
lable at ScienceDirect

Environmental Science and Ecotechnology 21 (2024) 100400
Contents lists avai
Environmental Science and Ecotechnology
journal homepage: www.journals .elsevier .com/environmental -science-and-

ecotechnology/
Review
Deep-learning architecture for PM2.5 concentration prediction: A
review

Shiyun Zhou a, b, Wei Wang a, **, Long Zhu c, Qi Qiao a, Yulin Kang a, *

a Institute of Environmental Information, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
b School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
c College of Water Sciences, Beijing Normal University, Beijing 100875, China
a r t i c l e i n f o

Article history:
Received 24 July 2023
Received in revised form
5 February 2024
Accepted 6 February 2024

Keywords:
PM2.5 concentration prediction
Deep-learning based model
Bibliometrics analysis
Evaluation framework
* Corresponding author. Chinese Research Academ
China.
** Corresponding author. Chinese Research Academ
China.

E-mail addresses: weiwang@craes.org.cn (W. W
(Y. Kang).

https://doi.org/10.1016/j.ese.2024.100400
2666-4984/© 2024 The Authors. Published by Elsev
Academy of Environmental Sciences. This is an open
a b s t r a c t

Accurately predicting the concentration of fine particulate matter (PM2.5) is crucial for evaluating air
pollution levels and public exposure. Recent advancements have seen a significant rise in using deep
learning (DL) models for forecasting PM2.5 concentrations. Nonetheless, there is a lack of unified and
standardized frameworks for assessing the performance of DL-based PM2.5 prediction models. Here we
extensively reviewed those DL-based hybrid models for forecasting PM2.5 levels according to the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We examined
the similarities and differences among various DL models in predicting PM2.5 by comparing their
complexity and effectiveness. We categorized PM2.5 DL methodologies into seven types based on per-
formance and application conditions, including four types of DL-based models and three types of hybrid
learning models. Our research indicates that established deep learning architectures are commonly used
and respected for their efficiency. However, many of these models often fall short in terms of innovation
and interpretability. Conversely, models hybrid with traditional approaches, like deterministic and sta-
tistical models, exhibit high interpretability but compromise on accuracy and speed. Besides, hybrid DL
models, representing the pinnacle of innovation among the studied models, encounter issues with
interpretability. We introduce a novel three-dimensional evaluation framework, i.e., Dataset-Method-
Experiment Standard (DMES) to unify and standardize the evaluation for PM2.5 predictions using DL
models. This review provides a framework for future evaluations of DL-based models, which could
inspire researchers to standardize DL model usage in PM2.5 prediction and improve the quality of related
studies.
© 2024 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences,
Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Short-term exposure to ambient particulate matter with a
diameter of 2.5 mm or less (PM2.5) is a leading contributor to the
global burden of disease and mortality [1]. Precise prediction of the
PM2.5 concentration is essential to controlling air pollution, safe-
guarding public health, guiding urban planning decisions, and
gaining insights into climate impacts. Previous studies have
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investigated the prediction of PM2.5 concentrations, with the ma-
jority relying on numeric or statistical learning models. Notably,
methods based on DL are a cutting-edge and widely adopted facet
of statistical learning. These methods are effective in addressing
challenges that traditional models struggle with. The efficacy of DL
in PM2.5 prediction is attributed to the capacity of DL to handle
extensive datasets, which is crucial to this type of prediction [2e5].

PM2.5 time-series data encapsulate a dynamic functional rela-
tionship. DL is particularly adept at modeling such intricate con-
nections and has exhibited remarkable performance across various
time-series prediction tasks, positioning it as the preferred
approach for tackling challenges in PM2.5 concentration prediction.
DL is adopted in PM2.5 concentration predictions (i) as a core al-
gorithm for prediction and (ii) to improve the performance of nu-
merical simulation models. This review article provides a
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comprehensive review of DL as the core algorithm for predicting
the PM2.5 concentration.

Several researchers have reviewed DL-based approaches for
predicting PM2.5 concentrations, providing insights from various
perspectives. Ayturan et al. [6] surveyed DL techniques for air
quality forecasting, covering convolutional neural networks
(CNNs), long short-term memory (LSTM), and autoencoders.
Despite reviewing only six articles, they laid the groundwork for
exploring the potential of these techniques. Liao et al. [7] offered a
concise overview of recent attempts at deep network architectures
and their utility in capturing nonlinear spatiotemporal correlations
of air pollution at various scales. Drewil et al. [8] conducted a
comprehensive study of air pollution detection and prediction in
smart cities, reviewing studies on DL techniques within the
framework of smart cities. In addition, Istiana et al. [9] provided an
in-depth review of LSTM networks for PM2.5 concentration and
prediction, delving into network architectures and potential ap-
plications. Zaini et al. [10] conducted a systematic review of DL
techniques for time-series air quality forecasting, encompassing
CNNs, LSTM, and hybrid models. Zhang et al. [11] reviewed DL ar-
chitectures for air quality prediction. Their review offers a
comprehensive overview and detailed discussions on the strengths,
advantages, and limitations of various techniques. While high-
lighting challenges such as data scarcity and the need for explain-
able models, previous studies have lacked a detailed discussion on
addressing these issues from more practical and holistic perspec-
tives. Previous studies have only listed and summarized related
methods without presenting a comprehensive evaluation or
further analysis. No unified evaluation framework has been pro-
posed to assess the quality of DL application in predicting PM2.5
concentrations. In addition, there is a scarcity of reviews on the
latest technologies for multi-model fusion forecasting.

In light of the aforementioned research landscape, this review
article presents a comprehensive overview of cutting-edge deep-
learning techniques for predicting PM2.5 concentrations. Our re-
view discusses the merits and limitations of a diverse array of DL
models. We found three notable features. (i) A strict search strategy
and large review depth: Our search strategy and inclusion/exclu-
sion criteria are strict, transparent, and objective as they are based
on PRISMA guidelines. In addition, a bibliometric analysis is con-
ducted to provide a robust foundation for our comprehensive sur-
vey. (ii) A fine classification and summarization of existing DL
frameworks: Unlike previous reviews, we take the initiative to
classify and summarize DL frameworks used in air pollution pre-
diction. Through meticulous categorization, we refine and define
the use of hybrid models. Our survey outlines state-of-the-art
methods for applying DL to various types of PM2.5 concentration
prediction, which will aid researchers and technicians in compre-
hending the current landscape of PM2.5 concentration prediction.
(iii) A proposal of a standard evaluation framework, Dataset-
Method-Experiment Standard (DMES): The lack of standardiza-
tion in applying DL to PM2.5 concentration prediction hampers
comparability. We address this gap by proposing a standard eval-
uation framework. Our work will encourage researchers to stan-
dardize their use of DL models in PM2.5 concentration prediction
and assist in measuring the quality of related research.

2. Bibliometrics analysis

2.1. Literature search and selected strategy

We conducted a literature review on DL-based PM2.5 concen-
tration prediction adopting the theory proposed by Kitcharoen
2

et al. [12], the methodology developed by Brereton et al. [13], and
the PRISMA guidelines.

2.1.1. Sourcing the articles
We searched scholarly databases, namely the Web of Science,

Scopus, IEEE Xplore, and Springer, to identify peer-reviewed arti-
cles in well-known research journals and other academic publica-
tions. The literary investigation used the keywords “PM2.5
prediction”, “air pollution estimation”, “air quality analysis”, “air
pollutant concentration forecast”, “deep learning”, “convolutional
neural networks”, and “artificial neural networks”. The keywords
were merged adopting the search string [(“PM2.5 prediction” OR
“air pollution estimation” OR “air quality analysis” OR “air pollutant
concentration forecast”) AND (“deep learning” OR “convolutional
neural networks” OR “artificial neural networks”)]. The Boolean
search operators (e.g., “OR,' “AND') were utilized to integrate
distinct keywords into a unified search string. Furthermore,
internet search engines facilitated the collection of pertinent in-
formation regarding the advantages and disadvantages of DL-based
methods in forecasting PM2.5 concentrations. This approach resul-
ted in the identification of over 1967 candidate research papers.

2.1.2. Screening the articles
Recent articles on the most credible, authoritative, and reliable

research having a worldwide scope were prioritized. The search
process was repeated until relevant citations ended. In addition, the
lists of references provided by articles were analyzed to identify
other articles. Only articles published in the English language were
selected. A total of 1967 articles were selected in the literature
search. In the next step, we read the titles and abstracts of all ar-
ticles and checked the quartile rankings of the journals. During this
filtering process, 1509 papers were excluded from the selection list
for the following reasons: (i) they did not pertain to the specified
topic, (ii) they did not employ DLmethodologies, and (iii) theywere
duplicative works, akin to other publications by the same authors.
Furthermore, 77 papers were duplicates across different databases.
Among the remaining 381 articles, 27 articles that were literature
reviews instead of methodology papers were excluded. In the final
phase of our selection process, we thoroughly reviewed the full
texts of the articles. Subsequently, 236 full-text articles were
excluded for not meeting our inclusion criteria. The reasons for
exclusion were: (i) the articles were focused on a specific envi-
ronment or location, such as a roadside or factory; (ii) the forecasts
were derived from images; (iii) there was an insufficient dataset for
effectively training a deep neural network; and (iv) DL techniques
were applied for purposes other than air quality forecasting. Ulti-
mately, following a meticulous evaluation, a total of 118 manu-
scripts were included for the qualitative and quantitative analysis
of the review (Fig. 1). The articles were primarily published from
2016 to 2023, with 99 published from 2020 to 2023.

2.1.3. Analyzing the selected articles
The selected articles were analyzed in depth to review the

existing scenario of using DL-based techniques in PM2.5 concen-
tration prediction. The 118 papers selected for the literature review
were analyzed concerning the year of publication, journal, and type
of used DL-based model. We then exported the 118 articles in
Research Information Systems (RIS) format to VOSviewer software
(version 1.6.18). Bibliometric tools were used to extract information
on the number and relationships of authors' publications and
keywords. We performed cluster analysis for keywords from each
year using VOSviewer software to generate social network maps.
The social network maps indicate the importance of the size of



Fig. 1. Flowchart of the present review based on PRISMA guidelines.

Fig. 2. The bibliometric analysis of the final selected articles. a, Relationship between
the authors of the reviewed papers. The size of the displayed area represents the
number of articles written by the author, the distance between authors represents the
communication between them, and the color represents the degree of correlation
obtained using a clustering algorithm. b, Keywords trend. The circle size represents the
overall frequency of occurrence in the articles. A line segment is drawn between two
words each time they appear simultaneously, and the number of line segments thus
reflects the relationship between the words. High-frequency words that appear
simultaneously are grouped and summarized through clustering, and the color in-
dicates the word's frequency classification. c, Journal Citation Reports partitioning of
selected papers, showing the percentage of articles in quartiles Q1, Q2, Q3, and Q4,
respectively. d, Selected articles were classified according to their structures, showing
the proportions of articles on various models.

S. Zhou, W. Wang, L. Zhu et al. Environmental Science and Ecotechnology 21 (2024) 100400
nodes and the thickness of lines; i.e., the nodes represent the fre-
quency of occurrence, and the lines represent associations between
nodes [14]. Specifically, a thicker line indicates a stronger rela-
tionship [15]. Data aggregation and analysis were conducted in
Microsoft Excel, and related figures were drawn with GraphPad
Prism 9.4.0.

As shown in Fig. 2a, the authors of the articles are relatively
independent of one another, which may explain the lack of unified
standards in prediction and evaluation based on DL. Fig. 2b shows
the keywords of the selected articles. There is no obvious clustering
of keywords, indicating a lack of clarity in the current research
lineage. Fig. 2c presents the JCR partitioning of the selected articles.
This categorization indicates that the articles are of high quality,
with more than half having been published in Science Citation In-
dex (SCI) Q1. Fig. 2d classifies the articles according to the DL-
related algorithm or model adopted in the articles. It is seen that
most of the recent DL-based studies on PM2.5 concentration pre-
diction used algorithms relating to LSTM networks. In addition,
many studies adopted hybrid model algorithms, especially in
combination with conventional methods or other DL models.
3. Method review

3.1. Evaluation metrics

Four mainstream indicators are used to evaluate the forecasting
performance of the PM2.5 concentration prediction models in our
review as follows:

Rooted mean squared error (RMSE) is a commonly used metric
for measuring the difference between the actual and predicted
3

values in regression analysis. It represents the square root of the
average of the squared differences between the predicted and
actual values and gives a sense of the magnitude of the errors in the
predictions.

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðyi � byiÞ2
vuut (1)
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Mean absolute error (MAE) is another metric used in regression
analysis to measure the average magnitude of the errors between
the predicted and actual values. Unlike RMSE, MAE does not
penalize large errors heavily and is a more robust measure of error
for outliers.

MAE¼1
n

Xn
i¼1

jyi � byi j (2)

Mean absolute percentage error (MAPE) is a commonly used
metric for measuring the accuracy of a prediction model in per-
centage terms. It measures the average percentage difference be-
tween the predicted and actual values and is often used in business
forecasting and economic analysis.

MAPE¼100%
n

Xn
i¼1

�����
ðyi � byiÞ2

yi

����� (3)

R2 (coefficient of determination) is a measure of the proportion of
variability in the dependent variable that is explained by the in-
dependent variables in a regression model. It ranges from 0 to 1,
with higher values indicating a better fit between the predicted and
actual values. R2 is often used to assess the goodness of fit of a
regression model and can be interpreted as the percentage of the
total variation in the dependent variable that is explained by the
independent variables.

R2 ¼1�

Pn
i¼1

ðyi � byiÞ2
Pn
i¼1

ðyi � yÞ2

y¼1
n

Xn
i¼1

yi (4)

In equations (1)e(4), yi represents the actual value of the i th
sample, byi represents the predicted value of the i th sample, y
represents the mean of y, and n is the total number of samples.

When different studies use various evaluation metrics that can
be mutually converted, we standardize them, for example:

SMAPE¼100%
n

Xn
i¼1

2jFi � Aij
jFij þ jAij

(5)

where Fi represents the actual value of the i th sample, Ai represents
the predicted value of the i th sample, and n is the total number of
samples. It is evident that the SAMPE can be converted to MAPE
using the following formula:

SMAPE¼2�MAPE (6)

Therefore, in cases where the errors between the predicted
values and actual values are small enough, for the purpose of
facilitating result comparison, we unify the two metrics.

In order to ensure the unity and observability of the results, we
conducted average operations on the results of some articles and
did not adopt some indicators with low usage rates, like Recall,
Precision, Information Gain Ratio (IA), etc.
3.2. Deep learning-based methods

DL is a subset of machine learning that uses neural networks
with multiple layers to model complex patterns in data. From the
4

perspective of fulfilling PM2.5 concentration prediction, some pa-
pers use deep belief networks (DBNs) or CNNs to extract spatial
features from air quality data, while others use recurrent neural
networks (RNNs) such as LSTMs or bidirectional long short-term
memories (BiLSTMs) to capture temporal dependencies in the
data. In terms of deep architecture, these DL-based forecasting
strategies can be categorized into DBN-, CNN-, and RNN-based
methods.

In this section, the most commonly used DL-based techniques
(i.e., DBN, CNN, and RNN) in the field of PM2.5 concentration pre-
diction are briefly described. Moreover, particular attention is given
to the core concepts and working of these techniques.

3.2.1. Deep belief network-based methods
DBNs are a class of DL algorithms that are used for unsupervised

learning tasks such as feature extraction, dimensionality reduction,
and pattern recognition. They consist of multiple layers of latent
variables, or hidden units, that are connected through probabilistic
models. The foundation of DBNs is the idea of stacking multiple
layers of restricted Boltzmann machines (RBMs), which are a type
of generative stochastic artificial neural network. In a DBN, the first
layer of hidden units is trained on the input data, and subsequent
layers are trained on the output of the previous layer. This unsu-
pervised learning approach allows the DBN to learn complex hi-
erarchical representations of the input data, capturing both low-
and high-level features. Once trained, a DBN can be fine-tuned for a
specific supervised learning task, such as classification or regres-
sion, using backpropagation.

As shown in Table 1, H. Xing et al. [16] and Y. Xing et al. [17] both
proposed a DBN approach for predicting PM2.5 concentrations. The
fisrt research [16] highlighted the importance of considering
environmental factors such as temperature in these models, while
the second research [17] focused on using the grey wolf optimi-
zation (M-GWO) algorithm to search for the optimal solution.

