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Abstract.—The recent explosion in the availability of genetic sequence data has made large-scale phylogenetic inference
routine in many life sciences laboratories. The outcomes of such analyses are, typically, a variety of candidate phyloge-
netic relationships or tree topologies, even when the power of genome-scale data is exploited. Because much phylogenetic
information must be buried in such topology distributions, it is important to reveal that information as effectively as pos-
sible; however, existing methods need to adopt complex structures to represent such information. Hence, researchers, in
particular those not experts in evolutionary studies, sometimes hesitate to adopt these methods and much phylogenetic
information could be overlooked and wasted. In this paper, we propose the centroid wheel tree representation, which is
an informative representation of phylogenetic topology distributions, and which can be readily interpreted even by nonex-
perts. Furthermore, we mathematically prove this to be the most balanced representation of phylogenetic topologies and
efficiently solvable in the framework of the traveling salesman problem, for which very sophisticated program packages
are available. This theoretically and practically superior representation should aid biologists faced with abundant data.
The centroid representation introduced here is fairly general, so it can be applied to other fields that are characterized by
high-dimensional solution spaces and large quantities of noisy data. The software is implemented in Java and available via
http://cwt.cb.k.u-tokyo.ac.jp/. [Centroid wheel tree; centroid representation; phylogenetic tree; probability distribution;
traveling salesman problem.]

In this era of 1000 sequenced genomes, it is routine
in most life sciences laboratories to search sequence
databases for evolutionarily related sequences and
build phylogenetic trees, which often become very
large. The most common outcomes of such analyses
are a variety of candidate tree topologies, even when
the power of genome-scale data is exploited (Ciccarelli
et al. 2006). More than one topology is usually produced
by a number of methods, for example, the traditional
bootstrap analysis (Felsenstein 1985) and the more
modern Bayesian Markov chain Monte Carlo method
(Huelsenbeck et al. 2001). Biologists today, therefore,
tend to be faced with more and more candidate phylo-
genetic topologies.

Figure 1 schematically illustrates two widely used
representations for summarizing phylogenetic topology
distributions. Consider a phylogenetic relationship of
four clades is investigated with three candidate topolo-
gies inferred as shown (Fig. 1a). The most commonly
adopted representation is to simply put bootstrap value
or posterior probability on each internal branch of the
“best tree”, which is usually the tree with the highest
likelihood or that created using the original sequence
alignment (Fig. 1b). These values are called “supports”,
defined as the proportion that the candidate topologies
contain the corresponding “splits”, that is, the bipar-
tition systems of all clades. An apparent drawback of
this representation is that it cannot convey information
on candidate splits that are absent from the best tree.
For example, although the second topology in Figure 1a
is actually supported almost as strongly as is the first,
Figure 1b does not reveal anything about it and focuses
only on the first topology. To avoid such potentially

misleading bias, researchers sometimes adopt another
common representation, the consensus tree (Fig. 1c).
This tree consists of splits with support greater than an
arbitrary value. However, this representation also fails
to reveal valuable information about the distribution.
Although neither the first nor the second topology in
Figure 1a is supported with enough confidence individ-
ually, they are still more strongly supported than that
shown on the third, but this information is not reflected
at all in Figure 1c.

To better represent topology distributions, three ma-
jor approaches have been intensively investigated. The
first is to simply provide reliability information on every
possible split, for example, in the form of bar graphs,
by abandoning use of geometrical structures. One of the
most established methods in this category is related to
spectral analysis (Hendy and Penny 1993; Charleston
1998). Given sequence or distance data, this method
estimates the support for every possible split by correct-
ing for the effects of parallel and multiple substitutions,
independently of the choice of a phylogenetic topol-
ogy. Then, the estimated support values are presented
as a bar graph along with a tree that best describes
the data. Hence, for splits that do not appear in this
tree, the phylogenetic relationships between them need
to be inferred by researchers. This becomes particu-
larly painstaking when clade numbers grow because,
in this case, the numbers of possible splits grow expo-
nentially and the relationships between them become
much more complicated. The second approach presents
multiple topologies instead of just one. Some methods
try to choose as few topologies as possible to repre-
sent the distribution (Wilkinson 1996; Stockham et al.
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FIGURE 1. Commonly used representations of phylogenetic topol-
ogy distributions. a) Three candidate topologies for the four clades
and their example occurrence probabilities. b) The best tree represen-
tation. c, d) Two possible consensus tree representations. They are
formally the same, though it is possible to develop a visualization
method that treats them as different. More specifically, (a) can be better
represented by (d) than (c) (see text).

