. 

Iron regulatory proteins 1 and 2 (IRP1/2) can regulate 
LIP. IRP2 inhibits the expression of ferritin light chain 
and heavy chain1 (FTL/FTH1). In FH-deficient cells, 
it promotes the succinylation of IRP2 and increases the 
expression of FTL and FTH1. Further, increased NRF2 
promotes the downstream factors FTL and FTH1 resulting 
in increased ferritin in HLRCC, decreased cytoplasmic Fe2+ 
content, and inhibition of iron-sulfur-containing metabolic 
(Figure 1F) (41). This pathway further lowering the activity 
of ferroptosis and promoting the proliferation and growth 
of tumor cells.

Conclusions

Promoting ferroptosis is an effective way to kill tumor cells. 
FH deficient cells resist ferroptosis through the activities 
of various factors, such as GSH, SLC7A11, GPX4, FTL, 
FTH1, p62, KEAP1, and HO-1. Treatment approaches 
for FH-deficient tumors should include inducing lipid 
peroxidation, inhibiting the activities of GPX4 and HO-1, 
increasing Fe2+ concentration, and promoting ferroptosis.

Recent studies on the roles of ferroptosis in tumors have 
provided broad prospects for the diagnosis and treatment of 
cancer. However, several limitations remain to be addressed 
(8,149). (I) Given the complexity of ferroptosis and its function 
in cancer cells, it is necessary to further explore the roles of 
specific upstream mechanisms. As tumor cells can directly 
or indirectly reshape the tumor microenvironment through 
ferroptosis. (II) It is challenging to determine the mechanism of 
ferroptosis based on the indicators in the internal environment. 
Moreover, the interaction of ferroptosis with other cell death 
pathways, synergistic or antagonistic, remains unknown. 
Therefore, finding common regulatory factors affecting cell 
survival is important. (III) Several biological nanomaterials, 
such as an iron-metal-organic framework, have been shown 
to release high concentrations of Fe2+ and accelerate cell 
membrane rupture upon reaching the tumor site. Both in vitro  
and in vivo experiments have shown that increasing the 

intracellular Fe2+ can induce tumor cells death. Therefore, 
effectively enhancing ferroptosis in tumor cells can significantly 
improve the therapeutic effect (150). However, the cancers in 
which ferroptosis has a significant effect are still unclear.

More relevant studies are needed to explore the 
mechanism between ferroptosis and FH-deficient tumors 
in the future. Nevertheless, our findings provide ideas for 
clinical diagnosis and treatment.
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