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Test–retest reliability of laser 
evoked pain perception and fMRI 
BOLD responses
Yanzhi Bi1,2, Xin Hou1,2, Jiahui Zhong3 & Li Hu1,2*

Pain perception is a subjective experience and highly variable across time. Brain responses evoked 
by nociceptive stimuli are highly associated with pain perception and also showed considerable 
variability. To date, the test–retest reliability of laser-evoked pain perception and its associated 
brain responses across sessions remain unclear. Here, an experiment with a within-subject repeated-
measures design was performed in 22 healthy volunteers. Radiant-heat laser stimuli were delivered 
on subjects’ left-hand dorsum in two sessions separated by 1–5 days. We observed that laser-evoked 
pain perception was significantly declined across sessions, coupled with decreased brain responses in 
the bilateral primary somatosensory cortex (S1), right primary motor cortex, supplementary motor 
area, and middle cingulate cortex. Intraclass correlation coefficients between the two sessions showed 
“fair” to “moderate” test–retest reliability for pain perception and brain responses. Additionally, 
we observed lower resting-state brain activity in the right S1 and lower resting-state functional 
connectivity between right S1 and dorsolateral prefrontal cortex in the second session than the first 
session. Altogether, being possibly influenced by changes of baseline mental state, laser-evoked pain 
perception and brain responses showed considerable across-session variability. This phenomenon 
should be considered when designing experiments for laboratory studies and evaluating pain 
abnormalities in clinical practice.

Blood oxygenation level-dependent functional magnetic resonance imaging (BOLD fMRI) can measure human 
brain activity objectively and enable a deep understanding of neural processing mechanisms. With this tech-
nique, the function of pain pathway structures within the central nervous system in states of acute or chronic 
pain1–6, during therapeutic and psychological pain interventions3,7–9 has been extensively investigated. Recently, 
accumulating studies suggested that fMRI could be used as a technique to elucidate objective biomarkers for 
the diagnosis of pain10,11 as the magnitude of neural responses and self-report pain ratings are highly correlated 
in many situations12.

However, pain perception is a very subjective experience, and self-report of pain perception reflects a com-
plex mix of physiological and psychological processes, including nociception, emotion, decision making, self-
awareness, social cognition, and communicative tendencies13. It is important to note that, even in the same 
condition, pain experience is not static over time within one individual, and pain perception can fluctuate from 
time to time14. Brief painful heat pulses, as generated by infrared laser stimulator, have been adopted as a selec-
tive way to activate nociceptive Aδ- and C-fiber afferents and have been widely used to assess the function of 
the nociceptive system in humans15,16. It is well known that radiant-heat laser stimuli could induce pure pain 
(without tactile sensation) and robust BOLD activation and deactivation in multiple brain structures, which are 
responsible for the processing of the sensory, cognitive, and affective components of pain17. However, few stud-
ies have examined whether the pain perception evoked by radiant-heat laser stimuli and the associated BOLD 
responses remain stable over time. In other words, the test–retest reliability of laser-evoked pain perception and 
BOLD responses remains unassessed.

To address this issue, an experiment with a within-subject repeated-measures design was performed in 
22 healthy volunteers. Radiant-heat laser stimuli were delivered on the dorsum of subjects’ left hand to evoke 
pain perception and BOLD responses in two different sessions, which were separated by 1–5 days. With both 
behavioral and BOLD fMRI data (task fMRI and resting-state fMRI), we assessed (1) whether laser-evoked pain 
perception (i.e., pain threshold and pain ratings) and BOLD responses were significantly different between the 
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two sessions; (2) the test–retest reliability of laser-evoked pain perception and BOLD responses in healthy sub-
jects; (3) the possible influence of the changes of resting-state brain activity on the modulation of laser-evoked 
pain perception and BOLD responses.