The advantages of the above-mentioned DBN-based approaches
lie in the DBN's capability to autonomously learn valuable features
from raw data through unsupervised training. This is particularly
relevant for PM2.5 prediction, as future time points often lack
labeled ground truth values, making unsupervised training a better
fit for real-world applications. Additionally, the introduction of the
M-GWO algorithm effectively optimizes the parameters of the DBN,
leading to the efficient learning of dynamic relationships between
PM2.5 and meteorological variables, resulting in lower error rates
compared to traditional statistical models.

However, DBN-based methods have their limitations. Unsuper-
vised training requires significant computational resources and
data, and the parameter iteration process can be time-consuming.
Furthermore, the proposed approach only considers meteorolog-
ical variables as inputs to the DBN without accounting for other
potential factors that may influence PM2.5 concentrations, such as
traffic volume and industrial emissions. In summary, the DBN-
based approach provides a novel method that combines DL and
optimization algorithms for PM2.5 concentration prediction and
demonstrates promising results in initial studies. Nevertheless,
further research is required to enhance the method's performance
and incorporate other factors that could impact PM2.5 concentra-
tions. Exploring the interpretation of features learned by DBN is
also a meaningful research direction.

3.2.2. Convolutional neural network-based methods
One popular DL architecture used for air pollution prediction is

CNN. A CNN is a type of neural network that uses convolutional
layers to automatically learn and extract features from the input
data. In air pollution prediction, the input data can be historical air
quality data, meteorological data, or other relevant data. As shown



Table 1
The research used DBN-based methods.

Study Year Location Model Time step RMSE (mg m�3) MAE (mg m�3) R2

H.Xing et al. [16] 2021 Beijing, China TDBN D/S/Tþ1 11.197 12.298 0.862
Y.Xing et al. [17] 2019 Baoding, China MGWO þ DBN - 20.260 17.604 0.884

Table 2
The research used CNN-based methods.

Study Year Location Model Time step RMSE (mg m�3) MAE (mg m�3) MAPE (%) R2

Zhang et al. [33] 2023 Yangtze River Delta Region, China STA-ResCNN H/M/Tþ1 6.98 3.91 12.62 -
Yu et al. [34] 2023 Los Angeles, US ST-Transformer H/S/Tþ12 6.92 4.00 - -
Choudhury et al. [26] 2022 Delhi, India AGCTCN H/M/Tþ(1-3) 11.76 8.75 - 0.64
Li et al. [18] 2016 Beijing, China STDL S/S/- 14.96 9.00 21.75 -
Li et al. [19] 2020 California, US ensemble-based DL D/S/Tþ1 2.70 - - -
Samal et al. [20] 2021 Talcher, India MTCAN D/S/Tþ14 9.00 7.00 - -
Luo et al. [19] 2020 Shanghai, China CNN þ GBM H/S/Tþ1 10.02 - - 0.85
Chae et al. [24] 2021 South Korea ICNN H/S/Tþ24 1.64 - - 0.97
Zhang et al. [32] 2021 Beijing, China ST-CausalConvNet H/M/- 17.43 11.74 - 0.93
Shi et al. [25] 2021 Beijing, China DSTP-FC(Encoder-Decoder] H/M/Tþ(1-6) 32.51 19.50 - -
Xiao et al. [27] 2022 - DP-DDGCN H/S/Tþ9 11.75 14.53 - -
Zhao et al. [28] 2021 Jing-Jin-Ji Region, China AQSTN-GCN H/S/Tþ1 19.00 12.03 0.30 0.94
Wang et al. [36] 2022 China STWC-DNN H/S/Tþ1 12.70 - - 0.92
Wang et al. [23] 2020 Shanghai, China Sequence-to-Sequence D/S/Tþ7 22.32 - - 0.52
Ni et al. [22] 2022 Beijing/Tianjin, China TL-DSTP-DANN H/S/Tþ3 15.97 11.75 20.00 -
Dun et al. [35] 2022 Fushun, China DGRA-STCN H/S/Tþ2 12.50 8.21 88.40 -
Ouyang et al. [29] 2022 Beijing, China/London, UK DC-STDGN H/M/Tþ(1-3) 30.58/13.42/4.28 29.63/12.15/3.03 - -
Ejurothu [31]. 2022 New Delhi, India HGNN H/S/Tþ8 19.83 16.61 - -
Dun et al. [30] 2022 Beijing/Fushun, China DGC-MTCN H/S/Tþ1 9.77/12.96 5.54/8.39 - 0.95/0.91
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in Table 2, innovations for CNN-based methods in terms of feature
selection, feature extraction, and feature fusion can generally be
divided into three categories based on model structure: (i) im-
provements built upon the foundations of CNN/DNN, (ii) im-
provements based on graph convolutional neural networks
(GCNNs), and (iii) improvements based on spatialetemporal (ST)
correlations.

CNN/DNN-based methods. X. Li et al. [18] proposed a model that
incorporates multiple features related to air quality, such as
meteorological data and satellite imagery. The model performed
well in predicting air quality for a large region, but the dataset used
to train the model covered only a single year, which may limit the
generalizability of the model to different years or seasons. L. Li et al.
[19] presented an ensemble-based DL approach that combined the
strengths of multiple models, including satellite imagery and
meteorological data. The benefits of this approach are its ability to
handle complex, multidimensional data and its performance in
predicting PM2.5 concentrations during wildfire events. Samal et al.
[20] utilized a multidirectional temporal convolutional neural
network, allowing for both past and future temporal information to
be incorporated into the predictions. The model performed well in
predicting air quality, especially during high pollution events.
However, the use of this model may be limited to the specific
geographical region and environmental conditions considered in
the study. Luo et al. [21] proposed an approach for PM2.5 concen-
tration estimation using a CNN for feature extraction and a gradient
boosting machine (GBM) for prediction. The benefits of this
approach are its ability to handle nonlinear relationships between
inputs and outputs and its performance in predicting PM2.5 con-
centrations with high accuracy. Ni et al. [22] proposed a model
consisting of two parts: a feature extractor and a regression
network. The feature extractor was pretrained on a large dataset
and fine-tuned on the target dataset, while the regression network
was trained from scratch on the target dataset. The use of transfer
learning can help to reduce the amount of data needed for training
and improve prediction accuracy. Wang et al. [23] utilized a CNN as
5

the encoder and an RNN as the decoder to capture the spatial-
temporal patterns of air pollution. However, focusing only on
roadside air quality forecasting may cause the model to not be
applicable to other locations. In addition to thesemodels, Chae et al.
[24] proposed an interpolated CNN model for real-time prediction,
and Shi et al. [25] combined attention mechanisms for feature se-
lection in CNN architecture. Due to the complexity of CNN struc-
tures, these models are both limited by the lack of interpretability
and high computational cost in training.

Graph convolutional neural network (GCNN)-based methods.
In previous studies [26e31], various studies have proposed GCNN
models for PM2.5 prediction. Choudhury et al. [26] proposed an
attention-enhanced hybrid model that combines a GCNN with an
attentionmechanism to capture spatial and temporal dependencies
in PM concentration data. The proposed model can effectively
capture both spatial and temporal dependencies in the PM con-
centration data, and the attention mechanism allows the model to
focus on the most relevant features in the input data for accurate
prediction. Xiao et al. [27] proposed a dual-path dynamic directed
graph convolutional network (DP-DDGCN) that included a spatial
path and a temporal path to capture both spatial and temporal
correlations in air quality data. The dual-path architecture allows
the model to effectively integrate spatial and temporal information
for accurate prediction. Ouyang et al. [29] proposed a dual-channel
spatial-temporal difference graph neural network (DSTGNN) that
also accounts for both spatial and temporal dependencies among
PM2.5 concentration data. Dun et al. [30] proposed a dynamic
DGCNN that can update the graph structure based on spatial-
temporal correlations among air pollutant concentrations. The
proposed DGCNN can effectively capture both spatial and temporal
dependencies and dynamically update the graph structure to cap-
ture changes in spatial-temporal correlations over time. However,
neither of these articles provides a detailed analysis of the inter-
pretability of the proposed model or the features it learns from the
PM2.5 concentration data. Zhao et al. [28] proposed a near-surface
PM2.5 prediction model that combined a complex network
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characterization method with a GCNN. The model used complex
network analysis to identify the most important air quality moni-
toring stations for prediction and then applied a GCNN to capture
spatial and temporal correlations among PM2.5 concentrations. The
proposed model can effectively identify the most important
monitoring stations for accurate prediction. Ejurothu et al. [31]
proposed a cluster-based hybrid graph neural network (CGNN)
approach for PM2.5 concentration pre-diction in India. In this
model, cluster analysis to group similar monitoring stations and a
GCNN were combined to capture spatial and temporal de-
pendencies among the PM2.5 concentration data. Cluster analysis
can group similar monitoring stations to improve prediction ac-
curacy. Both of these models can effectively capture both spatial
and temporal dependencies in the PM2.5 concentration data.
However, these two studies considered only PM2.5 concentration
data from a single city, which may limit the generalizability of the
results to other regions or cities.

Spatialetemporal (ST) correlations-based methods. Zhang
et al. [32], Zhang et al. [33], Yu et al. [34], Wang et al. , and Dun et al.
[35] all incorporated spatial and temporal information to accurately
predict PM2.5 concentrations. Zhang et al. [32] proposed an ST-
CausalConvNet that utilized spatial-temporal causal convolutional
layers, Zhang et al. [33] applied spatial-temporal attention and
residual learning in amultistep forecasting framework, and Yu et al.
[34] proposed a spatiotemporal transformer model that allowed for
capturing long-term dependencies and relationships. Dun et al.
[35] andWang et al. [36] captured the spatial and temporal features
via CNN or DNN architecture. In summary, the strengths of these
models are their ability to incorporate both spatial and temporal
information to make accurate predictions of PM2.5 concentrations
or air quality. However, most of these models are limited to only
short-term predictions, and some are limited to specific regions or
pollutants. Additionally, some models may be computationally
expensive due to their complex architectures. Further research is
needed to develop more efficient and accurate models that can be
applied on a larger scale.

3.2.3. Recurrent neural network-based methods
Another type of DL architecture used for air pollution prediction

is the RNN. RNNs are useful for modeling sequential data, such as
time series data. Air pollution data often have a temporal nature,
and RNNs can capture temporal dependencies in the data to make
accurate predictions. The main characteristic of RNNs is that they
have a feedback loop that allows them to maintain a “memory” of
previous inputs as they process new inputs in a sequence. Through
feedback loops, RNNs can remember historical information and
pass it to the current time step, allowing the model to consider past
context and better comprehend the current data point. Based on
this, the model can better capture temporal relationships, making it
particularly well-suited for tasks such as language modeling,
speech recognition, and time series prediction. Dai et al. [37]
developed a RNN for predicting indoor PM2.5 concentrations in
residential buildings using historical data. The model was trained
and tested using data collected from sensors installed in multiple
apartments in a high-rise building in Beijing, China. The results
showed that the proposed RNN model can accurately predict in-
door PM2.5 concentrations up to 6 h in advance. The proposed RNN
model accounts for both the temporal and spatial dependencies of
the indoor PM2.5 data, which is important for accurate prediction in
residential buildings. The use of real-world data collected from
multiple sensors in a high-rise building in Beijing, China, makes the
results highly relevant and applicable to similar indoor air quality
prediction scenarios. Ayturan et al. [38] proposed an RNN-based
model that utilized multiple input data and contained historical
PM2.5 concentrations, meteorological data, and air quality index
6

(AQI) data. Both of these studies provided a detailed analysis of the
interpretability of the proposed RNNmodel. However, Dai et al. [37]
considered only indoor PM2.5 concentrations in a single high-rise
building in Beijing, which may limit the generalizability of the re-
sults to other cities or types of buildings. Neither of these studies
compares the performance of the proposed RNN model with other
benchmark models for PM2.5 predictions. LSTM is a type of RNN.
The gated recurrent unit (GRU) is a simplified version of LSTM that
also uses gating mechanisms to control the information flow.
LSTMs are a special type of RNN that are designed to address some
limitations of traditional RNNs, such as vanishing gradients. LSTMs
use a more complex architecture that includes “gates” to control
the flow of information through the network, allowing it to selec-
tively forget or remember information from previous time steps.
This allows LSTMs to learn long-term dependencies in data and
make accurate predictions even over long sequences.

Li et al. [39], Chang et al. [40], Xayasouk et al. [41], Karimian et al.
[42], Mao et al. [43], Qadeer et al. [44], Kristiani et al. [45], Lin et al.
[46], Park et al. [47], Peralta et al. [48], Waseem et al. [49], and Gul
et al. [50] all directly used the LSTMmodel via partial fine-tuning of
the structure or parameters. Using LSTM neural networks allowed
for the modeling of temporal dependencies, and the large number
of experiments at different real-world air quality monitoring
datasets frommultiple stations helped increase the generalizability
of the results. However, most of these studies did not provide a
detailed analysis of the interpretability of the LSTM model or the
features it learned from air pollutant concentration data, which are
both important for DL-based model prediction. Ma et al. [51], Tong
et al. [52], Zhang et al. [53], and Deep et al. [54] used the BiLSTM
model, which differed from regular LSTMs by having two separate
hidden layers for processing the sequence in the forward and
backward directions to handle both spatial and temporal correla-
tions in the data and model complex nonlinear relationships be-
tween air quality parameters and meteorological factors. Mengara
et al. [55,56] integrated CNN and AutoEncoder (AE) with BiLSTM in
2020 and 2022, respectively, allowing it to extract moremeaningful
and representative features. Xu et al. [57], Zhang et al. [58], and Zou
et al. [59] developed AE-based LSTM neural networks. The models
used both supervised and unsupervised learning to extract features
from air quality data. However, these models were weakened by
their complexity, which may lead to overfitting and longer training
times. The prediction neural network always includes four por-
tions: data preprocessing, feature extraction, model training, and
evaluation. For data preprocessing, Shi et al. [60] proposed a
balanced sampling approach to address imbalanced data to help
PM2.5 concentration prediction. Most improvements based on the
LSTM structure are within feature extraction. Ma et al. [61] incor-
porated the concept of lagged variables into the model. Ding et al.
[62] used a combination of principal component analysis (PCA), an
attention mechanism, and LSTM. Furthermore, Hu et al. [63] inset a
one-dimensional layer to capture both local and global de-
pendencies, while Wang et al. [64] used convolutional and recur-
rent layers. Both of these strategies help to extract more suitable
features. For network structure innovations, Zhao et al. [65] pro-
posed a fully connected LSTM neural network. Using a fully con-
nected network allowed for the modeling of both temporal and
spatial dependencies. Wen et al. [66] proposed a spatiotemporal
convolutional LSTM neural network. The model used both spatial
and temporal information in air quality data. Zhou et al. [67]
combined multiple data sources, including satellite images, mete-
orological data, and air quality data, for LSTM-based PM2.5 predic-
tion. The model used a feature fusion module to integrate different
data sources and showed higher performance than other models.
Sun et al. [68] proposed a deep residual learning framework for air
quality prediction that used residual connections to improve the
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flow of information. Wu et al. [69] proposed a novel DL model that
combined an attention-based GRU and a convolutional encoder
with adaptive gated activation (CE-AGA) for air quality prediction.
Transfer learning was used in some papers to leverage pre-trained
models for related tasks and improve the performance of air quality
prediction models. Ma et al. [70] proposed a transfer learning
approach for air quality prediction, where a pre-trained DL model
on a location was fine-tuned for a different specific location.

The model performed better than models trained from scratch
on the target location. Xiao et al. [72] introduce a weighted LSTM
extended (WLSTME) model, specially designed to significantly
enhance the accuracy and reliability of daily PM2.5 concentration
predictions. This innovative model leverages the power of artificial
neural networks and cutting-edge techniques to improve fore-
casting capabilities. The article explores the key features and ad-
vantages of the WLSTME model, emphasizing its ability to capture
intricate patterns and dependencies in time-series data. All results
are listed in Table 3. However, as with most DL models, these
methods may not be easily interpretable, making it difficult to
understand the reasoning behind the predictions of the model. The
performance of DL models may degrade when applied to data from
new locations or with different characteristics than the training
data.
3.2.4. Transformer-based methods
The Transformer [73] model is a DL architecture characterized
Table 3
The research used RNN-based methods.