2002; Bonnard et al. 2006), whereas others regard each
topology as a data point and project these points onto
some space to visualize the distribution (Hillis et al.
2005; Nye 2008). A similar drawback of these methods
is that they ultimately require researchers to investigate
the multiple topologies and combine their information,
by themselves, to interpret the distribution. The third
approach is the application of phylogenetic networks,
which try to visualize information within networks in-
stead of trees (Huson and Bryant 2006). This approach
comprises an array of sophisticated methods, includ-
ing so-called reticulate networks, which are particu-
larly effective in illustrating some specific evolutionary
events such as hybridizations, horizontal gene trans-
fers, and recombination (Huson and Kloepper 2005).
Nonetheless, phylogenetic networks also have sev-
eral drawbacks. First, from the viewpoint of biology,
trees would be still more appropriate than networks
for representing some basic aspects of evolution, such
as the evolution of species and most eukaryotic genes
(Galtier and Daubin 2008). Second, from the viewpoints
of mathematics and statistics, it is sometimes difficult
to interpret phylogenetic networks (Galtier and Daubin
2008). Complicating the situation is the fact that they are
based on evolutionary models that vary considerably
between individual methods (Huson and Bryant 2006)
and techniques whose statistical properties are not clear
(e.g., greedy algorithms; Holland and Moulton 2003;
Bryant and Moulton 2004; Huson et al. 2004). Finally,
from the viewpoint of intuitiveness, they can become
just complex, especially for non-experts of evolutionary
studies (see, e.g., Huson et al. 2004). In light of this, re-
searchers have sometimes hesitated to adopt the use of
phylogenetic networks.

In this paper, we propose the “centroid wheel tree”
(CWT) representation, which best reflects the entire
distribution of candidate phylogenetic topologies and
which can be interpreted intuitively even by nonex-
perts. The CWT is based on the sound mathematics
of “centroid representation”, which we introduce as
a theoretically balanced representation of probability
distributions. This is an extension of the “centroid es-
timation”, by which estimation is carried out with the
“centroid” of candidate solutions instead of the best so-
lution (Carvalho and Lawrence 2008). This technique
has recently been reported to be effective in bioin-
formatics when applied to problems characterized by
high-dimensional solution space and considerable noise
(Hamada et al. 2009; Joshi et al. 2009). We show that the
problem of finding the CWT can be solved within the
framework of the traveling salesman problem (TSP), a
rigorously studied branch of optimization problems for
which very sophisticated program packages are avail-
able (Applegate et al.). The name wheel tree is taken
from the English common name of Trochodendron ar-
alioides (an eudicot native to East Asia) for two of its
defining characteristics: leaves growing in wheel-like
shapes and a mixture of advanced and specialized char-
acters in the eudicot family.

FORMULATION AND PROPERTIES

Key Idea

The key idea behind the CWT is to assign special
meaning to circular orderings of branches around mul-
tifurcating nodes (i.e., nodes adjacent to ≥4 branches)
in consensus trees. These nodes are generated by col-
lapsing weakly supported edges to zero lengths while
the consensus trees are being built. Traditionally, in
the context of phylogenetic analysis, and in the wider
field of graph theory, only connectivity is considered
and such circular orderings in layout are usually ig-
nored. For example, the consensus trees in Figure 1c,d
have been treated identically. However, humans can
interpret the two trees differently. In Figure 1d, clade
human can be interpreted as more distant from opos-
sum than from mouse and dog. What is most important
is that, in this miniature data set from Figure 1a, human
appears next to opossum less frequently and would
be represented by Figure 1d more adequately than
by Figure 1c. Hereafter, we call such multifurcations
that consider circular orderings of the branches “wheel
nodes”, and consensus trees that contain wheel nodes
“wheel trees.”

Formulation

The concrete procedure for building CWTs is given in
Figure 2a. The procedure accepts phylogenetic trees con-
taining the same set of taxonomic units and first builds
a consensus tree with a given threshold. It can also ac-
cept weight values that reflect observed frequencies or
probabilities of the trees. Then, for each multifurcating
node (v) on the consensus tree, the best circular ordering
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FIGURE 2. Procedure for building CWTs. a) The procedure first builds a consensus tree with a given threshold. Then, all branches adjacent to
its multifurcating nodes are circularly ordered to best represent the topology distributions, as close branches in the input trees become successive.
This is done by calculating distance between each branch pair (in this example, one between a and d is 3; thick lines). The best orderings are
calculated as the solutions of the traveling salesman problem. b) For trees that do not contain all splits adjacent to each multifurcating node,
their positions are estimated by referring to the positions of the descendant taxa.

of the branches adjacent to v (v-branches) is calculated
through the following steps. First, for each branch pair
of v-branches, sum the distances (the minimum number
of edges) between the corresponding branch pairs over
all input trees. See the next paragraph for trees that do
not contain all splits of v-branches. Second, let these val-
ues be the “traveling cost” between each branch pair.
Third, solve the TSP tour that minimizes the total travel-
ing cost to obtain the best circular ordering of v-branches.
Intuitively, this traveling cost was designed to become
large if distant splits in the input trees are successive
around the wheel nodes. In other words, the TSP solu-
tion minimizing the total cost makes close splits in the
input trees successive as much as possible, embodying

the key idea described in the previous paragraph. After
repeating the above for all multifurcating nodes, finally
visualize the consensus tree by using the TSP circular or-
derings for branches around each multifurcation (wheel
node).