Results
Behavioral results.  Twenty-two healthy, right-handed, and pain-free male volunteers (mean age ± stand-
ard deviation: 26.73 ± 3.37 years, mean education years ± standard deviation: 17.41 ± 2.04 years) were recruited 
in this study. Each subject participated in two sessions (session 1: T1; session 2: T2) separated by 1–5  days 
(1.82 ± 1.12 days). All subjects completed the two experiment sessions. As compared with T1 session, the pain 
threshold was significantly larger (T1: 2.68 ± 0.33, T2: 2.84 ± 0.43, p = 0.04; Table 1), and pain ratings to laser 
stimuli were significantly lower (T1: 5.12 ± 1.14, T2: 4.59 ± 0.95, p = 0.004; Table 1) in T2 session. The skin tem-
perature (T1: 31.63 ± 0.97, T2: 31.46 ± 0.92, p = 0.334; Table 1) and state anxiety (State Anxiety Inventory, SAI; 
T1: 32.86 ± 8.64, T2: 32.64 ± 10.43, p = 0.82; Table 1) were not significantly different between the two sessions, 
which excluded the possible influences of skin temperature and state anxiety on the changes of pain perception 
between the two sessions.

Brain responses to nociceptive stimuli.  For both sessions, nociceptive stimuli elicited significant acti-
vations in a wide array of subcortical and cortical brain regions, including the periaqueductal gray, thalamus, 
primary (S1) and secondary (S2) somatosensory cortices, insula, and the anterior cingulate cortex (ACC) (voxel-
wise p < 0.005 and cluster-corrected at family wise error (FWE) of p < 0.05; Fig. 1a, b). These brain activation 
patterns strongly resemble the findings previously described18–21. The paired-sample t-test revealed that the mag-
nitudes of brain activations were significantly smaller in bilateral S1, primary motor cortex (M1), supplementary 
motor area (SMA), and middle cingulate cortex (MCC) in T2 session than in T1 session (voxel-wise p < 0.005 
and cluster-corrected at FWE of p < 0.05; Fig. 1c). These results showed that the decrease in pain ratings was 
accompanied by a reduced BOLD response in brain regions responsible for nociceptive information processing.

Test–retest reliability.  For pain threshold, the intraclass correlation coefficient (ICC) between the two 
sessions showed fair-reliability (ICC = 0.56; Table 2), while the ICC for pain ratings to nociceptive laser stimuli 
demonstrated moderate-reliability (ICC = 0.657; Table 2). For both mean BOLD responses (the clusters showing 
significant differences between the two sessions) and mean region of interest (ROI) BOLD responses (ROIs in 
the “Pain Matrix”), ICCs also showed fair-to-moderate test–retest reliability (Table 2).

Spontaneous brain activity and resting‑state functional connectivity.  Decreased spontaneous 
brain activity (fractional amplitude of low-frequency fluctuations, fALFF) of the right S1 was observed in T2 ses-
sion as compared with T1 session (paired-sample t-test, voxel z value > 2.3, cluster significance: p < 0.05, gaussian 
random field (GRF) corrected, two-tailed; Fig. 2a). When selecting the right S1 as the ROI for resting-state func-
tional connectivity analysis, we observed that the right S1 exhibited weaker resting-state functional connectivity 
with the bilateral dorsolateral prefrontal cortex in T2 session as compared with T1 session (paired-sample t-test, 
voxel z value > 2.3, cluster significance: p < 0.05, GRF corrected, two-tailed; Fig. 2b).

Discussion
As compared with T1 session, declined laser-evoked pain perception coupled with decreased brain responses 
in bilateral S1, M1, SMA, and MCC were observed in T2 session that was performed 1–5 days later. Test–retest 
reliability analysis revealed that the ICCs of both pain perception and brain responses elicited by nociceptive laser 
stimuli were 0.434–0.751, which represented fair-to-moderate reliability. When evaluating the possible effects 
of baseline spontaneous brain activity on the changes of laser-evoked pain perception and brain responses, we 
found decreased spontaneous brain activity in the right S1 and decreased resting-state functional connectivity 
between the right S1 and bilateral dorsolateral prefrontal cortex in T2 session as compared with T1 session. 

Table 1.   Demographics and behavioral results. BDI Beck Depression Inventory, SAI State Anxiety Inventory, 
TAI Trait Anxiety Inventory, PSQ pain sensitivity questionnaire, SD standard deviation.