Study Year Location Model

Ayturan et al. [38] 2018 Ankara, Turkey RNN
Dai et al. [37] 2021 Tianjin, China RNN
Ma et al. [51] 2019 Guangdong, China BiLSTM
Li et al. [39] 2017 Beijing, China LSTM
Zhao et al. [65] 2019 Beijing, China LSTM-FC
Wen et al. [66] 2019 Beijing, China STCLSTM
Zhou et al. [67] 2019 Taiwan, China DM-LSTM

Ma et al. [70] 2019 Guangdong, China TL-BLSTM
Chang et al. [40] 2020 Taiwan, China LSTM
Xayasouk et al. [41] 2020 Seoul, South Korea LSTM
Karimian et al. [42] 2019 Tehran, Iran LSTM
Tong et al. [52] 2019 Florida, US BiLSTM
Mao et al. [43] 2021 Jing-Jin-Ji Region, China LSTM
Ma et al. [61] 2020 Wayne, US Lag-LSTM
Zhang et al. [58] 2020 Beijing, China AE þ BiLSTM
Zou et al. [59] 2021 Yangtze River Delta Region, China FDN (AE þ LSTM)
Xu et al. [57] 2021 Beijing, China AE þ LSTM

Qadeer et al. [44] 2020 Seoul, South Korea LSTM
Zhang et al. [53] 2021 Beijing, China BiLSTM
Wang et al. [64] 2021 Beijing, China CR-LSTM
Shi et al. [60] 2022 Beijing, China BS-LSTM
Kristiani et al. [45] 2022 - LSTM
Deep et al. [54] 2022 Delhi, India BiLSTM
Sun et al. [68] 2019 Liaoning, China LSTM-DRSL
Lin et al. [46] 2020 Taiwan, China LSTM
Park et al. [47] 2021 Seoul, South Korea LSTM
Mengara et al. [56] 2022 Seoul, South Korea AE þ BiLSTM
Mengara et al. [55] 2020 Busan, South Korea CNN þ BiLSTM
Ding et al. [62] 2022 Ningxia, China PCA-Attention-LS
Peralta et al. [48] 2022 Santiago, Chile LSTM
Liu et al. [71] 2022 Jing-Jin-Ji Region, China MGC-LSTM
Hu et al. [63] 2022 Beijing, China Conv1D-LSTM
Wu et al. [69] 2022 Beijing, China CE-AGA-LSTM
Waseem et al. [49] 2022 Lahore/Karachi/Islamabda, Pakistan LSTM

Gul et al. [50] 2022 Punjab, India LSTM

Xiao et al. [72] 2020 Jing-Jin-Ji Region, China WLSTME
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by its self-attention mechanism, originally developed for natural
language processing tasks. It relies on self-attentionmechanisms to
effectively capture relationships between different positions in
input sequences irrespective of the distance between them and
without the need for recurrent or convolutional structures. The
self-attention mechanism allows the model to consider all posi-
tions in the input sequence simultaneously and enables the model
to capture dependencies between different positions in the input
sequence without being constrained by distance, making it suitable
for handling long-range dependencies. Transformers typically
consist of an encoder and a decoder, which are used for encoding
the input sequence and generating the output sequence, respec-
tively. To differentiate between elements at different positions in
the input sequence, transformers introduce positional embeddings,
providing the model with information about the position of each
element in the sequence. The Transformer model has seen signifi-
cant success in the field of natural language processing, such as in
machine translation, text generation, and sentiment analysis. Its
capabilities have made it a foundational architecture in DL.

Based on the Transformer architecture, Informer [74] is specif-
ically designed for time series forecasting. It combines ideas from
the transformer architecture and optimizes them for time series
data, emphasizes the importance of time steps in a sequence, and
introduces time embeddings to capture time-related information.
Informer proposed a prob-sparse self-attention mechanism, which
can sort the most important query, significantly lowering the
Time step RMSE (mg m�3) MAE (mg m�3) MAPE (%) R2

H/S/Tþ1 6.28 4.21 - -
H/-/Tþ1 11.87 - - -
H/S/Tþ1 8.24 4.80 9.01 -
H/S/Tþ1 12.60 5.46 11.93 -
H/M/Tþ(1-6) 35.82 23.97 - -
H/M/Tþ1 12.08 5.82 17.09 -
H/S/Tþ1 4.49 - - -
H/S/Tþ4 9.31 - - -
H/S/Tþ1 8.54 4.95 22.32 -
H/S/Tþ1 - - - -
H/S/Tþ1 11.11 - - -
H/S/Tþ12 10.32 7.41 - 0.74
H/S/Tþ1 3.65 1.62 18.48 -
H/M/Tþ(1-24) 20.68 14.56 - 0.74
H/S/Tþ1 3.48 1.85 25.63 -
H/S/Tþ24 2.19 - - -
H/S/Tþ1 4.32 3.31 - -
H/S/Tþ1 14.52 8.22 45.40 -
H/M/Tþ(1-3) 24.87 15.60 64.72 -
H/-/- 4.82 3.58 - 0.87
H/-/Tþ1 17.20 14.15 - -
H/S/Tþ24 8.96 12.89 - 0.74
H/S/Tþ3 32.32/12.42 18.36/9.75 - -
H/S/Tþ1 1.90 1.27 11.12 -
H/S/Tþ1 15.59 - - -
H/S/Tþ1 10.53 9.09 20.05 -
H/S/Tþ1 4.46 - 30.00 0.86
H/S/Tþ3 - - - -
H/S/Tþ1 7.48 5.02 30.48 -
H/S/Tþ1 6.93 5.07 30.90 -

TM D/S/Tþ1 7.57 4.93 - 0.91
H/S/Tþ1 9.85 4.40 - 0.74
H/S/Tþ1 2.91 2.16 12.96 -
H/S/Tþ1 20.76 11.20 - 0.96
H/S/Tþ1 21.88 14.49 - 0.95
H/S/Tþ1 - - 11.70/7.40/9.50 -
D/S/Tþ1 - - 28.2/42.1/15.1 -
H/S/Tþ1 0.19 - - -
H/S/Tþ(1-24) 0.73 - - -
D/S/Tþ1 40.67 26.10 - -
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complexity. Informer can work in a sequence-to-sequence fashion,
where it takes an input sequence of historical data and generates an
output sequence of future predictions. This demonstrates strong
performance in time series forecasting tasks, especially for weather
forecasting.

M.A.A.A.-q et al. [75] proposed a ResInformer built upon the
ideas from the above architecture. The novelty of this work lies in
the incorporation of residual connections, a common feature in
many deep neural networks. The residual connections allow the
model to skip one or more layers, helping to mitigate the vanishing
gradient problem and facilitating the training of very deep net-
works. In this article, a series of ablation experiments were con-
ducted, and the proposed ResInformer achieved the best test
results, demonstrating its superiority among the transformer-based
methods. The comparison results are presented in Table 4.

In summary, the Transformer, as the latest DL architecture, holds
the promise of significantly advancing PM2.5 prediction methods
based on DL. Its capabilities to capture intricate temporal and
spatial patterns, effectively manage sequences, and adapt to diverse
data types have the potential to enhance the accuracy and
robustness of PM2.5 forecasts. Moreover, its scalability and parallel
processing capabilities position it as a fitting choice for handling
the substantial datasets often encountered in air quality prediction.

3.3. Deep-learning based hybrid methods

As research progresses and massive data and complex learning
objectives increase, simple models are becoming insufficient for
supporting various conditions. In addition to simple DL-based
predictors, other components have also been combined to form
hybrid predictive models. These approaches can be divided into
two structural categories: DL-based models combined with con-
ventional methods and combinations of DL-based models. DL-
based hybrid models can combine statistical and machine
learningmodels with deep neural networks to exploit the strengths
of each approach. For example, a hybrid model might use a statis-
tical model to model the seasonal air pollution patterns, a machine
learning model to model the relationships between meteorological
variables and pollution levels, and a deep neural network to model
the nonlinear interactions between different variables. One
advantage of DL-based hybrid models is their ability to model
highly nonlinear relationships and interactions between different
variables, which can be difficult for other models to capture. DL-
based models can also learn representations of data that are
more compact and expressive than traditional feature engineering
approaches, which can improve the accuracy of predictions.

3.3.1. Deep learning combines with conventional methods
Models combining DL with conventional methods can be
Table 4
The research used Transformer-based methods.

Study Year Location Model

Zhou. H et al. [73] 2021 Beijing, China
Shijiazhuang, China Informer
Wuhan, China

2021 Beijing, China
Shijiazhuang, China InformerStack
Wuhan, China

M.A.A.A.-q et al. [74] 2023 Beijing, China
Shijiazhuang, China ResInformer
Wuhan, China

2023 Beijing, China
Shijiazhuang, China ResInformerStack
Wuhan, China

8

divided into two categories: DL plus deterministic methods and DL
plus statistical methods.

Deep learning plus deterministic methods. Deterministic
methods adopt meteorological principles and mathematical equa-
tions to simulate the process of pollutant emission, transformation,
diffusion, and removal based on atmospheric physical and chemical
reactions [39]. For example, weather research and forecasting
(WRF) models [78] are used for atmospheric research and predic-
tion application, and other deterministic methods, such as com-
munity multiscale air quality (CMAQ), are also applied to air
pollution prediction. As shown in Table 5, Chang-Hoi et al. [76]
combined the deterministic CMAQ model with RNN for PM2.5
concentration prediction. The model accounted for various mete-
orological and environmental factors and incorporated them into
the prediction process. Sun et al. [77] proposed a hybrid approach
that combined the numerical simulation model WRF and CMAQ
with DL techniques LSTM for PM2.5 and O3 forecasting. The simu-
lation model provided a spatial distribution of PM2.5 and O3 con-
centrations, while DL techniques were used to predict the temporal
variation in these concentrations. In this study, the hybrid approach
outperformed both the simulation and DL models alone, indicating
the potential benefits of combining different techniques for air
quality forecasting.

Deep learning plus statistical methods. As shown in Table 6,
statistical methods are well known to researchers because these
researchers avoid sophisticated theoretical models and simply
apply statistics-based models, which have gradually emerged in air
pollution prediction [79]. These methods can also be classified into
two categories: classic statistical methods and traditional machine
learning methods. Classic statistical methods are those based on
auto regression integrated moving average (ARIMA), wavelet
transform (WT), or empirical mode decomposition (EMD). In
contrast, traditional machine learning methods usually use random
forest (RF), support vector machine-based regression (SVR),
gradient boosting decision tree (GBDT), etc. These methods can
capture nonlinear features from raw data to a certain extent, but
they cannot fully extract complex spatiotemporal correlations in
historical data (Table 7).

Combined with classic methods. The WT is a classic mathe-
matical tool used to analyze signals and data. It breaks a signal or
data down into smaller components called wavelets, which are
basically small wave-like functions of varying frequencies and du-
rations. These wavelets are then used to represent the original
signals or data in a form that can bemore easily analyzed. TheWT is
particularly useful for analyzing signals with nonstationary prop-
erties, such as signals that change over time or have sudden bursts
of activity. The wavelet transform can capture these changes more
accurately than traditional signal analysis techniques. Therefore,
some studies have been devoted to incorporating the wavelet
Time step RMSE (mg m�3) MAE (mg m�3) MAPE (%) R2

D/S/Tþ1 0.2852 0.2159 0.80 0.8285
D/S/Tþ1 0.5112 0.2890 1.79 0.6433
D/S/Tþ1 0.5225 0.4180 1.44 0.5329
D/S/Tþ1 0.2692 0.2012 0.89 0.8472
D/S/Tþ1 0.5408 0.3081 2.25 0.6020
D/S/Tþ1 0.3716 0.2911 1.49 0.7621
D/S/Tþ1 0.2822 0.2130 0.85 0.8320
D/S/Tþ1 0.4646 0.3138 2.00 0.5857
D/S/Tþ1 0.4706 0.3782 1.54 0.6142
D/S/Tþ1 0.2623 0.1964 0.75 0.8549
D/S/Tþ1 0.5343 0.3055 1.91 0.4937
D/S/Tþ1 0.3712 0.2982 1.39 0.7656



Table 5
The research used DL plus deterministic methods.

Study Year Location Model Time step RMSE (mg m�3) MAE (mg m�3) MAPE (%) R2

Chang-Hoi et al. [76] 2021 South Korea RNN-CMAQ H/S/Tþ6 - 5.10 - 0.862
Sun et al. [77] 2021 China LSTM-WRF-CMAQ H/S/Tþ48 11.03 8.08 68.83 0.884

Table 6
The description of statistical methods.

Category Model Details

Classic method ARIMA Autoregressive integrated moving average model
WT Wavelet transform
EWT Empirical wavelet transforms
EMD Empirical mode decomposition
EEMD Ensemble empirical mode decomposition
CEEMD Complementary ensemble empirical mode

decomposition
VMD Variational mode decomposition

Machine
learning

RF Random forest

SVR Support vector machine-based regression
GBDT Gradient boosting decision tree
ANN Artificial neural networks
PSO Particle swarm optimization
DBSCAN Density-based spatial clustering of applications

with noise
FE Fuzzy entropy
Kalman-
filter

Kalman filter

GWO Grey wolf optimizer
mRMR Max-relevance and min-redundancy
Q Q-learning

Table 7
The research used DL plus statistical methods.

Study Year Location Model

Qiao et al. [80] 2019 China WT-SAE-LSTM
Huang et al. [83] 2021 Beijing, China EMD-GRU
Jin et al. [84] 2020 Beijing, China EMD-CNN-GRU

Zaini et al. [85] 2022 Cheras/Batu Muda, Malaysia EEMD-LSTM
Zhang et al. [86] 2021 Beijing, China VMD-BiLSTM
Chang et al. [87] 2020 Taiwan, China GBDT-SVR-LSTM
Liu et al. [88] 2021 Changsha, China GCN-LSTM-GRU-Q
Liu et al. [89] 2020 Shanghai, China CEEMD-LSTM
Jiang et al. [90] 2021 Beijing, China CEEMD þ DeepTCN
Kim et al. [82] 2021 Beijing, China FC-DTWD-EWT-CBLS

Lu et al. [91] 2021 Yangtze River Delta Region, China DBSCAN-DNN
Teng et al. [92] 2022 Shanghai, China EMD-SE-BiLSTM

Fu et al. [93] 2021 Hangzhou, China CEEMD-LSTM
Zhang et al. [94] 2020 Gansu, China ESN-PSO
Wang et al. [95] 2022 China LSTM-RF-PSO
Wang et al. [96] 2022 - CEEMD-FE-mRMR-GW

LSTM
Wei Sun et al. [97] 2022 Jing-Jin-Ji Region, China LSTM-CEEMADN
Xu et al. [98] 2022 China CEEMD-CNN-LSTM
Zhou et al. [99] 2022 Chongqing, China Kalman-Filter-LSTM
Zhao et al. [100] 2022 Beijing/Guangzhou, China RF-BiLSTM

Xi'an/Shenyang, China
Zhang et al. [101] 2023 Pingqiao/South bay/Brewing, China CEEMD-FCN-LSTM

Masood et al. [102] 2023 Delhi, India ANN
Liu et al. [103] 2022 Shenyang/Changsha/Shenzhen,

China
VMD-LSTM-ESN-TCN

Benhaddi et al. [81] 2021 Marrakesh, Morocco WT-CNN
Ban et al. [104] 2022 Hangzhou, China CEEMD-LSTM-BP-ARI
M.A.A.A.-q et al.

[105]
2021 Wuhan, China PSO-SMA-ANFIS
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transform into DL algorithms. Qiao et al. [80]combined the wavelet
transform with an SAE and LSTM hybrid model. The wavelet
transform decomposes the PM2.5 time series into multiple subse-
ries, and the DL algorithm is used to model and predict each sub-
series. Benhaddi et al. [81] combined the wavelet transform with a
CNN-based model for multivariate time series forecasting in urban
air quality prediction. The model used dilated residual convolu-
tional neural networks (DRCNs) to capture temporal dependencies
and interactions among multiple air quality indicators. In addition,
Kim et al. [82] integrated clustering, feature selection, and empir-
ical wavelet transform (EWT) into an LSTM-based framework to
capture the spatiotemporal dynamics of air pollutant concentra-
tions. The clustering method was used to identify the spatial clus-
ters of air qualitymonitoring stations, and the EWTwas designed to
decompose the time series data into different frequency compo-
nents. Then, a DL model was developed to predict the air pollutant
concentration using the selected features. Both the proposed
hybrid models outperformed other models regarding forecasting
accuracy and efficiency.