It is possible that the input trees contain a tree T that
does not contain all splits of v-branches. In this case, the
distances on T are defined by converting T into a set of
trees containing those splits (Fig. 2b). The basic idea is
that, for example, in Figure 2b, the branch leading to (e,f)
would be observed at the positions of taxa e and f with
the same probabilities. More precisely, for each branch b
of v-branches, collect all its descendant taxa on the con-
sensus tree by regarding v as the ancestor and choose
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one of them randomly. Then, mark the external branch
adjacent to this taxon on the tree T as corresponding
to b. After repeating these steps for all branches of v-
branches, remove all unnecessary parts from T (external
branches that are not marked and internal nodes that are
attached to only two branches). The distances between
each pair of v-branches are then calculated by using the
processed tree. Finally, by repeating the above steps for
all possible combinations of the taxa choice and aver-
aging the distances, the expected distance between each
split pair is obtained. Note that, if T contains all splits
of v-branches, the procedure above always results in the
same tree, in which topological relationships among the
branches corresponding to v-branches are the same as
in the original T. Therefore, this is a natural extension
of the original definition of distance, letting the circular
orderings reflect the information in the whole topology
distribution as much as possible.

It should also be noted that although trees are treated
as unrooted throughout this paper, it is not difficult
to root a CWT because it retains its tree shape and
our current implementation can actually accept rooted
trees (see Software Availability). The more precise pseu-
docode and formulation are given in the Appendix.

CWT is the Most Balanced Representation

In this section, we show that the CWT produced by
the procedure outlined above not only embodies the key
idea we sketched out but, mathematically, is the cen-
troid representation, which is the most balanced rep-
resentation of the topology distributions regarding the
loss functions we define below. We also provide an intu-
itive explanation in the last paragraph.

Let us first introduce the concept of the centroid rep-
resentation. Let θ, D, and P(θ|D) be unobserved data,
observed data, and the posterior probability of θ given
D, respectively. Traditionally, a maximum a posteri-
ori estimator θ̂MAP = argmaxθP(θ|D) is often adopted
to represent the whole distribution of candidate θ.
However, θ̂MAP may be an ineffective representation
of collections of small-probability solutions in high-
dimensional spaces with considerable noise (Carvalho
and Lawrence 2008), features that are shared by phylo-
genetic inference. Instead, the centroid representation
tries to capture the distribution of the posterior prob-
ability mass in the ensemble. Given a “loss function”
L(ϕ, θ) that quantifies how each θ deviates from the rep-
resentation ϕ, the centroid representation is defined by
ϕCentroid = argminϕ

∑
θ L(ϕ, θ)P(θ|D), which is theoreti-

cally the best for minimizing the expected value of the
loss function. If ϕCentroid itself is a candidate solution, it
is called the “centroid estimator,” which is introduced
in detail in (Carvalho and Lawrence 2008), along with
important extensions to the Hamming loss function.

A CWT is the centroid representation regarding the
two loss functions below. Assume that a wheel tree
(Φ) and one of the input trees (Ti ∈ {T1, . . . ,TN}) are
given, and let lLayout(Φ, v,Ti) be the sum of the ex-
pected distances between any Ti branch pair whose

corresponding branch pair is successive around a wheel
node v inΦ. Then the “layout incongruity loss function”
LLayout(Φ,Ti) is defined as the total sum of lLayout(Φ, v,Ti)
over every wheel node, to quantify how all circular or-
derings in Φ agree with Ti. Among all possible Φ, a
CWT minimizes the expected loss function against all
input trees T1, . . . ,TN. In addition, the traditional con-
sensus tree that CWT relies on is also a centroid repre-
sentation regarding the split incongruity loss function,
which quantifies how the split sets of two trees dis-
agree with each other. See the Appendix for details and
proofs.