Variables

T1 T2

p valueMean SD Mean SD

Age, in year 26.73 3.37

Education, in year 17.41 2.04

BDI 2.73 4.1

SAI 32.86 8.64 32.64 10.43 0.82

TAI 38.23 8.54

Skin temperature, in °C 31.63 0.97 31.46 0.92 0.334

Pain-related

 PSQ 4.42 1.30

 Pain threshold, in J 2.68 0.33 2.84 0.43 0.04

 Pain rating 5.12 1.14 4.59 0.95 0.004
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Figure 1.   Brain responses to nociceptive laser stimuli. For both T1 session (a) and T2 session (b), nociceptive 
stimuli elicited significant brain responses in the periaqueductal gray, thalamus, primary somatosensory cortex 
(S1), secondary somatosensory cortex, insula, and anterior cingulate cortex. (c) Laser-evoked brain responses 
were significantly smaller in bilateral S1, right primary motor cortex (M1), supplementary motor area (SMA), 
and middle cingulate cortex (MCC) during T2 session than T1 session. L left hemisphere; R right hemisphere. 
The resulting t-statistic maps were thresholded at p < 0.005, cluster-corrected at family wise error of p < 0.05. The 
images were created by using the MRIcron software (v1.0.20190902, https​://www.nitrc​.org/proje​cts/mricr​on).

Table 2.   Intraclass correlation coefficients of pain perception and laser-evoked brain responses between the 
two sessions. The intraclass correlation coefficients (ICCs) were calculated using the single-rating, absolute-
agreement, 2-way mixed model. 95% confidence interval (CI) is the interval between CI lower and CI upper. 
ROI, region of interest; S1, primary somatosensory cortex; S2, secondary somatosensory cortex; M1, primary 
motor cortex; SMA, supplementary motor area; MCC, middle cingulate cortex; ACC, anterior cingulate cortex. 
Bonferroni correction, p < 0.025 for pain perception analyses and p < 0.05/15 for brain response analyses.

ICC F value p value CI lower CI upper

Pain perception

 Pain threshold 0.56 3.986 0.001 0.198 0.789

 Pain rating 0.657 6.445  < 0.001 0.233 0.854

Mean BOLD responses

 Left S1 .698 9.922  < 0.001 .091 .893

 Right S1/M1 .564 5.606  < 0.001 .030 .820

 SMA/MCC .685 8.901  < 0.001 .113 .884

Mean ROI BOLD responses

 Left anterior insula .549 3.395 .004 .177 .784

 Right anterior insula .448 2.552 .019 .030 .729

 Left posterior insula .574 3.636 .002 .211 .798

 Right posterior insula .487 2.900 .009 .099 .748

 Left ACC​ .696 5.621 .000 .404 .860

 Right ACC​ .682 5.427 .000 .384 .853

 Left thalamus .434 2.510 .020 .026 .718

 Right thalamus .454 2.683 .014 .060 .728

 Left S1 .661 6.689 .000 .224 .858

 Right S1 .660 6.488 .000 .240 .856

 Left S2 .684 5.529 .000 .387 .854

 Right S2 .751 7.329 .000 .495 .888

https://www.nitrc.org/projects/mricron
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Altogether, being possibly influenced by the modulation of baseline mental state, laser-evoked pain perception 
and brain responses showed considerable variability between different experiment sessions. This phenomenon 
should be considered when designing experiments for laboratory studies and evaluating pain abnormalities in 
clinical practice.

Recent studies showed that mildly noxious stimuli resulted in lower repeatability for experimental pain 
perception across different sessions than highly painful stimuli14,22 and that ratings of pain perception trended 
downward across sessions14,22. These observations were consistent with our findings that laser-evoked pain per-
ception declined significantly from T1 session to T2 session when laser stimuli with a fixed stimulus intensity 
of 3.5 J elicited a mild-moderate painful sensation (Table 1). One possible explanation of this observation is the 
difficulty of the rating task for innocuous or mildly noxious stimuli as compared with highly painful stimuli14. 
In addition, the test–retest reliability of pain perception was fair-to-moderate (i.e., ICC = 0.56–0.657, Table 2). 
By definition, ICC is the ratio of the between-subject variance to the total variance across repeated measures23. 
Any factors that decrease the between-subject variability or increase the within-subject variability will decrease 
test–retest reliability. In the present study, the declined pain perception from T1 session to T2 session would 
contribute to the increase of the within-subject variability, which ultimately resulted in decreased reliability of 
laser-evoked pain perception.