EMD (empirical mode decomposition), EEMD (ensemble
empirical mode decomposition), and CEEMD (complete ensemble
empirical mode decomposition with adaptive noise) are three
signal decomposition algorithms used within the EMD method or
Time step RMSE
(mg m�3)

MAE
(mg m�3)

MAPE (%) R2

D/S/Tþ1 - 3.88 - -
H/M/Tþ(1-4) 11.37 6.53 25.79 0.98
H/M/Tþ(1-
24)

42.26 34.95 65.30 0.67

H/S/Tþ1 4.21/4.89 2.81/2.77 14.15/14.64 0.97/0.96
H/S/Tþ1 9.39 5.35 16.40 0.99
H/S/Tþ1 7.67 5.00 - -
M/-/- 17.63 14.24 2.91 -
H/S/Tþ3 3.28 2.23 5.74 0.99
H/S/Tþ1 1.11 0.65 2.65 -

TM H/S/Tþ1 2.29 1.51 4.03 0.94
H/S/Tþ10 5.17 3.37 8.98 0.85
H/S/Tþ1 13.29 - 0.90 -
H/S/Tþ1 2.77 1.88 - 0.98
H/S/Tþ3 5.04 3.56 - 0.95
H/S/Tþ1 6.48 4.76 15.76 -
H/S/Tþ1 8.73 5.47 8.20 0.93
H/S/Tþ1 4.93 2.91 24.36 -

O- H/-/- 8.26 6.60 19.77 0.95

D/S/Tþ1 3.52 2.73 - 0.97
H/S/Tþ2 12.67 9.60 - 0.87
H/S/Tþ1 8.45 7.30 - 0.96
H/S/Tþ1 7.26/1.77 3.73/1.33 - 1.00/0.99

2.75/4.51 1.37/2.20 - 1.00
- 3.81/5.39/

4.02
2.47/2.81/
4.55

4.48/6.48/
2.37

0.98/0.97/
0.98

- 24.12 - - 0.94
-GBDT - 1.98/2.20/

1.68
1.58/1.71/
1.32

3.95/4.11/
4.53

-

H/-/- 0.01 - 99.10 -
MA D/S/Tþ1 4.55 3.66 - 0.79

H/S/Tþ1 22.39 17.50 16.83 0.51
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its variants. EMD is a fully adaptive signal decomposition algorithm,
and EEMD is an improved version of EMD that introduces
randomness into the decomposition process to improve robustness
and reduce mode mixing. CEEMD is a further improvement of
EEMD that incorporates adaptive noise reduction technology into
the decomposition process. In addition, variational mode decom-
position (VMD) is a signal decomposition method commonly used
in time series analysis. The benefits of these signal decomposition
algorithms are that they are data-driven and do not require any a
priori knowledge of the frequency or time scale of the signal. Using
EMD and VMD allows the model to capture the different frequency
components of the input data, which is useful for forecasting PM2.5
concentrations that exhibit complex and nonlinear relationships
with their influencing factors. Therefore, some researchers take it
as a priority of DL methods, which can help the training process.
Huang et al. [83], Jin et al. [84], and Teng et al. [92] proposed a
hybrid model that combined EMD with GRU, CNN, and BiLSTM,
respectively. Zaini et al. [85] applied EEMD to decompose the input
data for LSTM, while Liu et al. [89], Fu et al. [93], and Sun et al. [97]
utilized CEEMD for LSTM input decomposition. Jiang et al. [90]
combined the CEEMD with deep-TCN. Zhang et al. [86] used VMD
and BiLSTM for PM2.5 concentration prediction. These models can
capture nonlinear relationships between variables using EMD or
VMD. However, the model's performance heavily depends on the
decomposition quality, which can be affected by noise and other
factors.

Furthermore, hybrid models based on the combination of signal
processing and DL algorithms improve the model's performance in
more ways. Xu et al. [98] and Zhang et al. [101] proposed improved
CEEMD-LSTM models combined with CNN and FCN, respectively.
The convolutional layers helped in feature selection to enhance
prediction accuracy. Wang et al. [96] proposed a hybrid model
based on CEEMD-LSTM and optimized their weights using multiple
machine-learning algorithms (FE, mRMR, and GWO). Ban et al.
[104] incorporated CEED, BP, LSTM, and ARIMA to build a
comprehensive hybrid framework that considered multiple factors
and scaled for air pollutant prediction and early warning. Liu et al.
[103] proposed an enhanced hybrid model that combined multiple
DL models (LSTM, ESN, and TCN) with statistical algorithms (VMD
and GBDT). The ESN and TCN were extracted features, while LSTM
was used to predict the PM2.5 concentration. The VMD and GBDT
can enhance the model's performance by optimizing their weights.
The strengths of this model include the use of multiple DL and
statistical techniques, which can capture complex temporal and
spatiotemporal patterns in the data. However, one potential
weakness of the model is its reliance onmeteorological data, which
may limit its accuracy in areas with sparse meteorological moni-
toring stations.

Methods combined with machine learning. Machine learning
approaches often require more meticulously designed features,
which are typically manually annotated to help increase model
interpretability, while DL approaches can automatically learn fea-
tures without the need for manual design, giving them an advan-
tage in handling large-scale, high-dimensional data but lacking
model interpretability. By combining these approaches, we can
exploit both the feature engineering interpretability of machine
learning and the powerful feature-learning abilities of DL. Lu et al.
[91] combined the DNN and DBSCAN clustering algorithms to
improve the PM2.5 concentration forecasting accuracy. Incorpo-
rating DBSCAN showcases strengths in handling spatial clustering
and outlier detection, contributing to the enhanced accuracy of
PM2.5 concentration forecasting. Chang et al. [87] proposed an
ensemble learning-based hybrid model that integrated multiple
machine learning algorithms (GBDT and SVR) to improve the per-
formance of the LSTM model. The GBDT and SVR provide insights
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into feature importance, aiding in the identification of key variables
that significantly contribute to the predictive power of the LSTM
model. Masood et al. [102] provided a data-driven predictive
modeling approach based on ANN, and Zhao et al. [100] proposed a
forecasting model for fine particulate matter concentrations using
RF and BiLSTM. The fusion of LSTM and RF could enhance the
model's ability to model complex data, capitalizing on LSTM's long
short-term memory and the decision tree advantages of RF. Zhou
et al. [99] integrated Kalman filtering, an attention mechanism, and
an LSTM neural network. The inclusion of Kalman filtering serves to
reduce the noise of input data and handle the missing data. This
integration enhances the robustness of the algorithm. Zhang et al.
[94] proposed a novel combined model based on an echo state
network (ESN) and PSO, while Wang et al. [95] proposed a model
based on LSTM, RF, and PSO. Using PSO helps the model quickly
converge to an optimal solution, even in high-dimensional search
spaces with complex, nonlinear relationships between variables.
The combination of ESN and PSO might excel in time series pre-
diction, leveraging ESN's strengths in processing sequential data
and PSO's capabilities in global search. Additionally, M.A.A.A.-q
et al. introduced a novel DL hybrid method that combines the po-
wer of the slime mould algorithm (SMA) and PSO within the
adaptive neuro-fuzzy inference system (ANFIS) framework for
PM2.5 prediction [105]. The proposed model, known as PSOSMA-
ANFIS, effectively harnesses the strengths of both SMA and PSO
to optimize the parameters of the ANFIS model, a widely used tool
for air quality prediction. SMA, a metaheuristic algorithm, is
modified within the PSOSMA method. PSO plays a pivotal role in
generating the initial population of solutions, greatly influencing
their convergence toward the optimal solution. The synergy of SMA
and PSO in the PSOSMA method results in improved algorithmic
exploitation capabilities, ultimately enhancing the ANFIS model's
performance. Similarly, Liu et al. [88] utilized Q-learning to guar-
antee that the proposed GCN-LSTM-GRU DL model converged to an
optimal policy under certain conditions. Importantly, Q-learning is
a reinforcement learning method that is effective in dealing with
environments characterized by large or continuous state spaces.
While combining machine learning and DL can lead to powerful
models for many applications, these models still have some limi-
tations, such as a lack of interpretability and expensive computa-
tion, making it harder to trace back on and employ resource-
constrained devices for further use.

3.3.2. Deep neural network ensembles methods
In addition to DCNs, CNNs, and RNNs, some researchers have

used hybrid DL architectures. These include the combinations of
CNNs with LSTM networks, now known as “CNN-LSTM” models, as
well as the combination of CNN and GRU.

CNN þ LSTM methods. The most direct way to combine CNN
with LSTM is to use CNN to obtain the features of the input data and
then use LSTM to model the temporal dependencies with the
sequence of features. The hybrid models are trained as awhole. The
CNN þ LSTM hybrid model determines whether the CNN interacts
with the LSTM to form an information fusion. If it is only used as a
module via several layers in the data processing, the model is
classified as CNN-based or LSTM-based.

As shown in Table 8 [92,106e115], all directly used the “CNN-
LSTM”model to capture both spatial and temporal dependencies in
PM2.5 data. The CNN layers were applied to the spatial dimensions
of the input tensor, resulting in a feature map for each time step.
The LSTM layers were then applied to the resulting feature maps
along the time axis to capture the temporal dependencies. Many
experiments involving different data at different sites illustrated
the high feasibility of the CNN þ LSTM model.

Improvements to the basic CNN-LSTM model based on CNNs or



Table 8
The research used CNN-LSTM methods.

Study Year Location Model Time step RMSE (mg m�3) MAE (mg m�3) MAPE (%) R2

Huang et al. [106] 2018 Beijing/Shanghai, China CNN-LSTM H/S/Tþ1 24.22 14.63 - -
Qin et al. [107] 2019 Shanghai, China CNN-LSTM H/S/Tþ24 14.30 - - -
Li et al. [108] 2020 Beijing, China CNN-LSTM D/S/Tþ1 18.99 16.81 - -
Zhang et al. [109] 2020 Shijiazhuang, China CNN-LSTM H/S/Tþ1 14.94 - - -
Yang et al. [110] 2021 Beijing, China CNN-LSTM H/S/Tþ1 19.09 - - 0.92
Wei et al. [111] 2021 Beijing, China CNN-LSTM H/S/Tþ6 - 19.54 - 0.62
Bekkar et al. [112] 2021 Beijing, China CNN-LSTM D/S/Tþ1 12.92 6.74 - 0.98
Wardana et al. [113] 2021 Beijing, China CNN-LSTM H/-/Tþ1 15.26 8.77 - -
Tsokov et al. [114] 2022 Beijing, China CNN-LSTM H/S/Tþ1 14.95 8.48 - -
Teng et al. [92] 2022 Beijing, China CNN-LSTM H/S/Tþ1 8.93 6.52 - 0.92
Kim et al. [115] 2022 South Korea CNN-LSTM H/S/Tþ1 10.52 - - 0.37
Shao et al. [116] 2022 Seoul, South Korea SCNN-LSTM H/M/Tþ(1-10) 8.05 5.04 23.96 0.70
Choi et al. [117] 2022 Beijing, China ResNet-LSTM H/S/Tþ1 0.02 0.01 9.02 -
Zhang et al. [118] 2022 Yangtze River Delta Region, China ResNet-LSTM H/S/Tþ1 5.47 3.89 - -
Cheng et al. [119] 2022 Beijing, China SResCNN-LSTM D/S/Tþ5 40.67 23.74 - 0.80
Zhao et al. [120] 2019 Beijing/Tianjin, China STCNN-LSTM H/S/Tþ6 19.36 15.53 26.00 0.70
Qi et al. [121] 2019 Jing-Jin-Ji Region, China GCNN-LSTM H/S/Tþ1 22.41 13.72 - -
Soh et al. [123] 2018 Taiwan/Beijing, China ANN-CNN-LSTM H/S/Tþ6 - - - -
Yang et al. [124] 2019 Beijing, China DWFD-CNN-LSTM H/M/Tþ(1-6) 43.90 29.17 - -
Li et al. [122] 2020 Taiyuan, China Attention-CNN-LSTM H/M/Tþ(1-24) 14.83 8.98 - 0.99
Li et al. [125] 2022 Beijing, China CBAM-CNN-BiLSTM H/M/Tþ(13-18) 31.47 21.86 - 0.81

H/M/Tþ(25-48) 32.34 22.30 - 0.79
Moursi et al. [126] 2022 Beijing, China NARX-CNN-LSTM H/S/Tþ1 23.64 - - 0.92
Zhu et al. [127] 2023 Shanghai, China 1D-CNN þ BiLSTM H/S/Tþ1 3.88 2.52 - 0.94
Pak et al. [128] 2020 Beijing, China PM predictor D/S/Tþ1 2.99 2.21 3.90 -
Du et al. [129] 2021 Beijing, China DAQFF H/S/Tþ1 8.20 6.19 - -
Zhu et al. [130] 2021 Jing-Jin-Ji Region, China APNet H/-/Tþ1 17.93 9.93 - 0.95

H/-/Tþ72 29.11 20.07 - 0.87
Zhang et al. [131] 2022 Hong Kong/Beijing, China Deep-AIR H/S/Tþ1 - - 21.10/23.90 -
Mohan et al. [132] 2022 Kerala, India EDPF H/M/Tþ24 12.96 9.28 56.73 0.44
Li et al. [133] 2022 Beijing, China FPHFA H/M/Tþ(1-12) 28.15 19.19 56.10 0.87

H/M/Tþ(13-24) 22.12 15.27 43.80 0.93
Gunasekar et al. [134] 2022 Chennai, Tamandu ARTOCL NA 0.50 0.32 - 0.69
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LSTMs are constantly being integrated. Shao et al. [116] proposed a
space-shared CNN-LSTM model for multisite daily ahead PM2.5
concentration forecasting. The model was designed to consider the
correlation between different sites and the spatial information of
each site. The results showed that the proposed model had higher
prediction accuracy than several baseline models. Choi et al. [117]
and Zhang et al. [118] both proposed ResNet-based CNN-LSTM
models. Choi et al. [117] incorporated gradient-based feature
attribution methods for a more explainable prediction. Cheng et al.
[119] proposed a fixed ResNet-LSTM that was designed to consider
the spatial and temporal correlation of air quality data. Zhao et al.
[120] proposed a regional spatiotemporal collaborative CNN-LSTM
prediction model. Qi et al. [121] proposed a hybrid model based on
a graph convolutional neural network (GCN) and LSTM for spatio-
temporal forecasting of PM2.5. This model incorporated an attention
mechanism to emphasize the most important features in the input
data and used CNN for feature extraction and LSTM for temporal
modeling. Li et al. [122] also proposed an attention-based CNN-
LSTM model for urban PM2.5 concentration prediction. The model
used an attention mechanism to weigh the importance of input
features and combined CNN and LSTM for feature extraction and
temporal modeling. Soh et al. [123] proposed a model ST-DNN that
comprised ANN, LSTM, and CNN. The proposed model was
designed to capture both spatial and temporal correlations in PM2.5
data. Yang et al. [124] proposed a novelmultistep-ahead forecasting
CNN-LSTM model based on dynamic wind field distance for PM2.5
prediction. Li et al. [125] proposed a DL model based on CNN and
bidirectional LSTM with a convolutional block attention module
(CBAM). Moursi et al. [126] proposed a combined CNN and LSTM
hybrid model based on a nonlinear autoregressive network with
exogenous inputs (NARX) for enhancing PM2.5 prediction. Zhu et al.
[127] used multiple input streams and parallel processing to
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improve PM2.5 prediction accuracy.
In addition to the hybrid of CNN and LSTM, the range of mixing

methods has expanded. Mohan et al. [132] proposed an EDPF
model combining a long short-term memory network, convolu-
tional neural network, and random forest algorithm. Gunasekar
et al. [134] proposed a sustainable, optimized hybrid intelligent
system named ARTOCL; the combination of CNN and LSTM could
improve air quality prediction accuracy and reduce the number of
false alarms. Pak et al. [128], Du et al. [129], and Zhu et al. [130] all
considered spatiotemporal correlations by using a combination of
CNN and LSTM to capture spatial and temporal patterns, respec-
tively. The proposed PM predictor [128] and DAQFF [129] directly
utilized CNN to extract spatial features, while APNet [130] used
parallel CNN and attentionmechanisms toweigh the importance of
different spatial features. In addition, both Zhang et al. [131] and Li
et al. [133] proposed hybrid frameworks that combined a CNN, an
LSTM, and an attention mechanism, and Zhang et al. [131]
considered fine-grained air pollution estimation. Using an attention
mechanism can help the model focus on important features. The
strengths of DL hybrid models are their ability to capture complex
relationships and patterns from the PM2.5 concentration data,
incorporate spatiotemporal information, and adapt to different
environmental conditions. However, DL hybrid approaches may
require significant computational resources, much data, and careful
model tuning to achieve optimal results.

CNN þ GRU methods. CNNs are commonly used for image
recognition tasks, where they are able to learn hierarchical features
from raw pixel data. CNNs can be used in time-series data to learn
patterns in the temporal sequences of values, such as daily or
hourly pollutant concentrations. GRUs are recurrent neural net-
works (RNNs) designed to capture long-term dependencies in
sequential data. Unlike traditional RNNs, GRUs are able to



Table 9
The research used CNN þ GRU methods.