It is useful to provide some intuitive explanation of
the fact that a CWT is the centroid representation here.
Imagine a heap of stones, each of which has a drawing
of a phylogenetic topology and whose mass is pro-
portional to the probability of the tree. If we place the
stones so that similar topologies are close to each other,
a map of a topology distribution is created, as in Hillis
et al. (2005) and Nye (2008). If this distribution is uni-
modal and unbiased, the heaviest stone or the best tree
is anticipated to be at the “center” of the distribution
and represent it well, although sometimes this assump-
tion does not hold true, as discussed in the references
above. Instead, the CWT representation tries to find the
centroid (or the center of gravity) of the topologies, by
placing them on a light plate on which each position
corresponds to a wheel tree. In classical mechanics, the
centroid is the point that balances the moment of grav-
ity and minimizes the sum of the products of mass and
squared distances. This clearly resembles the definition
of a CWT, as we use the cost functions defined above
instead of the squared distances, to quantify how close
a wheel tree and a phylogenetic topology are. There-
fore, the CWT representation can be regarded as the
centroid that balances the background topology distri-
butions best.

APPLICATIONS

Visualization of CWTs

In addition to making the circular orderings around
multifurcating wheel nodes best represent the topology
distributions, it is useful if some statistical information
on them is available. Our current implementation of the
CWT program provides visualization as in Figure 3.

First, as in ordinary phylogenetic representations,
numbers at internal branches are the proportions of
the input trees containing the corresponding splits.
Second, numbers around the wheel nodes indicate the
proportions that the flanking splits constitute in a mono-
phyletic group. For example, in Figure 3, Z1% of the
trees have the 3-furcation {a | d | b,c,e,f} (i.e., the three
splits {a | b,c,d,e,f}, {d | a,b,c,e,f}, and {a,d | b,c,e,f}).
Third, numbers within wheel nodes indicate the extent
to which each circular ordering of the branches naturally
represents the candidate topologies. In other words, the
numbers indicate the proportion of the input topolo-
gies that can be restored by just “pulling out” branches
without changing the orderings. (See the right-hand
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FIGURE 3. Information that the CWT representation conveys.
Branches around multifurcating nodes (wheel nodes) are circularly or-
dered by the procedure in Figure 2. As in the ordinary phylogenetic
representations, numbers at internal branches (X) are the support val-
ues of the corresponding splits. Numbers around wheel nodes (Z1, . . . ,
Z5) indicate the proportions of the flanking splits that constitute a 3-
furcation. Numbers within wheel nodes (Y) indicate the proportions
of the input trees for which their circular ordering is the best (i.e., does
not require traversing the same branches three times to visit all splits).
Note that the input trees that do not have all the split sets adjacent to
the wheel node are also used to estimate the values within and around
the wheel nodes. Options for displaying the strict supports excluding
them and the average distances are also available.

box in Figure 3 for an example. As another example,
the value for the wheel node in Figure 1d is 85%, which
is the total support of the first and second topologies
in Figure 1a). Mathematically, this equals the propor-
tion of the ordering that constitutes a shortest TSP tour,
given the distance matrices derived using each topology
only.

Note that, at the default settings, the values within
and around the wheel nodes are calculated “on the
assumption of the consensus tree topology.” For the
input trees that do not have all the split sets adjacent
to the wheel node, the proportion of topologies within
all possible combinations of the corresponding branch
positions (see “Formulation” and Fig. 2b) that con-
tain the corresponding topologies are added to those
values. Therefore, they are not strict support values
(like the ones at internal branches) but expected val-
ues based on the assumption of the consensus tree
topology. For the users’ sake, the current implementa-
tion also offers options for showing the strict values
that input trees contain the corresponding topologies
as well as the average distances used for the TSP
calculation.

CWT Applied to a Real Data Set

Figure 4a is a CWT representation derived from a real
data set. The input trees were 246 phylogenetic trees
obtained by applying the maximum-likelihood method
to reliable single-copy orthologs conserved among 21
fungal species (downloaded from FUNYBASE; Marthey
et al. 2008); a 60% threshold was used in building the
consensus tree.

The wheel node indicated by the thick arrow connects
the four splits Ago, Kla, X, and Y. This node indicates

that, given the topology of the consensus tree, 73% of
the input trees are expected to contain either of the splits
{Ago,Kla | X,Y} or {Kla,X | Ago,Y}, and 39% and 34%
contain the 3-furcations {Ago | Kla | X,Y} and {Kla |
X | Ago,Y}, respectively. Neither the best tree nor the
consensus tree representation provides such detailed
information, unless multiple trees are used or the tree
shapes are abandoned as in the phylogenetic network
representation (Fig. 4b). Note that the values on the
opposite sides of the wheel nodes are the same. This is
because in cases of 4-furcating nodes, for example, if
the splits Ago and Kla are adjacent (i.e., {Ago | Kla
| X,Y}) then X and Y are adjacent (i.e., {X | Y | Ago,
Kla}). This property does not hold true without the
consensus tree topology assumption, because the input
trees can contain trees that do not contain the splits
X and Y and in such cases trees with {Ago | Kla |
X,Y} can be without {X | Y | Ago,Kla} (Fig. 4a, left
sides of the dotted rectangles). It is also worthwhile
to examine the average distance around each wheel
node used in the TSP calculation (Fig. 4a, right sides
of the dotted rectangles); in cases of 4-furcating nodes,
the distances between splits are equal to the propor-
tions that they do not constitute in a monophyletic
group.