It should be noted that the results at the behavioral level were fully supported by the findings of laser-evoked 
brain responses: BOLD responses elicited by nociceptive laser stimuli were significantly decreased in bilateral 
S1, M1, SMA, and MCC across the two sessions (Fig. 1c). Due to the significant decrease of laser-evoked brain 
responses, the test–retest reliability was not very high, in the range from 0.434 to 0.751, i.e., “fair” to “moder-
ate” reliability. Since the magnitude of neural responses sampled using fMRI technique is capable of encoding 
subjective pain ratings in most practical situations12,24,25, our finding observed at the neural level suggested the 
reliability of the results obtained at the behavioral level.

It is well known that pain experience is highly variable and could be influenced by factors at different dimen-
sions (e.g., physical, physiological, psychological, social, and cultural factors), which support a multidimensional 
framework for the modulation of the pain experience26. For instance, being stimulated by the same physical 
stimuli, pain perception would be different when the psychological state (e.g., anxiety level, the fearful level to 
the stimuli, and the attention level) of the subjects was changed3,9,27–29. In the present study, the psychological 
state of subjects could be different between the two sessions, as the subjects became more familiar with the 
experimental environment and the nociceptive stimuli in T2 session than in T1 session. It is be possible that 
with the adaptation to the experiment, the subjects are less anxious and less fearful to nociceptive laser stimuli, 
as such the attentional level to nociceptive stimuli and the stimulated site might be decreased in T2 session as 
compared with T1 session.

In line with the decreased brain responses in the S1, baseline spontaneous brain activity in the right S1 was 
also decreased from T1 session to T2 session (Fig. 2a). It is well recognized that the S1 is highly associated with 
the sensory-discriminative aspects of pain30, including the localization and discrimination of stimulus inten-
sity, and its activation is easily modulated by several psychological factors (e.g., anticipation and attention)31–33. 
Mennes and colleagues demonstrated that a region’s task-evoked BOLD responses could be predicted by that 
region’s spontaneous brain activity34. For this reason, the changes in baseline spontaneous brain activity in the 
S1 could influence the laser-evoked brain responses in this region, which may lead to the decrease in sensory-
discriminative processing of pain and the decrease in pain perception from T1 session to T2 session. On the other 
hand, S1 activation is highly modulated by cognitive factors that alter pain perception, including attention and 

Figure 2.   Differences in spontaneous brain activity and resting-state functional connectivity between the two 
sessions. (a) Decreased spontaneous brain activity (fALFF) of the right S1 was observed during T2 session 
as compared with T1 session. (b) When the right S1 was selected as the ROI, the right S1 showed decreased 
resting-state functional connectivity with the bilateral dorsolateral prefrontal cortex (DLPFC) during T2 
session as compared with T1 session. L left hemisphere, R right hemisphere. The resulting t-statistic maps were 
corrected for multiple comparisons using the gaussian random field (GRF) theory with a voxel z value > 2.3 and 
cluster p value < 0.05 (two-tailed correction). The images were created by using the Data Processing & Analysis 
for (Resting-State) Brain Imaging (DPABI) software (DPABI_V5.0_201001, http://rfmri​.org/dpabi​)59.

http://rfmri.org/dpabi
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previous experience31. With the adaption to the experimental environment and nociceptive stimuli, the focus of 
attention on nociceptive stimuli and the stimulated site was likely reduced in T2 session as compared with T1 ses-
sion, which would contribute to the decrease of S1 activation and the decline of the self-report of pain perception.

Furthermore, resting-state functional connectivity between right S1 and bilateral dorsolateral prefrontal 
cortex was lower in T2 session as compared with T1 session (Fig. 2b). Previous studies demonstrated that 
the dorsolateral prefrontal cortex is generally related to the cognitive and attentional processing of painful 
stimuli35,36. Thus, the decreased functional connectivity between right S1 and the dorsolateral prefrontal cortex 
is likely related to the changed attentional state to nociceptive stimuli from T1 session to T2 session. Altogether, 
the decreased baseline functional connectivity might influence both laser-evoked pain perception and brain 
responses by allocating fewer attention resources to nociceptive stimuli.