Study Year Location Model Time step RMSE (mg m�3) MAE (mg m�3) MAPE (%) R2

Tao et al. [135] 2019 Beijing, China CBGRU H/S/Tþ2 14.53 10.47 34.09 -
Zhang et al. [136] 2020 Lanzhou, China MTD-CNN-GRU H/S/Tþ1 7.96 4.54 - -
Faraji et al. [137] 2022 Tehran, Iran 3D CNN-GRU H/S/Tþ1 - - - 0.84

D/S/Tþ1 - - - 0.78
Chiang et al. [138] 2021 Taiwan, China AE þ CNN þ GRU D/S/Tþ1 5.03 3.10 - -
Mao et al. [139] 2022 Taiwan, China CNN þ GRU H/S/Tþ1 4.78 3.56 - 0.89

Kennedy/Simon Bolivar, US D/S/Tþ1 6.83/6.15 5.29/4.58 - 0.44/0.56

S. Zhou, W. Wang, L. Zhu et al. Environmental Science and Ecotechnology 21 (2024) 100400
selectively update and reset their internal state, making themmore
effective at learning long-term dependencies.

As shown in Table 9, several papers are based on the CNN and
GRU hybrid model. Tao et al. [135] combined two powerful DL
techniques, 1D CNN and BiGRU, to capture both local and temporal
patterns for predicting air pollution levels. Zhang et al. [136] pro-
posed amultitask DLmodel based on a CNN and GRU hybridmodel.
This approach modeled the complex relationships between PM2.5
concentrations and meteorological variables well, and it could
predict PM2.5 concentrations at multiple monitoring stations
simultaneously. However, in this study, the authors only considered
using meteorological variables as input to the model, which could
potentially lead to insufficient sample information. Furthermore,
this may also limit the performance of the CNN þ GRU model as it
relies on a large dataset. Faraji et al. [137] combined a 3D CNN with
GRUs for predicting short-term PM2.5 concentrations in urban en-
vironments. Mao et al. [139] proposed a hybrid DL model that
combines CNN, BiGRU, and a fully connected layer. The advantage of
these two approaches is their ability to model both spatial and
temporal patterns. Chiang et al. [138] proposed a hybrid DL model
based on a stacked autoencoder (AE), CNN, and GRU. The model
was trained on a large dataset of air pollutant data from Beijing and
was able to predict hourly concentrations of multiple air pollutants
up to 24 h in advance. The strengths of this model include its ability
to handle missing data and its high prediction accuracy. Overall, by
combining the strengths of CNN and GRU, the hybrid model is able
to learn both local and global patterns in time-series data, making it
well-suited for air pollutant concentration prediction. The CNN
component of the model learns local patterns in the temporal
sequence of values, while the GRU component captures longer-
term dependencies and trends.
Table 10
Description of the proposed indicators.

Standard Indicator Description

Dataset Open source Given the available d
Data feature Predict step The step size of the p

Time resolution The time resolution o
Data size The size of the using

Data dimensions Multiple data inputs
Dataset split The division of traini
Pre-processing Normalize Min-max scaling, z-s

Missing value Describes how to han
Method Open source Provide a link where

Architecture Whether to describe
Training process The design or trend o
Visual analysis Visual visualization o
Novelty Whether to innovate

Experiments Experimental setting Model config The setting of design
Computation setup Basic information abo

Results metrics The evaluation metri
Modeling metrics FLOPs The Floating Point Op

Params The number of traina
Comparison with SOTAs The results are comp
Ablation study Removing or disablin
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4. Discussion

Building upon the above review, we further established a novel
evaluation framework designed to assess the quality of DL articles
in PM2.5 prediction, dubbed the Dataset-Method-Experiment
Standard (DMES). This proposed standard offers a comprehensive
evaluation from three critical perspectives: the datasets estab-
lished, the methodologies processed, and the experimental results,
as detailed in Table 10. This approach not only underscores the
importance of each component but also facilitates a more holistic
understanding of the strengths and limitations of current DL ap-
plications in this field.
4.1. Dataset

Initially, we identified five key indicators to assess the quality of
dataset descriptions in the literature. Firstly, the availability of
open-source data is paramount; open data facilitates code repro-
ducibility, model validation, and propels industry advancement.
Thus, the openness of data serves as the fundamental criterion in
our evaluation of the dataset sections within each paper. Secondly,
a detailed description of the data features is essential. This includes
information on prediction step size, training data resolution, and
overall data volume. Articles that provide a more thorough repre-
sentation of the data, especially those dealing with complex pre-
diction data types, will accordingly receive higher scores in dataset
description. Thirdly, in recognition of the growing trend towards
multi-dimensional data prediction, we evaluate the dimensionality
of the processing data. We particularly advocate for the integration
of multi-dimensional data to enhance prediction accuracy.
Fourthly, dataset partitioning is critical for DL model configuration;
ataset link or declare the process of data collection.
rediction task, i.e., single step or multi-step.
f dataset, i.e., hourly, daily, or monthly.
dataset.
include meteorological data.
ng, valid, and testing set. The test set needs to contain all kinds of samples.
core normalization, and decimal scaling, etc.
dle missing or outlier values to ensure data continuity.
the code will be available.
the network structure and give the parameters.
f loss or the learning objectives.
f predicted and ground truth.
or apply the model to a domain for the first time.
parameters, such as the convolution kernel size.
ut the used CPU and GPU in the experiment.
cs, usually RMSE, MAE, and MAPE, also have SSIM, ACC, R2, etc.
erations (FLOPs).
ble parameters.
ared with the advanced algorithm under the same experimental setting.
g different components or features to see how it affect the model's performance.
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appropriate division of datasets underpins the reliability of the
training outcomes of the proposed models. Articles that reasonably
partition datasets will be awarded points for this aspect. Finally, the
methods of data preprocessing must be meticulously detailed,
including standardization techniques and the treatment of missing
or anomalous values. Articles addressing relevant data pre-
processing parts will receive points for this criterion. Given the
sensitivity of DLmodels to data quality, providing a transparent and
detailed account of data preprocessing is vital for ensuring efficient
training and reliable results. Furthermore, such clarity is essential
to guarantee reproducibility and to support algorithmic innovation
by other researchers.

4.2. Method

Furthermore, we have established five criteria for evaluating the
methods section of research papers. Analogous to the significance
of open-source datasets, the provision of open-source code link
substantially aids in the replication of algorithms, thereby affirming
the model's reproducibility and enhancing the reliability of
modeling outcomes, giving available code link or source will
receive points for this criterion. Then, the detailed structural
description of the model, encompassing the architecture of each
network component and the layer structures such as convolution
kernel sizes and pooling layers, is imperative. Papers that contain
such descriptions will be awarded points for this aspect. Such
comprehensive structural elucidation facilitates the comparative
assessment of the model's performance against others. Next, the
training process, including configuration settings, articulation of
learning objectives, and the formulation of loss functions, consti-
tute critical facets of a DL model's architecture that ought to be
thoroughly described within the manuscript. Besides，The visual-
ization analysis offers an intuitive depiction of the prediction out-
comes, enabling readers to directly evaluate the model's predictive
accuracy. High-quality result visualization will lead to higher
scores. Lastly, the novelty criterion appraises the originality and
significance of the research, examining whether the study in-
troduces innovative approaches, enhances existing methodologies,
or addresses pivotal challenges within the DL domain. Articles that
demonstrate such innovation will receive higher scores. This cri-
terion also facilitates the contextual comparison of the presented
work with prior studies, among other considerations.

4.3. Experiment

To rigorously assess the quality of experimental descriptions in
research papers, we established five key indicators focused on
experimental settings and results. These indicators are designed to
ensure a comprehensive and fair evaluation of studies in PM2.5
concentration prediction using DL models.

(i) Experimental setting: This encompasses the specific config-
uration of the experimental models, such as the learning
rate, training epochs, utilization of pretrained models, and
uniformity in the test sets applied. This indicator aims to
ensure that experimental comparisons are conducted under
equitable conditions. Indeed, maintaining consistency in the
computational setup across experiments is vital to ensure
the fairness and reliability of comparisons. This consistency
encompasses both hardware specifications and software
configurations, including the type and model of GPUs
(graphics processing units) and CPUs (central processing
units) used in the experiments. By providing these infor-
mation, other researchers can accurately assess the perfor-
mance and efficiency of the article's proposed DL models
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under equivalent computational conditions, thereby elimi-
nating variables that could potentially skew results. Such
transparency in reporting computational resources also fa-
cilitates reproducibility and enables other researchers to
replicate findings with similar setups, further contributing to
the integrity and credibility of scientific research in the field
of DL and PM2.5 concentration prediction. Providing the in-
formation of experimental settings will result in corre-
sponding scores.

(ii) Results metrics: Through our literature review, we identified
RMSE, MAE, and MAPE as the prevalent evaluation metrics
for PM2.5 concentration prediction. The inclusion of these
three metrics offers a holistic view of the model's perfor-
mance. Besides, recognizing the diversity in research objec-
tives and methodologies, we also introduced an “Others'
category to accommodate the application of specialized
evaluation indicators that may be pertinent to specific
studies. Conducting performance evaluations of models is
crucial in research articles, as using widely accepted metrics
enables effective horizontal comparisons between different
models. Consequently, articles that employ more popular
evaluation metrics for assessing model performance are
likely to receive higher evaluation scores, reflecting the ease
with which their results can be compared and understood
within the broader research community.

(iii) Modeling metrics: These metrics evaluate the computational
and energy efficiency of the proposed methods, measuring
the model's size and computational speed. A comprehensive
model evaluation should consider not only prediction accu-
racy but also the resource efficiency of the model, balancing
performance with computational cost. Articles that conduct
model performance evaluations surpass those that solely
assess the ability of predictive performance under our eval-
uation framework.

(iv) Comparison with state-of-the-art SOTA: Most articles typi-
cally include comparisons with SOTA performance metrics to
demonstrate the effectiveness of a given algorithm. Only a
minority of studies test their models and data in isolation,
without engaging in horizontal comparisons. Conducting a
performance comparison with state-of-the-art algorithms is
crucial for illustrating the efficacy of an algorithm. Such
comparisons not only underscore the advancements ach-
ieved by the new algorithm but also encourage deeper in-
teractions and discussions within the research community.

(v) Ablation study: The inclusion of a comprehensive ablation
study in a research article significantly enhances the credi-
bility of the proposed model. Many articles overlook this
aspect; however, in the field of DL, ablation studies are often
essential. It provides concrete evidence that the improve-
ments claimed by the researchers are indeed effective and
not the result of external factors or coincidences. For articles
that include ablation studies, we consider their DL models to
be more comprehensive. Such articles are likely to receive
higher evaluations because ablation studies demonstrate a
thorough understanding of the model's components and
their contributions to overall performance. This approach not
only validates the effectiveness of the model but also high-
lights the authors' commitment to transparency and scien-
tific rigor, enhancing the credibility and reproducibility of
their research.

By applying these indicators, we have developed a three
dimensional evaluation framework, i.e., Dataset-Method-Experi-
ment Standard (DMES) for articles related to DL architecture for
PM2.5 concentration prediction. We aim to foster a more
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standardized and equitable evaluation of DL-based research in the
field. Clearly, this comprehensive evaluation system facilitates a
nuanced assessment of the contributions and strengths of each
article in the context of DL-based PM2.5 prediction, providing a
structured approach to understanding the current state of research
in this crucial area.

5. Conclusion

In this review article, we conducted an objective, rigorous and
comprehensive review of DL-based architecture for PM2.5 concen-
tration prediction, specially focus on the types and structures of DL-
based models applied. 118 papers were meticulously selected in
adherence to the PRISMA guidelines. From the perspective of uti-
lized model architectures, we categorized and summarized seven
types of DL-basedmodel structures. Our classification offers a high-
level overview of the current research landscape in this domain,
enabling readers to quickly grasp the state of the art. By catego-
rizing these methods, we present the results of various models in a
tabulated form, facilitating clear and effective comparisons.
Through a detailed classification of DL-based models, we have
critically examined and synthesized performance indicators and
application conditions for various PM2.5 prediction methodologies.
Our analysis provides an in-depth exploration of their strengths
and weaknesses, enriching the discourse on the efficacy and
adaptability of thesemodels in addressing the complex challenge of
air quality prediction. Moreover, we have introduced a novel eval-
uation framework, the DMES, specifically designed to assess and
standardize the evaluation of articles on similar topics. This
framework represents a significant stride towards enhancing the
consistency and comparability of DL-based research papers, ulti-
mately facilitating more reliable and equitable evaluations.
Furthermore, we applied this three-dimensional evaluation
framework, DMES, to the 118 reviewed articles. The introduction of
this standard aims to improve the comparability of research out-
comes and promote a more unified methodology in the assessment
of DL-based models for PM2.5 concentration prediction. As the
forecasting of environmental PM2.5 levels continues to be a critical
concern, our work seeks to lay the groundwork for future research,
moving towards a more integrated and standardized framework in
this vital area of study.

Conclusively, our work not only contributes to the existing body
of knowledge by providing a comprehensive review and a sys-
tematically categorized critical analysis of DL-based PM2.5 predic-
tion methodologies but also pioneers a structured approach for
future evaluations. The establishment of the DMES framework
marks a pivotal advancement in the standardization of research
evaluations, paving the way for more rigorous, transparent, and
reproducible scientific inquiry in the realm of DL and environ-
mental prediction.

CRediT authorship contribution statement

Shiyun Zhou: Investigation, Writing - Original Draft, Writing -
Review & Editing. Wei Wang: Methodology, Writing - Review &
Editing, Supervision. Long Zhu: Data Curation, Software. Qi Qiao:
Supervision. Yulin Kang:Writing - Original Draft, Writing - Review
& Editing, Supervision, Conceptualization, Funding Acquisition.

Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.
14
Acknowledgements

This work was supported by the Fundamental Research Funds
for the Central Public-interest Scientific Institution (2022YSKY-73).

References

[1] Global Air Quality Guidelines, World health organization, 2021. https://
www.who.int/.

[2] C. Li, A. van Donkelaar, M.S. Hammer, E.E. McDuffie, R.T. Burnett, J.V. Spadaro,
D. Chatterjee, A.J. Cohen, J.S. Apte, V.A. Southerland, Reversal of trends in
global fine particulate matter air pollution, Nat. Commun. 14 (2023) 5349,
https://doi.org/10.1038/s41467-023-41086-z.

[3] J. Rentschler, N. Leonova, Global air pollution exposure and poverty, Nat.
Commun. 14 (2023) 4432.

[4] X. Xu, K. Shi, Z. Huang, J. Shen, What factors dominate the change of PM2. 5
in the world from 2000 to 2019? A study from multi-source data, Int. J.
Environ. Res. Publ. Health 20 (2023) 2282, https://doi.org/10.3390/
ijerph20032282.

[5] W. Yu, T. Ye, Y. Zhang, R. Xu, Y. Lei, Z. Chen, Z. Yang, Y. Zhang, J. Song, X. Yue,
Global estimates of daily ambient fine particulate matter concentrations and
unequal spatiotemporal distribution of population exposure: a machine
learning modelling study, Lancet Planet. Health 7 (2023) e209ee218, https://
doi.org/10.1016/S2542-5196(23)00008-6.

[6] Y.A. Ayturan, Z.C. Ayturan, H.O. Altun, Air pollution modelling with deep
learning: a review, Int. J. Environ. Pollution and Environ. Modelling 1 (2018)
58e62, https://doi.org/10.1016/j.atmosenv.2022.119347.

[7] Q. Liao, M. Zhu, L. Wu, X. Pan, X. Tang, Z. Wang, Deep learning for air quality
forecasts: a review, Current Pollution Reports 6 (2020) 399e409, https://
doi.org/10.1007/s40726-020-00159-z.

[8] G. Drewll, R. Al-Bahadili, Forecast air pollution in smart city using deep
learning techniques: a review, Multicult. Educ. 7 (2021), https://doi.org/
10.5281/zenodo.4737746.

[9] T. Istiana, B. Kurniawan, S. Soekirno, B. Prakoso, Deep learning imple-
mentation using long short term memory architecture for PM2.5 concen-
tration prediction: a review, IOP Conf. Ser. Earth Environ. Sci. 1105 (2022)
012026, https://doi.org/10.1088/1755-1315/1105/1/012026.

[10] N.a. Zaini, L.W. Ean, A.N. Ahmed, M.A. Malek, A systematic literature review
of deep learning neural network for time series air quality forecasting, En-
viron. Sci. Pollut. Control Ser. 29 (2022) 4958e4990, https://doi.org/10.1007/
s11356-021-17442-1.

[11] W. Zhang, Y. Wu, J.K. Calautit, A review on occupancy prediction through
machine learning for enhancing energy efficiency, air quality and thermal
comfort in the built environment, Renew. Sustain. Energy Rev. 167 (2022)
112704, https://doi.org/10.1016/j.rser.2022.112704.