In addition, because a CWT uses a tree shape, tax-
onomic groups at multiple levels can be recognized
fairly intuitively. In particular, a CWT can suggest the
existence of taxonomic groups with support below the
consensus-tree threshold, in addition to those making
splits on the consensus trees, as successive branches
around wheel nodes. Figure 5a is a CWT representa-
tion of the same data set as in Figure 4, based on an
80% consensus tree. To avoid a cluttered appearance be-
cause of the many multifurcations, a color visualization
option that uses colors instead of numbers is used to
show the support values around the wheel nodes. For
example, the thick gray arc lines α, β, γ, and δ indicate
the class Eurotiomycetes, class Sordariomycetes, order
Hypocreales, and subphylum Agaricomycotina, respec-
tively. An interesting application is the star-like CWT,
obtained by specifying high threshold values where no
split is supported at a level above the threshold (Fig. 5b;
branch lengths are ignored and only the topology is
shown). The star-like CWT shows “the optimal sequen-
tial ordering” of all taxa based on the distribution of
the input topologies and, as a result, many biological
groups appear as successive branches around the wheel
node (thick gray arc lines). By virtue of the sophistica-
tion of the present TSP solvers (Applegate et al.), it takes
only a few seconds to obtain such star-like CWTs of this
size.

Characteristics of CWTs Clarified by an Artificial Data Set

To help understand how the CWT representation
works, we show an artificially created example that
sheds light on the characteristics of CWTs. Figure 6a
is a data set containing 15 trees, and Figure 6b,c are
the produced CWT representations based on the 50%
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FIGURE 4. CWT for 264 trees based on single orthologs conserved over 21 fungal species. a) CWT based on the 60% consensus tree. The
values at the wheel nodes include the estimated values for trees that do not contain all splits adjacent to them (default option). For each wheel
node, the strict values excluding them and the average distances are shown in the dotted rectangles on the left and right sides, respectively.
For the branch lengths, those stored in the original database (Marthey et al. 2008) are directly incorporated in their original units. b) Consensus
phylogenetic network with a threshold of 0.2 (Holland and Moulton 2003). The scientific names of the species are as follows: Ago, Ashbya gossypii;
Afu, Aspergillus fumigatus; Ani, A. nidulans; Cgl, Candida glabrata; Clu, C. lusitaniae; Cim, Coccidioides immitis; Cne, Cryptococcus neoformans; Dha,
Debaryomyces hansenii; Fgr, Fusarium graminearum; Kla, Kluyveromyces lactis; Mgr, Magnaporthe grisea; Ncr, Neurospora crassa; Pch, Phanerochaete
chrysosporium; Sba, Saccharomyces bayanus; Sce, S. cerevisiae; Spa, S. paradoxus; Spo, Schizosaccharomyces pombe; Ssc, Sclerotinia sclerotiorum; Tre,
Trichoderma reesei; Uma, Ustilago maydis; Yli, Yarrowia lipolytica.

majority-rule consensus tree showing support values
and average distances, respectively. The strict option
does not change the support values because there is no
nontrivial split exceeding the 50% threshold (Fig. 6d)
and the consensus tree contains trivial splits only. Fig-
ure 6e shows the sums of the distances between each
split pair, which are used for the TSP calculation for the
circular ordering determination.

Two notable characteristics of CWT are demonstrated
with this example. First, though the most frequent split
is {c,e | a,b,d} (Fig. 6d), the distance between c and e is
not the smallest (Fig. 6e). In other words, they are given

the highest priority if we construct a consensus tree by
adopting highly supported splits in a greedy manner
(Greedy consensus tree, Fig. 6f) but not if we build the
CWT. This is because the CWT considers more informa-
tion than the existences of splits, that is, it also considers
the distances between them. In this example, though
the split {a,b | c,d,e} appears only once, the splits a
and b are always within a distance of 1 in all trees and
thus the cost for making them successively becomes
small. Such differences can be made clear by visualiz-
ing and comparing the support values and the average
distances (Fig. 6b,c; we recommend trying these options,
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FIGURE 5. Taxonomic groups as successive branches around wheel nodes. a) CWT based on the 80% consensus tree for the same data set as
in Figure 4. This is the color visualization, which uses colors instead of numbers to show values around the wheel nodes, to avoid a cluttered
appearance. Thick gray arc lines indicate taxonomic groups that appear as successive splits around the wheel nodes. The support values include
the estimated values for trees that do not contain all splits adjacent to the wheel nodes (default option). b) A star-like CWT based on the 100%
consensus tree. The 21 species line up in the optimal order based on the cost function and the TSP solution. Many taxonomic groups constitute
successive branches around the wheel node (gray arcs).