Pain perception is a multidimensional experience that encompasses sensory-discriminative, affective-moti-
vational, and cognitive-evaluative components37. As a consequence, pain perception and the associated brain 
responses are considerably variable and have fair-to-moderate reliability across experimental sessions. The 
variability between different experiment sessions of laser-evoked pain perception and brain responses could be 
related to the changes of baseline mental state that could be easily influenced by several physiological factors 
(e.g., anxiety level, the fearful level to the stimuli, and the attention level). Hence, assessing the possible effects 
of psychological state on pain perception and brain responses and monitoring the baseline brain activity are 
highly needed when designing experiments for laboratory studies and evaluating pain abnormalities in clinical 
practice. For instance, the across-session variability should be taken into consideration when (1) examining the 
test–retest reliability of pain perception from multiple experimental sessions; (2) assessing the habituation effect 
of pain using repeated painful stimulation over several days; and (3) evaluating the long-term analgesic effect 
of treatment strategies in clinical practice or basic research. Besides, evidence showed that structural MRI fea-
tures (e.g., gray matter intensity/volume, cortical thickness, subcortical volume) are highly correlated with pain 
perception in both healthy subjects38,39 and chronic pain patients40–42. Therefore, investigating the relationship 
between structural MRI features and the test–retest reliability of pain perception or brain responses in future 
work would provide new insights into the neural mechanism of test–retest reliability of pain.

Methods
The experiment was approved by the ethical standards of the Institutional Review Board of the Institute of 
Psychology, Chinese Academy of Sciences. All procedures were performed in accordance with the Declaration 
of Helsinki. Written informed consent was obtained from each subject prior to data collection. Subjects were 
screened for DSM-IV axis I and II disorders using the Structured Clinical Interview for DSM-IV, and were 
excluded if they had any contraindications (e.g., brain lesions, non-removable metallic implants, claustropho-
bia, etc.) for MRI scanning, history of peripheral and neurological disorders, chronic pain disorders, or if they 
consumed medications and reported a history of alcoholism or drug abuse.

Pain sensitivity measurement.  For each subject, pain sensitivity was assessed using the Pain Sensitivity 
Questionnaire43, and pain threshold was evaluated using laser stimuli. Radiant-heat laser stimuli were generated 
by an infrared neodymium yttrium aluminum perovskite (Nd:YAP) laser with a wavelength of 1.34 μm and a 
pulse duration of 4 ms (Electronical Engineering, Italy)44. At this wavelength and pulse duration, laser stimuli 
activate directly nociceptive terminals in the most superficial skin layers in a synchronized fashion45. A He–Ne 
laser pointed to the area to be stimulated. The laser pulse was transmitted via an optic fiber and focused by lenses 
to a spot with a diameter of ~ 7 mm (~ 38 mm2). Laser pulses were delivered to a squared area (4 × 4 cm2) on 
the dorsum of subjects’ left hand (non-dominant hand). To prevent fatigue or sensitization of the nociceptors, 
the laser beam target was manually shifted by at least 1 cm in a random direction after each stimulus46–48. The 
method of limits was adopted for each subject to determine the pain threshold in each session: starting from 
1.5 J, the laser energy was increased in steps of 0.25 J until a rating of 4 out of 10 (i.e., the energy at which the 
subjects start to feel pain) was obtained on a numerical rating scale (NRS) ranging from 0 (no pain) to 10 (the 
worst pain imaginable)44. Prior to the pain threshold measurement, the skin temperature of the left hand was 
recorded for each subject to monitor the possible effect of temperature on pain perception.

Experiment design.  An experiment with a within-subject repeated-measures design was performed 
(Fig.  3a). Each subject participated in two sessions (session 1: T1; session 2: T2) separated by 1–5  days 
(1.82 ± 1.12 days). In both T1 and T2 sessions, resting-state and task fMRI data were collected for each subject. 
To monitor subjects’ mood state, depression was evaluated by Beck-Depression Inventory (BDI)49 in T1 session, 
and state and trait anxiety was evaluated by State-Trait Anxiety Inventory (STAI)50 in both sessions.