[12] K. Kitcharoen, The importance-performance analysis of service quality in
administrative departments of private universities in Thailand, ABAC Journal
24 (2004).

[13] P. Brereton, B.A. Kitchenham, D. Budgen, M. Turner, M. Khalil, Lessons from
applying the systematic literature review process within the software en-
gineering domain, J. Syst. Software 80 (2007) 571e583, https://doi.org/
10.1016/j.jss.2006.07.009.

[14] F.M. Padilla, M. Gallardo, F. Manzano-Agugliaro, Global trends in nitrate
leaching research in the 1960e2017 period, Sci. Total Environ. 643 (2018)
400e413, https://doi.org/10.1016/j.scitotenv.2018.06.215.

[15] Y. Gao, L. Ge, S. Shi, Y. Sun, M. Liu, B. Wang, Y. Shang, J. Wu, J. Tian, Global
trends and future prospects of e-waste research: a bibliometric analysis,
Environ. Sci. Pollut. Control Ser. 26 (2019) 17809e17820, https://doi.org/
10.1007/s11356-019-05071-8.

[16] H. Xing, G. Wang, C. Liu, M. Suo, PM2.5 concentration modeling and pre-
diction by using temperature-based deep belief network, Neural Network.
133 (2021) 157e165, https://doi.org/10.1016/j.neunet.2020.10.013.

[17] Y. Xing, J. Yue, C. Chen, Y. Xiang, Y. Chen, M. Shi, A deep belief network
combined with modified grey wolf optimization algorithm for PM2.5 con-
centration prediction, Appl. Sci. 9 (2019) 3765, https://doi.org/10.3390/
app9183765.

[18] X. Li, L. Peng, Y. Hu, J. Shao, T. Chi, Deep learning architecture for air quality
predictions, Environ. Sci. Pollut. Control Ser. 23 (2016) 22408e22417,
https://doi.org/10.1007/s11356-016-7812-9.

[19] L. Li, M. Girguis, F. Lurmann, N. Pavlovic, C. McClure, M. Franklin, J. Wu,
L.D. Oman, C. Breton, F. Gilliland, R. Habre, Ensemble-based deep learning for
estimating PM2.5 over California with multisource big data including wild-
fire smoke, Environ. Int. 145 (2020) 106143, https://doi.org/10.1016/
j.envint.2020.106143.

[20] K.K.R. Samal, K.S. Babu, S.K. Das, Multi-directional temporal convolutional
artificial neural network for PM2.5 forecasting with missing values: a deep
learning approach, Urban Clim. 36 (2021) 100800, https://doi.org/10.1016/
j.uclim.2021.100800.

[21] Z. Luo, F. Huang, H. Liu, PM2.5 concentration estimation using convolutional
neural network and gradient boosting machine, J. Environ. Sci. 98 (2020)
85e93, https://doi.org/10.1016/j.jes.2020.04.042.

[22] J. Ni, Y. Chen, Y. Gu, X. Fang, P. Shi, An improved hybrid transfer learning-
based deep learning model for PM2.5 concentration prediction, Appl. Sci.

https://www.who.int/
https://www.who.int/
https://doi.org/10.1038/s41467-023-41086-z
http://refhub.elsevier.com/S2666-4984(24)00014-0/sref3
http://refhub.elsevier.com/S2666-4984(24)00014-0/sref3
https://doi.org/10.3390/ijerph20032282
https://doi.org/10.3390/ijerph20032282
https://doi.org/10.1016/S2542-5196(23)00008-6
https://doi.org/10.1016/S2542-5196(23)00008-6
https://doi.org/10.1016/j.atmosenv.2022.119347
https://doi.org/10.1007/s40726-020-00159-z
https://doi.org/10.1007/s40726-020-00159-z
https://doi.org/10.5281/zenodo.4737746
https://doi.org/10.5281/zenodo.4737746
https://doi.org/10.1088/1755-1315/1105/1/012026
https://doi.org/10.1007/s11356-021-17442-1
https://doi.org/10.1007/s11356-021-17442-1
https://doi.org/10.1016/j.rser.2022.112704
http://refhub.elsevier.com/S2666-4984(24)00014-0/sref12
http://refhub.elsevier.com/S2666-4984(24)00014-0/sref12
http://refhub.elsevier.com/S2666-4984(24)00014-0/sref12
https://doi.org/10.1016/j.jss.2006.07.009
https://doi.org/10.1016/j.jss.2006.07.009
https://doi.org/10.1016/j.scitotenv.2018.06.215
https://doi.org/10.1007/s11356-019-05071-8
https://doi.org/10.1007/s11356-019-05071-8
https://doi.org/10.1016/j.neunet.2020.10.013
https://doi.org/10.3390/app9183765
https://doi.org/10.3390/app9183765
https://doi.org/10.1007/s11356-016-7812-9
https://doi.org/10.1016/j.envint.2020.106143
https://doi.org/10.1016/j.envint.2020.106143
https://doi.org/10.1016/j.uclim.2021.100800
https://doi.org/10.1016/j.uclim.2021.100800
https://doi.org/10.1016/j.jes.2020.04.042


S. Zhou, W. Wang, L. Zhu et al. Environmental Science and Ecotechnology 21 (2024) 100400
12 (2022) 3597, https://doi.org/10.3390/app12073597.
[23] D. Wang, H.-W. Wang, C. Li, K.-F. Lu, Z.-R. Peng, J. Zhao, Q. Fu, J. Pan, Roadside

air quality forecasting in Shanghai with a novel sequence-to-sequence
model, Int. J. Environ. Res. Publ. Health 17 (2020) 9471, https://doi.org/
10.3390/ijerph17249471.

[24] S. Chae, J. Shin, S. Kwon, S. Lee, S. Kang, D. Lee, PM10 and PM2.5 real-time
prediction models using an interpolated convolutional neural network, Sci.
Rep. 11 (2021) 11952, https://doi.org/10.1038/s41598-021-91253-9.

[25] P. Shi, X. Fang, J. Ni, J. Zhu, An improved attention-based integrated deep
neural network for PM2.5 concentration prediction, Appl. Sci. 11 (2021)
4001, https://doi.org/10.3390/app11094001.

[26] A. Choudhury, A.I. Middya, S. Roy, Attention enhanced hybrid model for
spatiotemporal short-term forecasting of particulate matter concentrations,
Sustain. Cities Soc. 86 (2022) 104112, https://doi.org/10.1016/
j.scs.2022.104112.

[27] X. Xiao, Z. Jin, S. Wang, J. Xu, Z. Peng, R. Wang, W. Shao, Y. Hui, A dual-path
dynamic directed graph convolutional network for air quality prediction, Sci.
Total Environ. 827 (2022) 154298, https://doi.org/10.1016/
j.scitotenv.2022.154298.

[28] G. Zhao, H. He, Y. Huang, J. Ren, Near-surface PM2.5 prediction combining
the complex network characterization and graph convolution neural
network, Neural Comput. Appl. 33 (2021) 17081e17101, https://doi.org/
10.1007/s00521-021-06300-3.

[29] X. Ouyang, Y. Yang, Y. Zhang, W. Zhou, D. Guo, Dual-channel
spatialetemporal difference graph neural network for PM$$_{2.5}$$fore-
casting, Neural Comput. Appl. 35 (2023) 7475e7494, https://doi.org/
10.1007/s00521-022-08036-0.

[30] A. Dun, Y. Yang, F. Lei, Dynamic graph convolution neural network based on
spatial-temporal correlation for air quality prediction, Ecol. Inf. 70 (2022)
101736, https://doi.org/10.1016/j.ecoinf.2022.101736.

[31] P.S.S. Ejurothu, S. Mandal, M. Thakur, Forecasting PM2.5 concentration in
India using a cluster based hybrid graph neural network approach, Asia-
Pacific Journal of Atmospheric Sciences 59 (2023) 545e561, https://doi.org/
10.1007/s13143-022-00291-4.

[32] L. Zhang, J. Na, J. Zhu, Z. Shi, C. Zou, L. Yang, Spatiotemporal causal con-
volutional network for forecasting hourly PM2.5 concentrations in Beijing,
China, Comput. Geosci. 155 (2021) 104869, https://doi.org/10.1016/
j.cageo.2021.104869.

[33] K. Zhang, X. Yang, H. Cao, J. Th�e, Z. Tan, H. Yu, Multi-step forecast of PM2.5
and PM10 concentrations using convolutional neural network integrated
with spatialetemporal attention and residual learning, Environ. Int. 171
(2023) 107691, https://doi.org/10.1016/j.envint.2022.107691.

[34] M. Yu, A. Masrur, C. Blaszczak-Boxe, Predicting hourly PM2.5 concentrations
in wildfire-prone areas using a SpatioTemporal Transformer model, Sci. Total
Environ. 860 (2023) 160446, https://doi.org/10.1016/
j.scitotenv.2022.160446.

[35] A. Dun, Y. Yang, F. Lei, A novel hybrid model based on spatiotemporal cor-
relation for air quality prediction, Mobile Inf. Syst. (2022) 2022, https://
doi.org/10.1155/2022/9759988.

[36] Z. Wang, R. Li, Z. Chen, Q. Yao, B. Gao, M. Xu, L. Yang, M. Li, C. Zhou, The
estimation of hourly PM2.5 concentrations across China based on a spatial
and temporal weighted continuous deep neural network (STWC-DNN),
ISPRS J. Photogrammetry Remote Sens. 190 (2022) 38e55, https://doi.org/
10.1016/j.isprsjprs.2022.05.011.

[37] X. Dai, J. Liu, Y. Li, A recurrent neural network using historical data to predict
time series indoor PM2.5 concentrations for residential buildings, Indoor Air
31 (2021) 1228e1237, https://doi.org/10.1111/ina.12794.

[38] A. Ayturan, Z. Ayturan, H. Altun, C. Kongoli, F. Tunçez, S. Dursun, A. Ozturk,
Short-term prediction of PM2.5 pollution with deep learning methods,
Global Nest J. 22 (2020) 126e131, https://doi.org/10.30955/gnj.003208.

[39] X. Li, L. Peng, X. Yao, S. Cui, Y. Hu, C. You, T. Chi, Long short-term memory
neural network for air pollutant concentration predictions: method devel-
opment and evaluation, Environ. Pollut. 231 (2017) 997e1004, https://
doi.org/10.1016/j.envpol.2017.08.114.

[40] Y.-S. Chang, H.-T. Chiao, S. Abimannan, Y.-P. Huang, Y.-T. Tsai, K.-M. Lin, An
LSTM-based aggregated model for air pollution forecasting, Atmos. Pollut.
Res. 11 (2020) 1451e1463, https://doi.org/10.1016/j.apr.2020.05.015.

[41] T. Xayasouk, H. Lee, G. Lee, Air pollution prediction using long short-term
memory (LSTM) and deep autoencoder (DAE) models, Sustainability 12
(2020) 2570, https://doi.org/10.3390/su12062570.

[42] H. Karimian, Q. Li, C. Wu, Y. Qi, Y. Mo, G. Chen, X. Zhang, S. Sachdeva,
Evaluation of different machine learning approaches to forecasting PM2.5
mass concentrations, Aerosol Air Qual. Res. 19 (2019) 1400e1410, https://
doi.org/10.4209/aaqr.2018.12.0450.

[43] W. Mao, W. Wang, L. Jiao, S. Zhao, A. Liu, Modeling air quality prediction
using a deep learning approach: method optimization and evaluation, Sus-
tain. Cities Soc. 65 (2021) 102567, https://doi.org/10.1016/j.scs.2020.102567.

[44] K. Qadeer, W.U. Rehman, A.M. Sheri, I. Park, H.K. Kim, M. Jeon, A long short-
term memory (LSTM) network for hourly estimation of PM2.5 concentration
in two cities of South Korea, Appl. Sci. 10 (2020) 3984, https://doi.org/
10.3390/app10113984.

[45] E. Kristiani, H. Lin, J.-R. Lin, Y.-H. Chuang, C.-Y. Huang, C.-T. Yang, Short-term
prediction of PM2.5 using LSTM deep learning methods, Sustainability 14
(2022) 2068, https://doi.org/10.3390/su14042068.

[46] L. Lin, C.Y. Chen, H.Y. Yang, Z. Xu, S.H. Fang, Dynamic system approach for
15
improved PM2.5 prediction in taiwan, IEEE Access 8 (2020) 210910e210921,
https://doi.org/10.1109/ACCESS.2020.3038853.

[47] J. Park, S. Chang, A particulate matter concentration prediction model based
on long short-term memory and an artificial neural network, Int. J. Environ.
Res. Publ. Health 18 (2021) 6801, https://doi.org/10.3390/ijerph18136801.

[48] B. Peralta, T. Sepúlveda, O. Nicolis, L. Caro, Space-Time Prediction of PM2.5
Concentrations in Santiago de Chile Using LSTM Networks, Appl. Sci. 12
(2022) 11317, https://doi.org/10.3390/app122211317.

[49] K.H. Waseem, H. Mushtaq, F. Abid, A.M. Abu-Mahfouz, A. Shaikh, M. Turan,
J. Rasheed, Forecasting of air quality using an optimized recurrent neural
network, Processes 10 (2022) 2117, https://doi.org/10.3390/pr10102117.

[50] S. Gul, G.M. Khan, S. Yousaf, Multi-step short-term $$PM_{2.5}$$ forecasting
for enactment of proactive environmental regulation strategies, Environ.
Monit. Assess. 194 (2022) 386, https://doi.org/10.1007/s10661-022-10029-4.

[51] J. Ma, Y. Ding, V.J.L. Gan, C. Lin, Z. Wan, Spatiotemporal prediction of PM2.5
concentrations at different time granularities using IDW-BLSTM, IEEE Access
7 (2019) 107897e107907, https://doi.org/10.1109/ACCESS.2019.2932445.

[52] W. Tong, L. Li, X. Zhou, A. Hamilton, K. Zhang, Deep learning PM2.5 con-
centrations with bidirectional LSTM RNN, Air Quality, Atmosphere & Health
12 (2019) 411e423, https://doi.org/10.1007/s11869-018-0647-4.

[53] M. Zhang, D. Wu, R. Xue, Hourly prediction of PM2.5 concentration in Beijing
based on Bi-LSTM neural network, Multimed. Tool. Appl. 80 (2021)
24455e24468, https://doi.org/10.1007/s11042-021-10852-w.

[54] B. Deep, I. Mathur, N. Joshi, An approach to forecast pollutants concentration
with varied dispersion, Int. J. Environ. Sci. Technol. 19 (2022) 5131e5138,
https://doi.org/10.1007/s13762-021-03378-z.

[55] A.G. Mengara Mengara, Y. Kim, Y. Yoo, J. Ahn, Distributed deep features
extraction model for air quality forecasting, Sustainability 12 (2020) 8014,
https://doi.org/10.3390/su12198014.

[56] A.G. Mengara Mengara, E. Park, J. Jang, Y. Yoo, Attention-based distributed
deep learning model for air quality forecasting, Sustainability 14 (2022)
3269, https://doi.org/10.3390/su14063269.

[57] X. Xu, M. Yoneda, Multitask air-quality prediction based on LSTM-
autoencoder model, IEEE Trans. Cybern. 51 (2021) 2577e2586, https://
doi.org/10.1109/TCYB.2019.2945999.

[58] B. Zhang, H. Zhang, G. Zhao, J. Lian, Constructing a PM2.5 concentration
prediction model by combining auto-encoder with Bi-LSTM neural networks,
Environ. Model. Software 124 (2020) 104600, https://doi.org/10.1016/
j.envsoft.2019.104600.

[59] G. Zou, B. Zhang, R. Yong, D. Qin, Q. Zhao, FDN-Learning: urban pm2.5-
concentration spatial correlation prediction model based on fusion deep
neural network, Big Data Research 26 (2021) 100269, https://doi.org/
10.1016/j.bdr.2021.100269.

[60] L. Shi, H. Zhang, X. Xu, M. Han, P. Zuo, A balanced social LSTM for PM2.5
concentration prediction based on local spatiotemporal correlation, Che-
mosphere 291 (2022) 133124, https://doi.org/10.1016/
j.chemosphere.2021.133124.

[61] J. Ma, Y. Ding, J.C.P. Cheng, F. Jiang, V.J.L. Gan, Z. Xu, A Lag-FLSTM deep
learning network based on Bayesian Optimization for multi-sequential-
variant PM2.5 prediction, Sustain. Cities Soc. 60 (2020) 102237, https://
doi.org/10.1016/j.scs.2020.102237.