especially if weak support values are displayed). Though
the support for the 3-furcation {c | e | a,b,d} is over twice
as ones of {a | d | b,c,e} and {b | d | a,c,e}, the distances
between c and e, a and d, and b and d are the same.
Such information cannot be easily obtained by glancing
at the input trees (Fig. 6a), the split sets (Fig. 6d), or
the greedy consensus tree (Fig. 6f). The other character-
istic of CWTs that can be seen in this example is that,
although the smallest distance is between the splits a
and b (Fig. 6e), they are not successive around the resul-
tant wheel node (Fig. 6b,c). This occurs because of the
intrinsic nature of TSP: choosing locally optimal paths
does not always derive the globally best tour, and in
this example the total distance of any tour containing
the path a–b exceeds that of the tour a–c–e–b–d (Fig. 6e).
This is intentional and reflects the very objective of a

CWT: the most balanced representation of the topology
distributions.

Software Availability

The software for building a CWT was implemented in
Java, and is available at http://cwt.cb.k.u-tokyo.ac.jp/.
Users can run the program on the Web or download
it under the GNU General Public License. To run the
program locally, it is necessary to install Java SE 5.0 (or
higher), Concorde (one of the best exact TSP solvers
currently available; Applegate et al.), Phyutility Java
archive; Smith and Dunn 2008), Apache XML Graphics
Commons Java archives, and Args4j Java archive.

The software accepts any set of rooted or unrooted
phylogenetic trees in the Newick format covering the

http://cwt.cb.k.u-tokyo.ac.jp/
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FIGURE 6. Characteristics of CWTs demonstrated with an artificial
data set. a) The 15 input tree topologies. b) The CWT based on the
50% majority rule consensus tree. The support values do not change
by the strict value option because this CWT contains trivial splits only.
c) The CWT displaying the average distances. Because they use more
information than the existence of splits, the distances are not propor-
tional to the values in (b). For example, the distances can differ at po-
sitions with the same support values. d) The observed frequencies of
every non-trivial split. Note that none exceeds the 50% threshold. e)
The sums of the distances between each split pair for the TSP calcula-
tion. This figure illustrates the following characteristics of CWTs: The
strongest supported split does not always correspond to the closest
pair, and the closest pair is not always adopted in the circular order-
ing, which is based on the best TSP tour. f) Greedy consensus tree for
the same data set.

same taxa set, with one tree per line. A real value sep-
arated by space at the beginning of each line can be
provided to indicate the weight of the tree. A thresh-
old value for building the consensus tree should be
designated. If a threshold >100 is given, no split is
supported stronger than the threshold and thus a star-
like CWT is produced. Options to use rooted trees,
show strict support values, show average distances, use
the color visualization, and output only topologies are
available.

The software produces the CWT representation as
.nhx, .ps, and .png files. The .nhx files are in the New
Hampshire eXtended format (http://www.phylosoft
.org/NHX/), which is an extension of the conventional
Newick format. The extra information described in the
main text is given by using ”:XN=” tags wrapped by
”[&&NHX” and ”]”, which mean ”custom data associ-
ated with nodes” in the NHX format. For example, if
(i) a 4-furcating wheel node is surrounded by Clade1 to
Clade4, (ii) the values flanked by Clade1 and Clade2,
Clade2 and Clade3, Clade3 and Clade4, and Clade4
and Clade1 are Val1, Val2, Val3, and Val4, respectively,
and (iii) the value within the wheel node is ValC, the

notation is “(Clade1, Clade2, Clade3, Clade4)[&&NHX:
XN=ValC|Val1,Val2,Val3,Val4];” (in the case that the
node is the root) or “(Clade2, Clade3, Clade4)[&&NHX:
XN=ValC|Val1,Val2,Val3,Val4]Clade1” (otherwise). That
is, circular orderings of branches are designated by ap-
pearance order and statistical information is given in
the square brackets. ”:B=” tags can also be inserted be-
fore the ”:XN=” tags, to represent confidence values
for parent branches. .ps (PostScript) and .png (Portable
Network Graphics) files provide 2-dimensional visu-
alizations of the CWT. The visualization is based on
a modified radial layout that follows the TSP-based
circular orderings of branches.