During the task fMRI scan, 30 laser pulses at fixed stimulus energy of 3.5 J were delivered to the dorsum 
of the left hand to elicit a painful pinprick sensation for each subject (Fig. 3b). Inter-stimulus interval varied 
randomly between 26 and 28 s with a rectangular distribution. Each trial started with a 4-s white cross centered 
on the screen and followed by the laser stimulus (duration = 4 ms). A visual cue presented 16 s after the laser 
stimulus prompted the subjects to rate the intensity of pain perception elicited by the laser stimulus within 5 s on 
the same NRS. The following trial started in 1–3 s, and the duration of the whole task fMRI scan was ~ 14 min.

MRI data acquisition.  The MRI data were collected using a 3.0-Telsa Magnetic Resonance Imaging 
(MRI) system with a standard birdcage head coil (Discovery MR 750; General Electric Healthcare; Milwaukee; 
Wisc.) at the MRI Research Center, Institute of Psychology, Chinese Academy of Sciences. T1-weighted struc-
tural image was acquired using the gradient echo (3D SPGR) sequence (1 mm3 isotropic voxel, field of view 
(FOV) = 256 × 256 mm2). An echo-planar-imaging sequence (repetition time = 2000 ms; echo time = 30 ms; flip 
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angle = 90°; FOV = 64 × 64 mm2; data matrix = 64 × 64; in-plane resolution = 3 × 3 mm2; slice thickness = 3.5 mm; 
slice spacing = 0.5 mm) was used to acquire the resting-state functional data (300 volumes for resting-state fMRI 
session), and then the task fMRI data (409 volumes for task fMRI session). During the resting-state fMRI data 
acquisition, the screen presented a black fixation ‘ + ’ in the center of the gray background. The patients were 
instructed to remain still with their eyes open, not to fall asleep, and not to think about anything in particular.

Task fMRI data processing.  Task fMRI data were analyzed using the 12th edition of Statistical Paramet-
ric Mapping (SPM12, Welcome Department of Cognitive Neurology, London, UK, http://www.fil.ion.ucl.ac.uk/
spm). The preprocessing analysis included the following procedures3: discarding the first three volumes, slice 
timing correction, realignment and normalization to the EPI template with the resampling voxel size of 3 × 3 × 3 
mm3, spatial smoothing using a Gaussian kernel of 5 mm full width at half maximum (FWHM), and temporal 
filtering using a high pass filter and cut-off at 128 s.

Statistical analysis of individual preprocessed imaging data was performed with first-level fixed-effects analy-
ses using a general linear model. The regressor (nociceptive stimuli) was convolved with the canonical hemody-
namic response function plus its temporal derivatives with realignment parameters (three translations and three 
rotations) included as regressors of no interest. For each subject, the contrast image of nociceptive stimuli was 
extracted to examine laser evoked BOLD responses within each group using a one-sample t-test. The resulted 
t-map of each session (T1 or T2) was thresholded at voxel-wise p < 0.005 and cluster-corrected at FWE of p < 0.05 
at the whole-brain level. The differences in brain responses to nociceptive stimuli between sessions were assessed 
using a paired-sample t-test (voxel-wise p < 0.005 and cluster-corrected at FWE of p < 0.05).

Test–retest reliability.  Test–retest reliability is the extent to which a dependent variable is consistent and 
free from error across sessions51. The ICC is a widely-used measure of test–retest reliability. The ICCs and their 
95% confidence intervals were calculated for pain threshold, pain rating, and laser-evoked BOLD responses 
between sessions 1 and 2 to evaluate their test–retest reliability using SPSS for Windows (Statistical Package for 
Social Sciences, Release 18.0, SPSS Inc., Chicago, IL, USA). In detail, ICCs of the absolute agreement were calcu-
lated using a two-way mixed model that provided a measure of consistency through a ratio of between-subject 
variance to the total variance52. For laser-evoked BOLD responses, mean BOLD data (defined in terms of param-
eter estimates) of clusters showing significant differences between the two sessions were extracted to calculate 
the ICCs. Besides, to assess the stability of brain activations in all regions of the “Pain Matrix”18–21, a series of 
ROIs, including the S1 and S2, thalamus, the insula, and the ACC, were selected. The ROIs of S1, S2, thalamus, 
and ACC were defined from the Harvard Oxford cortical and subcortical structural atlas53,54, which are popu-
lation-based probability atlas in MNI 152 standard space. Four ROIs of the left and right anterior and posterior 
insula were defined as in our previous study55,56 using the analytic scripts downloaded via http://fcon_1000.