[62] W. Ding, Y. Zhu, Prediction of PM2.5 concentration in ningxia hui autono-
mous region based on PCA-attention-LSTM, Atmosphere 13 (2022) 1444,
https://doi.org/10.3390/atmos13091444.

[63] K. Hu, X. Guo, X. Gong, X. Wang, J. Liang, D. Li, Air quality prediction using
spatio-temporal deep learning, Atmos. Pollut. Res. 13 (2022) 101543, https://
doi.org/10.1016/j.apr.2022.101543.

[64] W. Wang, W. Mao, X. Tong, G. Xu, A novel recursive model based on a
convolutional long short-term memory neural network for air pollution
prediction, Rem. Sens. 13 (2021) 1284, https://doi.org/10.3390/rs13071284.

[65] J. Zhao, F. Deng, Y. Cai, J. Chen, Long short-term memory - fully connected
(LSTM-FC) neural network for PM2.5 concentration prediction, Chemosphere
220 (2019) 486e492, https://doi.org/10.1016/j.chemosphere.2018.12.128.

[66] C. Wen, S. Liu, X. Yao, L. Peng, X. Li, Y. Hu, T. Chi, A novel spatiotemporal
convolutional long short-term neural network for air pollution prediction,
Sci. Total Environ. 654 (2019) 1091e1099, https://doi.org/10.1016/
j.scitotenv.2018.11.086.

[67] Y. Zhou, F.-J. Chang, L.-C. Chang, I.F. Kao, Y.-S. Wang, Explore a deep learning
multi-output neural network for regional multi-step-ahead air quality
forecasts, J. Clean. Prod. 209 (2019) 134e145, https://doi.org/10.1016/
j.jclepro.2018.10.243.

[68] X. Sun, W. Xu, Deep random subspace learning: a spatial-temporal modeling
approach for air quality prediction, Atmosphere 10 (2019) 560, https://
doi.org/10.3390/atmos10090560.

[69] X. Wu, C. Zhang, J. Zhu, X. Zhang, Research on PM2.5 concentration predic-
tion based on the CE-AGA-LSTM model, Appl. Sci. 12 (2022) 7009, https://
doi.org/10.3390/app12147009.

[70] J. Ma, J.C.P. Cheng, C. Lin, Y. Tan, J. Zhang, Improving air quality prediction
accuracy at larger temporal resolutions using deep learning and transfer
learning techniques, Atmos. Environ. 214 (2019) 116885, https://doi.org/
10.1016/j.atmosenv.2019.116885.

[71] X. Liu, W. Li, MGC-LSTM: a deep learning model based on graph convolution
of multiple graphs for PM2.5 prediction, Int. J. Environ. Sci. Technol. 20
(2023) 10297e10312, https://doi.org/10.1007/s13762-022-04553-6.

[72] F. Xiao, M. Yang, H. Fan, G. Fan, M.A.A. Al-qaness, An improved deep learning

https://doi.org/10.3390/app12073597
https://doi.org/10.3390/ijerph17249471
https://doi.org/10.3390/ijerph17249471
https://doi.org/10.1038/s41598-021-91253-9
https://doi.org/10.3390/app11094001
https://doi.org/10.1016/j.scs.2022.104112
https://doi.org/10.1016/j.scs.2022.104112
https://doi.org/10.1016/j.scitotenv.2022.154298
https://doi.org/10.1016/j.scitotenv.2022.154298
https://doi.org/10.1007/s00521-021-06300-3
https://doi.org/10.1007/s00521-021-06300-3
https://doi.org/10.1007/s00521-022-08036-0
https://doi.org/10.1007/s00521-022-08036-0
https://doi.org/10.1016/j.ecoinf.2022.101736
https://doi.org/10.1007/s13143-022-00291-4
https://doi.org/10.1007/s13143-022-00291-4
https://doi.org/10.1016/j.cageo.2021.104869
https://doi.org/10.1016/j.cageo.2021.104869
https://doi.org/10.1016/j.envint.2022.107691
https://doi.org/10.1016/j.scitotenv.2022.160446
https://doi.org/10.1016/j.scitotenv.2022.160446
https://doi.org/10.1155/2022/9759988
https://doi.org/10.1155/2022/9759988
https://doi.org/10.1016/j.isprsjprs.2022.05.011
https://doi.org/10.1016/j.isprsjprs.2022.05.011
https://doi.org/10.1111/ina.12794
https://doi.org/10.30955/gnj.003208
https://doi.org/10.1016/j.envpol.2017.08.114
https://doi.org/10.1016/j.envpol.2017.08.114
https://doi.org/10.1016/j.apr.2020.05.015
https://doi.org/10.3390/su12062570
https://doi.org/10.4209/aaqr.2018.12.0450
https://doi.org/10.4209/aaqr.2018.12.0450
https://doi.org/10.1016/j.scs.2020.102567
https://doi.org/10.3390/app10113984
https://doi.org/10.3390/app10113984
https://doi.org/10.3390/su14042068
https://doi.org/10.1109/ACCESS.2020.3038853
https://doi.org/10.3390/ijerph18136801
https://doi.org/10.3390/app122211317
https://doi.org/10.3390/pr10102117
https://doi.org/10.1007/s10661-022-10029-4
https://doi.org/10.1109/ACCESS.2019.2932445
https://doi.org/10.1007/s11869-018-0647-4
https://doi.org/10.1007/s11042-021-10852-w
https://doi.org/10.1007/s13762-021-03378-z
https://doi.org/10.3390/su12198014
https://doi.org/10.3390/su14063269
https://doi.org/10.1109/TCYB.2019.2945999
https://doi.org/10.1109/TCYB.2019.2945999
https://doi.org/10.1016/j.envsoft.2019.104600
https://doi.org/10.1016/j.envsoft.2019.104600
https://doi.org/10.1016/j.bdr.2021.100269
https://doi.org/10.1016/j.bdr.2021.100269
https://doi.org/10.1016/j.chemosphere.2021.133124
https://doi.org/10.1016/j.chemosphere.2021.133124
https://doi.org/10.1016/j.scs.2020.102237
https://doi.org/10.1016/j.scs.2020.102237
https://doi.org/10.3390/atmos13091444
https://doi.org/10.1016/j.apr.2022.101543
https://doi.org/10.1016/j.apr.2022.101543
https://doi.org/10.3390/rs13071284
https://doi.org/10.1016/j.chemosphere.2018.12.128
https://doi.org/10.1016/j.scitotenv.2018.11.086
https://doi.org/10.1016/j.scitotenv.2018.11.086
https://doi.org/10.1016/j.jclepro.2018.10.243
https://doi.org/10.1016/j.jclepro.2018.10.243
https://doi.org/10.3390/atmos10090560
https://doi.org/10.3390/atmos10090560
https://doi.org/10.3390/app12147009
https://doi.org/10.3390/app12147009
https://doi.org/10.1016/j.atmosenv.2019.116885
https://doi.org/10.1016/j.atmosenv.2019.116885
https://doi.org/10.1007/s13762-022-04553-6


S. Zhou, W. Wang, L. Zhu et al. Environmental Science and Ecotechnology 21 (2024) 100400
model for predicting daily PM2.5 concentration, Sci. Rep. 10 (2020) 20988,
https://doi.org/10.1038/s41598-020-77757-w.

[73] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser,
I. Polosukhin, Attention is all you need, Adv. Neural Inf. Process. Syst. 30
(2017), https://doi.org/10.48550/arXiv.1706.03762.

[74] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, W. Zhang, Informer:
beyond efficient transformer for long sequence time-series forecasting, in:
Proceedings of the AAAI Conference on Artificial Intelligence, 2021,
pp. 11106e11115.

[75] M.A.A. Al-qaness, A. Dahou, A.A. Ewees, L. Abualigah, J. Huai, M. Abd Elaziz,
A.M. Helmi, ResInformer: residual transformer-based artificial time-series
forecasting model for PM2.5 concentration in three major Chinese cities,
Mathematics 11 (2023) 476, https://doi.org/10.3390/math11020476.

[76] H. Chang-Hoi, I. Park, H.-R. Oh, H.-J. Gim, S.-K. Hur, J. Kim, D.-R. Choi,
Development of a PM2.5 prediction model using a recurrent neural network
algorithm for the Seoul metropolitan area, Republic of Korea, Atmos. Envi-
ron. 245 (2021) 118021, https://doi.org/10.1016/j.atmosenv.2020.118021.

[77] H. Sun, J.C.H. Fung, Y. Chen, W. Chen, Z. Li, Y. Huang, C. Lin, M. Hu, X. Lu,
Improvement of PM2.5 and O3 forecasting by integration of 3D numerical
simulation with deep learning techniques, Sustain. Cities Soc. 75 (2021)
103372, https://doi.org/10.1016/j.scs.2021.103372.

[78] W. Skamarock, J. Klemp, J. Dudhia, D. Gill, D. Barker, W. Wang, J. Powers,
A Description of the Advanced Research WRF Version 2, 2005.

[79] B. Zhang, Y. Rong, R. Yong, D. Qin, M. Li, G. Zou, J. Pan, Deep learning for air
pollutant concentration prediction: a review, Atmos. Environ. 290 (2022)
119347, https://doi.org/10.1016/j.atmosenv.2022.119347.

[80] W. Qiao, W. Tian, Y. Tian, Q. Yang, Y. Wang, J. Zhang, The forecasting of PM2.5
using a hybrid model based on wavelet transform and an improved deep
learning algorithm, IEEE Access 7 (2019) 142814e142825, https://doi.org/
10.1109/ACCESS.2019.2944755.

[81] M. Benhaddi, J. Ouarzazi, Multivariate time series forecasting with dilated
residual convolutional neural networks for urban air quality prediction,
Arabian J. Sci. Eng. 46 (2021) 3423e3442, https://doi.org/10.1007/s13369-
020-05109-x.

[82] J. Kim, X. Wang, C. Kang, J. Yu, P. Li, Forecasting air pollutant concentration
using a novel spatiotemporal deep learning model based on clustering,
feature selection and empirical wavelet transform, Sci. Total Environ. 801
(2021) 149654, https://doi.org/10.1016/j.scitotenv.2021.149654.

[83] G. Huang, X. Li, B. Zhang, J. Ren, PM2.5 concentration forecasting at surface
monitoring sites using GRU neural network based on empirical mode
decomposition, Sci. Total Environ. 768 (2021) 144516, https://doi.org/
10.1016/j.scitotenv.2020.144516.

[84] X.-B. Jin, N.-X. Yang, X.-Y. Wang, Y.-T. Bai, T.-L. Su, J.-L. Kong, Deep hybrid
model based on EMD with classification by frequency characteristics for
long-term air quality prediction, Mathematics 8 (2020) 214, https://doi.org/
10.3390/math8020214.

[85] N.a. Zaini, L.W. Ean, A.N. Ahmed, M. Abdul Malek, M.F. Chow, PM2.5 fore-
casting for an urban area based on deep learning and decomposition
method, Sci. Rep. 12 (2022) 17565, https://doi.org/10.1038/s41598-022-
21769-1.

[86] Z. Zhang, Y. Zeng, K. Yan, A hybrid deep learning technology for PM2.5 air
quality forecasting, Environ. Sci. Pollut. Control Ser. 28 (2021) 39409e39422,
https://doi.org/10.1007/s11356-021-12657-8.

[87] Y.-S. Chang, S. Abimannan, H.-T. Chiao, C.-Y. Lin, Y.-P. Huang, An ensemble
learning based hybrid model and framework for air pollution forecasting,
Environ. Sci. Pollut. Control Ser. 27 (2020) 38155e38168, https://doi.org/
10.1007/s11356-020-09855-1.

[88] X. Liu, M. Qin, Y. He, X. Mi, C. Yu, A new multi-data-driven spatiotemporal
PM2.5 forecasting model based on an ensemble graph reinforcement
learning convolutional network, Atmos. Pollut. Res. 12 (2021) 101197,
https://doi.org/10.1016/j.apr.2021.101197.

[89] H. Liu, S. Dong, A novel hybrid ensemble model for hourly PM2.5 forecasting
using multiple neural networks: a case study in China, Air Quality, Atmo-
sphere & Health 13 (2020) 1411e1420, https://doi.org/10.1007/s11869-020-
00895-7.

[90] F. Jiang, C. Zhang, S. Sun, J. Sun, Forecasting hourly PM2.5 based on deep
temporal convolutional neural network and decomposition method, Appl.
Soft Comput. 113 (2021) 107988, https://doi.org/10.1016/
j.asoc.2021.107988.

[91] X. Lu, J. Wang, Y. Yan, L. Zhou, W. Ma, Estimating hourly PM2.5 concentra-
tions using Himawari-8 AOD and a DBSCAN-modified deep learning model
over the YRDUA, China, Atmos. Pollut. Res. 12 (2021) 183e192, https://
doi.org/10.1016/j.apr.2020.10.020.

[92] M. Teng, S. Li, J. Xing, G. Song, J. Yang, J. Dong, X. Zeng, Y. Qin, 24-Hour
prediction of PM2.5 concentrations by combining empirical mode decom-
position and bidirectional long short-term memory neural network, Sci.
Total Environ. 821 (2022) 153276, https://doi.org/10.1016/
j.scitotenv.2022.153276.

[93] M. Fu, C. Le, T. Fan, R. Prakapovich, D. Manko, O. Dmytrenko, D. Lande,
S. Shahid, Z.M. Yaseen, Integration of complete ensemble empirical mode
decomposition with deep long short-term memory model for particulate
matter concentration prediction, Environ. Sci. Pollut. Control Ser. 28 (2021)
64818e64829, https://doi.org/10.1007/s11356-021-15574-y.

[94] H. Zhang, Z. Shang, Y. Song, Z. He, L. Li, A novel combined model based on
echo state network e a case study of PM10 and PM2.5 prediction in China,
16
Environ. Technol. 41 (2020) 1937e1949, https://doi.org/10.1080/
09593330.2018.1551941.

[95] C. Wang, J. Zheng, J. Du, G. Wang, J.J. Kleme�s, B. Wang, Q. Liao, Y. Liang,
Weather condition-based hybrid models for multiple air pollutants fore-
casting and minimisation, J. Clean. Prod. 352 (2022) 131610, https://doi.org/
10.1016/j.jclepro.2022.131610.

[96] J. Wang, W. Xu, J. Dong, Y. Zhang, Two-stage deep learning hybrid frame-
work based on multi-factor multi-scale and intelligent optimization for air
pollutant prediction and early warning, Stoch. Environ. Res. Risk Assess. 36
(2022) 3417e3437, https://doi.org/10.1007/s00477-022-02202-5.

[97] W. Sun, Z. Xu, A hybrid Daily PM2.5 concentration prediction model based on
secondary decomposition algorithm, mode recombination technique and
deep learning, Stoch. Environ. Res. Risk Assess. 36 (2022) 1143e1162,
https://doi.org/10.1007/s00477-021-02100-2.

[98] S. Xu, W. Li, Y. Zhu, A. Xu, A novel hybrid model for six main pollutant
concentrations forecasting based on improved LSTM neural networks, Sci.
Rep. 12 (2022) 14434, https://doi.org/10.1038/s41598-022-17754-3.

[99] H. Zhou, T. Wang, H. Zhao, Z. Wang, Updated prediction of air quality based
on kalman-attention-LSTM network, Sustainability 15 (2023) 356, https://
doi.org/10.3390/su15010356.

[100] J. Zhao, L. Yuan, K. Sun, H. Huang, P. Guan, C. Jia, Forecasting fine particulate
matter concentrations by in-depth learning model according to random
forest and bilateral long- and short-term memory neural networks, Sus-
tainability 14 (2022) 9430, https://doi.org/10.3390/su14159430.

[101] L. Zhang, L. Xu, M. Jiang, P. He, A novel hybrid ensemble model for hourly
PM2.5 concentration forecasting, Int. J. Environ. Sci. Technol. 20 (2023)
219e230, https://doi.org/10.1007/s13762-022-03940-3.

[102] A. Masood, K. Ahmad, Data-driven predictive modeling of PM2.5 concen-
trations using machine learning and deep learning techniques: a case study
of Delhi, India, Environ. Monit. Assess. 195 (2022) 60, https://doi.org/
10.1007/s10661-022-10603-w.

[103] H. Liu, D.-h. Deng, An enhanced hybrid ensemble deep learning approach for
forecasting daily PM2.5, J. Cent. S. Univ. 29 (2022) 2074e2083, https://
doi.org/10.1007/s11771-022-5051-4.

[104] W. Ban, L. Shen, PM2.5 prediction based on the CEEMDAN algorithm and a
machine learning hybrid model, Sustainability 14 (2022) 16128, https://
doi.org/10.3390/su142316128.