CONCLUSION AND PERSPECTIVES

In this paper, we introduced the CWT representa-
tion, which provides rich information on phylogenetic
topology distributions in a highly intuitive and most
balanced manner. Examples based on real and artificial
data sets were also provided to show the advantages
and characteristics of CWTs. Better phylogenetic repre-
sentations are of increasing importance because DNA
sequencing technologies are advancing at an exponen-
tial rate, leading to ubiquitous demands for interpreting
large-scale phylogenetic analyses. In addition, because
a CWT conceptually resembles an intermediate data
structure in phylogenetic network construction (Dress
and Huson 2004), CWT could possibly be used to ex-
tend them. Furthermore, because the basic concept of
the centroid representation is fairly general, it may also
be applied to fields beyond the life sciences that are
tending toward high-dimensional solution space, con-
siderable noise, and data explosions.
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APPENDIX

Definitions

Let T1, . . . ,TN be N input phylogenetic trees and
w1, . . . ,wN be their weights. Each phylogenetic tree is
defined by Ti = (Vi,Ei), where Vi is the set of all exter-
nal and internal nodes and Ei is the set of all branches
(edges). Hereafter, all trees are assumed to have the
same set of taxa X = {x1, . . . , xM} on the external nodes.

Any branch e on a tree T = (V,E) splits the taxa
set X into two groups. We call such a bipartition sys-
tem Split(e,T). Let SplitSet(T) = {Split(e,T)|e ∈ E} and

Freq(s) be the weighted frequency of the trees that con-
tain the split s in T1, . . . ,TN, i.e., Freq(s) =

∑N
i=1 δiwi

where δi = 1 if s ∈ SplitSet(Ti) and δi = 0 otherwise.
AdjBranches(v,T) is the set of branches directly at-
tached to node v on T, and MultiFurcatingNodes(T) =
{v ∈ V||AdjBranches(v,T)| > 4}. If e ∈ AdjBranches(v,T),
Descendants(e, v,T) is the subset of X that can be tra-
versed from the node adjacent to e that is not v, without
crossing e. Let ExtBranch(x,T) be an external branch on
T attached to the taxon x.

For Xsub ⊆ X and {xa, xb} ⊆ Xsub, we define Dist(xa, xb,
Xsub,T) as follows. First, recursively remove any exter-
nal branch e from T if e /∈ {ExtBranch(x,T)|x ∈ Xsub}.
Second, recursively remove any internal node v if
|AdjBranches(v,T)| = 2 by replacing AdjBranches(v,T)
with one internal branch to keep the tree T connected.
Then Dist(xa, xb,Xsub,T) is the minimum number of
edges on the converted tree T′ that separate ExtBranch
(xa,T′) and ExtBranch(xb,T′). Note that ExtBranch(xa,T′)
and ExtBranch(xb,T′) themselves are not counted
(i.e., if they are adjacent each other, then Dist(xa, xb,
Xsub,T) = 0).

Pseudocode for Obtaining CWTs

Given T1, . . . ,TN, w1, . . . ,wN, and a threshold value
γ for building the consensus tree, the following pseu-
docode produces a CWT. Note that the function c is
symmetric. i.e., c(ep, eq) ≡ c(eq, ep).

Construct the consensus tree TC = (VC,EC), where

SplitSet(TC) =

{

s|Freq(s) > γ
N∑

i=1
wi

}

.

For each v ∈MultiFurcatingNodes(TC) {
{e1, e2, . . . , ek}= AdjBranches(v,TC)
For each {p, q} ⊂ {1, 2, . . . , k} {

Set c(ep, eq) = 0
For each Ti ∈ T1, . . . ,TN {

For each taxa set Xsub = {x1, x2, . . . , xk} that
∀16t6k xt ∈ Descendants(et, v,Tc) {

c(ep, eq) = c(ep, eq) + Dist(xp, xq,Xsub,Ti) ∙ wi/
k∏

t=1
|

Descendants(et, v,Tc)|
}
}
}

Find the TSP cycle (ef (1)ef (2) ∙ ∙ ∙ ef (k)) for AdjBranches

(v,TC), which minimizes
∑k−1

t=1 c(ef (t), ef (t+1))+c(ef (k), ef (1))
}
Lay out TC by following the TSP-cycle orderings for the
branches around MultiFurcatingNodes(TC).

Consensus Tree is the Centroid Representation

It can be shown that the consensus tree is in fact the
centroid representation of all candidate trees regarding
the loss function of “split incongruity”, which quan-
tifies the degree of disagreement between split sets of
two trees. More precisely, given a tree representation



2010 IWASAKI AND TAKAGI—CENTROID WHEEL TREE REPRESENTATION OF PHYLOGENIES 593

T′ = (V′,E′) and a candidate tree Ti = (Vi,Ei), the “split
incongruity loss function” is defined as

Lsplit (T
′,Ti) = ξ ∙ FP (T′,Ti) + FN (T′,Ti) ,

where

FP (T′,Ti) = |{s |s ∈ SplitSet (T′) ∧ s /∈ SplitSet (Ti)}|

FN (T′,Ti) = |{s |s /∈ SplitSet (T′) ∧ s ∈ SplitSet (Ti)}|
.