Figure 3.   Experiment design and nociceptive stimulation. (a) Experimental design. (b) Task fMRI scan 
contained a single block of 30 trials with transient nociceptive stimuli. Each trial started with a 4-s fixation of the 
white cross-centered on the screen and followed by the delivery of a nociceptive stimulus. A visual cue presented 
16 s after the nociceptive stimulus prompted the subjects to rate the perceived intensity within 5 s on the 0–10 
NRS. The inter-trial interval varied randomly between 1 and 3 s. NRS, numerical rating scale. The MRI images 
were created by using the MRIcron software (v1.0.20190902, https​://www.nitrc​.org/proje​cts/mricr​on).

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
https://www.nitrc.org/projects/mricron
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projects.nitrc.org57. For each ROI, the mean BOLD response across all voxels within the ROI, defined in terms 
of parameter estimates, was extracted from each subject and each session. The degree of reliability of each value 
was then classified based on the conservative criteria described by Shrout58: virtually no reliability (0.00–0.10), 
slight-reliability (0.11–0.40), fair-reliability (0.41–0.60), moderate-reliability (0.61–0.80), and substantial reli-
ability (0.81–1.00). Bonferroni procedures was performed to correct for multiple comparisons (p < 0.025 for pain 
perception analysis and p < 0.05/15 for brain response analysis).

Resting‑state fMRI data processing.  Resting-state fMRI data were analyzed using Data Processing & 
Analysis for (Resting-State) Brain Imaging (DPABI) software (DPABI_V5.0_201001, http://rfmri​.org/dpabi​)59. 
The first ten volumes were discarded for signal equilibrium and to allow the participants’ adaptation to the scan-
ning noise. Images were slice timing corrected and realigned. Structural images were segment into grey matter, 
white matter, and cerebrospinal fluid. White matter signal, cerebrospinal fluid signal, and head motion param-
eters were regressed as nuisance regressors from the corrected functional images. The processed functional data 
were then normalized to EPI template (resampling voxel size = 3 × 3 × 3 mm3), spatially smoothed using a Gauss-
ian kernel of 5 mm FWHM, and detrended to remove the drifts and trends in the fMRI data.

Being defined as the ratio of the power spectrum of low-frequency fluctuations (0.01–0.1 Hz) to that of the 
entire frequency range (0–0.25 Hz), the fALFF were used to detect the intensity of regional spontaneous brain 
activity with high sensitivity and specificity60–63. To assess the spontaneous brain activity differences between 
the two sessions, fALFF was extracted and compared using a paired-sample t-test. Statistical maps were thres-
holded using the GRF theory correction procedure64,65, as implemented in DPABI59. The significance level was 
set at p < 0.05 corrected for multiple comparisons (paired-sample t-test, voxel z value > 2.3, cluster significance: 
p < 0.05, GRF corrected, two-tailed).

Brain regions showed significant differences of fALFF between the two sessions were selected as ROIs for the 
functional connectivity analysis of resting-state fMRI data. For each ROI, the time series of spontaneous brain 
activity, which were averaged across all voxels within the ROI, were extracted in each subject, and individual-
level correlation maps of all voxels that were positively or negatively correlated with the averaged ROI time 
series were produced55,56. The resulting correlation maps were converted to Z-value maps using Fisher’s r-to-z 
transformation. A paired-sample t-test was performed to investigate the differences of resting-state functional 
connectivity for each ROI between the two sessions. Statistical maps were thresholded using the GRF theory 
correction procedure59,64,65, in which the significance level was set at p < 0.05 corrected for multiple comparisons 
(voxel z value > 2.3, cluster significance: p < 0.05, GRF corrected, two-tailed).
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