[105] M.A.A. Al-qaness, H. Fan, A.A. Ewees, D. Yousri, M. Abd Elaziz, Improved
ANFIS model for forecasting Wuhan City Air Quality and analysis COVID-19
lockdown impacts on air quality, Environ. Res. 194 (2021) 110607, https://
doi.org/10.1016/j.envres.2020.110607.

[106] C.-J. Huang, P.-H. Kuo, A deep CNN-LSTM model for particulate matter
(PM2.5) forecasting in smart cities, Sensors 18 (2018) 2220, https://doi.org/
10.3390/s18072220.

[107] D. Qin, J. Yu, G. Zou, R. Yong, Q. Zhao, B. Zhang, A novel combined prediction
scheme based on CNN and LSTM for urban PM2.5 concentration, IEEE Access
7 (2019) 20050e20059, https://doi.org/10.1109/ACCESS.2019.2897028.

[108] T. Li, M. Hua, X. Wu, A hybrid CNN-LSTM model for forecasting particulate
matter (PM2.5), IEEE Access 8 (2020) 26933e26940, https://doi.org/10.1109/
ACCESS.2020.2971348.

[109] G. Zhang, H. Lu, J. Dong, S. Poslad, R. Li, X. Zhang, X. Rui, A framework to
predict high-resolution spatiotemporal PM2.5 distributions using a deep-
learning model: a case study of shijiazhuang, China, Rem. Sens. 12 (2020)
2825, https://doi.org/10.3390/rs12172825.

[110] J. Yang, R. Yan, M. Nong, J. Liao, F. Li, W. Sun, PM2.5 concentrations fore-
casting in Beijing through deep learning with different inputs, model
structures and forecast time, Atmos. Pollut. Res. 12 (2021) 101168, https://
doi.org/10.1016/j.apr.2021.101168.

[111] J. Wei, F. Yang, X.-C. Ren, S. Zou, A short-term prediction model of PM2.5
concentration based on deep learning and mode decomposition methods,
Appl. Sci. 11 (2021) 6915, https://doi.org/10.3390/app11156915.

[112] A. Bekkar, B. Hssina, S. Douzi, K. Douzi, Air-pollution prediction in smart city,
deep learning approach, Journal of Big Data 8 (2021) 161, https://doi.org/
10.1186/s40537-021-00548-1.

[113] I.N.K. Wardana, J.W. Gardner, S.A. Fahmy, Optimising deep learning at the
edge for accurate hourly air quality prediction, Sensors 21 (2021) 1064,
https://doi.org/10.3390/s21041064.

[114] S. Tsokov, M. Lazarova, A. Aleksieva-Petrova, A hybrid spatiotemporal deep
model based on CNN and LSTM for air pollution prediction, Sustainability 14
(2022) 5104, https://doi.org/10.3390/su14095104.

[115] H.S. Kim, K.M. Han, J. Yu, J. Kim, K. Kim, H. Kim, Development of a
CNNþLSTM hybrid neural network for daily PM2.5 prediction, Atmosphere
13 (2022) 2124, https://doi.org/10.3390/atmos13122124.

[116] X.-S. Kim, Chang-Soo, Accurate multi-site daily-ahead multi-step PM2.5
concentrations forecasting using space-shared CNN-LSTM, Computers, Ma-
terials & Continua 70 (2022) 5143e5160, https://doi.org/10.32604/
cmc.2022.020689.

[117] H. Choi, C. Jung, T. Kang, H.J. Kim, I.Y. Kwak, Explainable time-series pre-
diction using a residual network and gradient-based methods, IEEE Access
10 (2022) 108469e108482, https://doi.org/10.1109/ACCESS.2022.3213926.

[118] B. Zhang, G. Zou, D. Qin, Q. Ni, H. Mao, M. Li, RCL-Learning: ResNet and
convolutional long short-term memory-based spatiotemporal air pollutant
concentration prediction model, Expert Systems with Applicat. 207 (2022)
118017, https://doi.org/10.1016/j.eswa.2022.118017.

[119] X. Cheng, W. Zhang, A. Wenzel, J. Chen, Stacked ResNet-LSTM and CORAL

https://doi.org/10.1038/s41598-020-77757-w
https://doi.org/10.48550/arXiv.1706.03762
http://refhub.elsevier.com/S2666-4984(24)00014-0/sref74
http://refhub.elsevier.com/S2666-4984(24)00014-0/sref74
http://refhub.elsevier.com/S2666-4984(24)00014-0/sref74
http://refhub.elsevier.com/S2666-4984(24)00014-0/sref74
http://refhub.elsevier.com/S2666-4984(24)00014-0/sref74
https://doi.org/10.3390/math11020476
https://doi.org/10.1016/j.atmosenv.2020.118021
https://doi.org/10.1016/j.scs.2021.103372
http://refhub.elsevier.com/S2666-4984(24)00014-0/sref78
http://refhub.elsevier.com/S2666-4984(24)00014-0/sref78
https://doi.org/10.1016/j.atmosenv.2022.119347
https://doi.org/10.1109/ACCESS.2019.2944755
https://doi.org/10.1109/ACCESS.2019.2944755
https://doi.org/10.1007/s13369-020-05109-x
https://doi.org/10.1007/s13369-020-05109-x
https://doi.org/10.1016/j.scitotenv.2021.149654
https://doi.org/10.1016/j.scitotenv.2020.144516
https://doi.org/10.1016/j.scitotenv.2020.144516
https://doi.org/10.3390/math8020214
https://doi.org/10.3390/math8020214
https://doi.org/10.1038/s41598-022-21769-1
https://doi.org/10.1038/s41598-022-21769-1
https://doi.org/10.1007/s11356-021-12657-8
https://doi.org/10.1007/s11356-020-09855-1
https://doi.org/10.1007/s11356-020-09855-1
https://doi.org/10.1016/j.apr.2021.101197
https://doi.org/10.1007/s11869-020-00895-7
https://doi.org/10.1007/s11869-020-00895-7
https://doi.org/10.1016/j.asoc.2021.107988
https://doi.org/10.1016/j.asoc.2021.107988
https://doi.org/10.1016/j.apr.2020.10.020
https://doi.org/10.1016/j.apr.2020.10.020
https://doi.org/10.1016/j.scitotenv.2022.153276
https://doi.org/10.1016/j.scitotenv.2022.153276
https://doi.org/10.1007/s11356-021-15574-y
https://doi.org/10.1080/09593330.2018.1551941
https://doi.org/10.1080/09593330.2018.1551941
https://doi.org/10.1016/j.jclepro.2022.131610
https://doi.org/10.1016/j.jclepro.2022.131610
https://doi.org/10.1007/s00477-022-02202-5
https://doi.org/10.1007/s00477-021-02100-2
https://doi.org/10.1038/s41598-022-17754-3
https://doi.org/10.3390/su15010356
https://doi.org/10.3390/su15010356
https://doi.org/10.3390/su14159430
https://doi.org/10.1007/s13762-022-03940-3
https://doi.org/10.1007/s10661-022-10603-w
https://doi.org/10.1007/s10661-022-10603-w
https://doi.org/10.1007/s11771-022-5051-4
https://doi.org/10.1007/s11771-022-5051-4
https://doi.org/10.3390/su142316128
https://doi.org/10.3390/su142316128
https://doi.org/10.1016/j.envres.2020.110607
https://doi.org/10.1016/j.envres.2020.110607
https://doi.org/10.3390/s18072220
https://doi.org/10.3390/s18072220
https://doi.org/10.1109/ACCESS.2019.2897028
https://doi.org/10.1109/ACCESS.2020.2971348
https://doi.org/10.1109/ACCESS.2020.2971348
https://doi.org/10.3390/rs12172825
https://doi.org/10.1016/j.apr.2021.101168
https://doi.org/10.1016/j.apr.2021.101168
https://doi.org/10.3390/app11156915
https://doi.org/10.1186/s40537-021-00548-1
https://doi.org/10.1186/s40537-021-00548-1
https://doi.org/10.3390/s21041064
https://doi.org/10.3390/su14095104
https://doi.org/10.3390/atmos13122124
https://doi.org/10.32604/cmc.2022.020689
https://doi.org/10.32604/cmc.2022.020689
https://doi.org/10.1109/ACCESS.2022.3213926
https://doi.org/10.1016/j.eswa.2022.118017


S. Zhou, W. Wang, L. Zhu et al. Environmental Science and Ecotechnology 21 (2024) 100400
model for multi-site air quality prediction, Neural Computing and Applicat.s
34 (2022) 13849e13866, https://doi.org/10.1007/s00521-022-07175-8.

[120] G. Zhao, G. Huang, H. He, H. He, J. Ren, Regional spatiotemporal collaborative
prediction model for air quality, IEEE Access 7 (2019) 134903e134919,
https://doi.org/10.1109/ACCESS.2019.2941732.

[121] Y. Qi, Q. Li, H. Karimian, D. Liu, A hybrid model for spatiotemporal forecasting
of PM2.5 based on graph convolutional neural network and long short-term
memory, Science of The Total Environ. 664 (2019) 1e10, https://doi.org/
10.1016/j.scitotenv.2019.01.333.

[122] S. Li, G. Xie, J. Ren, L. Guo, Y. Yang, X. Xu, Urban PM2.5 concentration pre-
diction via attention-based CNNeLSTM, Applied Sciences 10 (2020) 1953,
https://doi.org/10.3390/app10061953.

[123] P.W. Soh, J.W. Chang, J.W. Huang, Adaptive deep learning-based air quality
prediction model using the most relevant spatial-temporal relations, IEEE
Access 6 (2018) 38186e38199, https://doi.org/10.1109/ACCESS.2018.2849820.

[124] M. Yang, H. Fan, K. Zhao, PM2.5 prediction with a novel multi-step-ahead
forecasting model based on dynamic wind field distance, Int. J. Environ.
Res. Public Health 16 (2019) 4482, https://doi.org/10.3390/ijerph16224482.

[125] D. Li, J. Liu, Y. Zhao, Prediction of multi-site PM2.5 concentrations in Beijing
using CNN-Bi LSTM with CBAM, Atmosphere 13 (2022) 1719, https://doi.org/
10.3390/atmos13101719.

[126] A.S.A. Moursi, N. El-Fishawy, S. Djahel, M.A. Shouman, Enhancing PM2.5
prediction using NARX-based combined CNN and LSTM hybrid model, Sen-
sors 22 (2022) 4418, https://doi.org/10.3390/s22124418.

[127] M. Zhu, J. Xie, Investigation of nearby monitoring station for hourly PM2.5
forecasting using parallel multi-input 1D-CNN-biLSTM, Expert Systems with
Applic. 211 (2023) 118707, https://doi.org/10.1016/j.eswa.2022.118707.

[128] U. Pak, J. Ma, U. Ryu, K. Ryom, U. Juhyok, K. Pak, C. Pak, Deep learning-based
PM2.5 prediction considering the spatiotemporal correlations: a case study
of Beijing, China, Sci. Total Environ. 699 (2020) 133561, https://doi.org/
10.1016/j.scitotenv.2019.07.367.

[129] S. Du, T. Li, Y. Yang, S.J. Horng, Deep air quality forecasting using hybrid deep
learning framework, IEEE Transact. Knowledge and Data Engineering 33
(2021) 2412e2424, https://doi.org/10.1109/TKDE.2019.2954510.

[130] J. Zhu, F. Deng, J. Zhao, H. Zheng, Attention-based parallel networks (APNet)
17
for PM2.5 spatiotemporal prediction, Sci. Total Environ. 769 (2021) 145082,
https://doi.org/10.1016/j.scitotenv.2021.145082.

[131] Q. Zhang, Y. Han, V.O.K. Li, J.C.K. Lam, Deep-AIR: a hybrid CNN-LSTM
framework for fine-grained air pollution estimation and forecast in metro-
politan cities, IEEE Access 10 (2022) 55818e55841, https://doi.org/10.1109/
ACCESS.2022.3174853.

[132] A.S. Mohan, L. Abraham, An ensemble deep learning model for forecasting
hourly PM2.5 concentrations, IETE J. Res. 69 (2023) 6832e6845, https://
doi.org/10.1080/03772063.2022.2089747.

[133] D. Li, J. Liu, Y. Zhao, Forecasting of PM2.5 concentration in Beijing using
hybrid deep learning framework based on attention mechanism, Applied Sci.
12 (2022) 11155, https://doi.org/10.3390/app122111155.

[134] S. Gunasekar, G. Joselin Retna Kumar, Y. Dileep Kumar, Sustainable opti-
mized LSTM-based intelligent system for air quality prediction in Chennai,
Acta Geophysica 70 (2022) 2889e2899, https://doi.org/10.1007/s11600-
022-00796-6.

[135] Q. Tao, F. Liu, Y. Li, D. Sidorov, Air pollution forecasting using a deep learning
model based on 1D convnets and bidirectional GRU, IEEE Access 7 (2019)
76690e76698, https://doi.org/10.1109/ACCESS.2019.2921578.

[136] Q. Zhang, S. Wu, X. Wang, B. Sun, H. Liu, A PM2.5 concentration prediction
model based on multi-task deep learning for intensive air quality monitoring
stations, J. Cleaner Product. 275 (2020) 122722, https://doi.org/10.1016/
j.jclepro.2020.122722.

[137] M. Faraji, S. Nadi, O. Ghaffarpasand, S. Homayoni, K. Downey, An integrated
3D CNN-GRU deep learning method for short-term prediction of PM2.5
concentration in urban environment, Sci. Total Environ. 834 (2022) 155324,
https://doi.org/10.1016/j.scitotenv.2022.155324.

[138] P.W. Chiang, S.J. Horng, Hybrid time-series framework for daily-based PM2.5
forecasting, IEEE Access 9 (2021) 104162e104176, https://doi.org/10.1109/
ACCESS.2021.3099111.

[139] Y.-S. Mao, S.-J. Lee, C.-H. Wu, C.-L. Hou, C.-S. Ouyang, C.-F. Liu, A hybrid deep
learning network for forecasting air pollutant concentrations, Applied In-
telligence 53 (2023) 12792e12810, https://doi.org/10.1007/s10489-022-
04191-y.

https://doi.org/10.1007/s00521-022-07175-8
https://doi.org/10.1109/ACCESS.2019.2941732
https://doi.org/10.1016/j.scitotenv.2019.01.333
https://doi.org/10.1016/j.scitotenv.2019.01.333
https://doi.org/10.3390/app10061953
https://doi.org/10.1109/ACCESS.2018.2849820
https://doi.org/10.3390/ijerph16224482
https://doi.org/10.3390/atmos13101719
https://doi.org/10.3390/atmos13101719
https://doi.org/10.3390/s22124418
https://doi.org/10.1016/j.eswa.2022.118707
https://doi.org/10.1016/j.scitotenv.2019.07.367
https://doi.org/10.1016/j.scitotenv.2019.07.367
https://doi.org/10.1109/TKDE.2019.2954510
https://doi.org/10.1016/j.scitotenv.2021.145082
https://doi.org/10.1109/ACCESS.2022.3174853
https://doi.org/10.1109/ACCESS.2022.3174853
https://doi.org/10.1080/03772063.2022.2089747
https://doi.org/10.1080/03772063.2022.2089747
https://doi.org/10.3390/app122111155
https://doi.org/10.1007/s11600-022-00796-6
https://doi.org/10.1007/s11600-022-00796-6
https://doi.org/10.1109/ACCESS.2019.2921578
https://doi.org/10.1016/j.jclepro.2020.122722
https://doi.org/10.1016/j.jclepro.2020.122722
https://doi.org/10.1016/j.scitotenv.2022.155324
https://doi.org/10.1109/ACCESS.2021.3099111
https://doi.org/10.1109/ACCESS.2021.3099111
https://doi.org/10.1007/s10489-022-04191-y
https://doi.org/10.1007/s10489-022-04191-y

	Deep-learning architecture for PM2.5 concentration prediction: A review
	1. Introduction
	2. Bibliometrics analysis
	2.1. Literature search and selected strategy
	2.1.1. Sourcing the articles
	2.1.2. Screening the articles
	2.1.3. Analyzing the selected articles


	3. Method review
	3.1. Evaluation metrics
	3.2. Deep learning-based methods
	3.2.1. Deep belief network-based methods
	3.2.2. Convolutional neural network-based methods
	3.2.3. Recurrent neural network-based methods
	3.2.4. Transformer-based methods

	3.3. Deep-learning based hybrid methods
	3.3.1. Deep learning combines with conventional methods
	3.3.2. Deep neural network ensembles methods


	4. Discussion
	4.1. Dataset
	4.2. Method
	4.3. Experiment

	5. Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