This function becomes large if T′ contains splits that
are absent from Ti (“false positives”) and vice versa
(“false negatives”). ξ designates the relative penalties
for the two types of errors and usually ξ ≥ 1 because by
convention false positives are more undesirable, given
that they would exaggerate weak phylogenetic signals.
To obtain the centroid representation, it is necessary to
know the posterior probability P(Ti|D) in addition to
the loss function and, for example, both bootstrap and
Bayesian methods have been developed to give approx-
imate values for P(Ti|D) (Felsenstein 1985; Huelsenbeck
et al. 2001). If we define w1, . . . ,wN as wi ∝ P(Ti|D), the
“split incongruity centroid tree” TSplitCentroid is the tree
that fulfills

SplitSet
(
TSplitCentroid

)
=

{

s

∣
∣
∣
∣
∣
ξ

1 + ξ
6

Freq (s)
∑N

i=1 wi

}

(Berry and Gascuel 1996; Holder et al. 2008; Margush
and McMorris 1981). Therefore, TSplitCentroid with the
penalty parameter ξ is the consensus tree with the
threshold ξ/(1 + ξ). In other words, the consensus tree
with the threshold γ is TSplitCentroid with the penalty pa-
rameter γ/(1− γ). Note that if 1 ≤ ξ then 1/2 ≤ γ < 1.

CWT is the Centroid Representation in Double Metrics

As was already described, the consensus tree TC =
(VC,EC) still possesses ambiguity with regard to branch
orderings around the multifurcating nodes. Each lay-
out can be specified by a function f (v, t) : VC × N → N
that is defined for v ∈ MultiFurcatingNodes(TC) and
t = 1, . . . , k(v,TC), where k(v,TC) = |AdjBranches(v,TC)|
and {e1, e2, . . . , ek(v,TC)} = AdjBranches(v,TC), and the
cycle (ef (v,1)ef (v,2) . . . ef (v,k(v,TC))) specifies the circular
ordering of AdjBranches(v,TC). In the following para-
graph, we show that, among every possible layout of
consensus trees, the CWT is the centroid representation
regarding the loss function of “layout incongruity”.

Let Φ = (TC, f ) be a layout-specified tree representa-
tion of TC. Then, the “layout incongruity loss function”
is defined as

LLayout (Φ,Ti) =
∑

v∈MultiFurcatingNodes(TC)

lLayout (Φ, v,Ti),

where

lLayout(Φ, v,Ti) =

k(v,TC)−1∑

t=1






∑

{Xsub={x1,x2,...,xk(v,TC)
}|∀16t6k(v,TC)

xt∈Descendants(et,v,Tc)}

Dist(xf (v,t), xf (v,t+1),Xsub,Ti)

k∏

t=1
|Descendants(et, v,Tc)|








+
∑

{Xsub={x1,x2,...,xk(v,TC)
}|∀16t6k(v,TC)

xt∈Descendants(et,v,Tc)}

Dist(xf (v,k(v,TC)), xf (v,1),Xsub,Ti)

k∏

t=1
|Descendants(et, v,Tc)|

.

Intuitively, for each split pair sa and sa that correspond
to successive branches around each multifurcating node
v in Φ, lLayout sums the distances on the tree Ti between
the expected positions of the corresponding branches on
the assumption of the topology TC. Then, LLayout sums it
for all wheel nodes to quantify how wellΦ represents Ti.
Then the “layout incongruity centroid tree” ΦLayoutCentroid
is the tree representation that minimizes the expected
LLayout for all T1, . . . ,TN:

N∑

i=1

LLayout (Φ,Ti)P (Ti |D )

∝
N∑

i=1








∑

v∈MultiFurcatingNodes(TC)

lLayout (Φ,Ti, v)



wi





=
∑

v∈MultiFurcatingNodes(TC)

(
N∑

i=1

lLayout (Φ,Ti, v) ∙ wi

)

=
∑

v∈MultiFurcatingNodes(TC)




k(v,TC)−1∑

t=1

c(ef (v,t), ef (v,t+1))

+ c(ef (v,(v,TC)), ef (v,1))





where c is the traveling cost calculated in the pseu-
docode. The final term is a minimum if we choose f
to minimize the term in the bracket for each multifur-
cating node v, because they are independent of each
other. Such an f is exactly the TSP tour obtained in the
pseudocode; therefore, CWT is ΦLayoutCentroid and the
most balanced according to the two measures of split
incongruity and layout incongruity.


