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Abstract: Here, we propose a computational approach to explore evolutionary fitness in complex
biological systems based on empirical data using artificial neural networks. The essence of our
approach is the following. We first introduce a ranking order of inherited elements (behavioral
strategies or/and life history traits) in considered self-reproducing systems: we use available em-
pirical information on selective advantages of such elements. Next, we introduce evolutionary
fitness, which is formally described as a certain function reflecting the introduced ranking order.
Then, we approximate fitness in the space of key parameters using a Taylor expansion. To estimate
the coefficients in the Taylor expansion, we utilize artificial neural networks: we construct a surface
to separate the domains of superior and interior ranking of pair inherited elements in the space of
parameters. Finally, we use the obtained approximation of the fitness surface to find the evolution-
arily stable (optimal) strategy which maximizes fitness. As an ecologically important study case,
we apply our approach to explore the evolutionarily stable diel vertical migration of zooplankton in
marine and freshwater ecosystems. Using machine learning we reconstruct the fitness function of
herbivorous zooplankton from empirical data and predict the daily trajectory of a dominant species
in the northeastern Black Sea.

Keywords: zooplankton; diel vertical migration; evolutionarily stable strategy; evolutionary fitness;
ranking order; machine-learned ranking; pattern recognition

1. Introduction

In modern theoretical biology, the concept of long-term selection (natural or human-
related) plays a key role in understating outcomes of biological evolution which comes back
to the famous idea of “the survival of the fittest” by C. Darwin [1]. The fundamental idea
consists in introducing a quantity called evolutionary fitness which can describe selective
advantages of inherited elements in the underlying biological system (e.g., genotype,
life history trait, behavior, etc.). Maximization of fitness would provide the eventual
outcomes of long-term biological evolution [2–5]. The concept of evolutionary fitness was
first developed in the works of Haldane, Fisher, and Wright [6,7]. In particular, Wright
visualized biological evolution as a “hill-climbing” process that increases the fitness of
a given population in a landscape of inherited elements [2,7,8]. However, at the same
time, evolutionary fitness has always been a controversial issue as different authors have
proposed distinct definitions of fitness [9–12]. There is a discussion in the literature on how
one can rigorously define evolutionary fitness [3,13,14]. For example, it was argued that
fitness can be defined as some generalized entropy [15]. However, the problem is still far
from its final solution. Note that different definitions of fitness may produce conflicting
predictions of evolutionary outcomes [14,16].
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Recently, a new mathematically rigorous framework has been developed to quan-
tify fitness in biological systems [17–19]. The idea was inspired by an early paper by
A. Gorban [20]. The framework considers the outcomes of long-term dynamics of a large
number of competing inherited elements which we will call strategies (they can be behav-
ioral strategies, life history traits, genotypes, etc.). The strategies are ranked according to
their competitive advantages [21]. Fitness is mathematically defined as a certain function
which preserves the introduced ranking of strategies. The major challenge of implementing
the above concept of fitness is to how to mathematically express the fitness function via
parameters describing life history traits (or behavioral patterns) of organisms. Deriving
an analytical expression for evolutionary fitness is possible for some classes of models of
population dynamics, including those accounting for age structure [22]. The approach
developed by A. Gorban [20] was applied to several problems ranging from preventing the
tragedy of the commons to cancer therapy [23].

However, the parameters and coefficients in a mathematical model of population
dynamics are hard to estimate empirically, which makes predicting the evolutionary
outcomes from the model complicated or even impossible. A possible solution to avoid
this obstacle is to construct evolutionary fitness using the observed population dynamics,
for example, the time series containing empirical information on ranking of strategies
(e.g., which strategy is more advantageous). In this case, the problem of reconstruction
of fitness in biological systems will be a special case of the generic problem of ranking
elements. Indeed, mathematically the general problem of ranking elements of some set
is defined as follows. A partial order is defined on a certain finite subset of elements of
some compact metric subspace (this subset can be considered as the training data set):
one needs to extend it over the entire space without changing the ranking of the initial
(training) subset of elements. In this paper, we address the problem of ranking of some
inherited elements by using a pairwise comparison approach. Ranking can be often defined
with the help of a comparison function, J, in the considered space, where better (fitter)
inherited elements would correspond to higher values of J. In this case, the function J can
be understood as fitness.

Among other approaches, machine learning methods seem to be very promising for
establishing ranking of elements of different nature, in particular, related to inherited
strategies or life history traits in biological systems [24–26]. Therefore, it would be natural
to implement the existing techniques of machine learning to reconstruct the fitness function
from empirical data or a mathematical model. In [27,28], it was shown that ranking of
strategies and identifying the fitness function is similar to the problem of classification
and separation of ordered pairs of elements into two main categories: “the first element is
better than the second one” and “the second element is better than the first one”. Note that
artificial intelligence systems are currently being implemented in pattern recognition in
computational biology [29,30]. In the current paper, we demonstrate that this methodology
can be implemented to explore the optimal patterns of diel vertical migration (DVM)
of zooplankton.

The phenomenon of diel vertical migration (DVM) of aquatic organisms such as
zooplankton was discovered long ago [10–12,31]. In particular, it was shown that a large
number of zooplankton species move up and down between deep and surface layers
on a daily basis [32]. DVM of zooplankton plays a crucial role in the dynamics of the
organic matter of the ocean, and this phenomenon is regarded as the greatest synchronous
migration of biomass on Earth [31,32]. Identifying the causes and mechanisms of DVM of
zooplankton is an important problem in modern ecology and is crucial for an efficient fish-
ery. The underlying mechanisms of DVM, as well as its ecological significance, have been
largely studied both empirically and theoretically [4,10–12,16]; however, many aspects of
this phenomenon are still poorly understood. In particular, this is due to the wide variety of
patterns of DVM observed in nature. Several mathematical models of DVM were suggested
in the literature, most of them are focused on the optimization of some particular criterion
which was somewhat arbitrary chosen depending on a study [9–12,16,33]. In this paper,
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we use the data from the empirical observations of zooplankton DVM in the northeastern
Black Sea to demonstrate how evolutionary fitness and optimal DVM can be revealed
using artificial intelligence systems and machine learning. We emphasize that similar
computational approaches can be implemented to explore fitness in other (non-planktonic)
biological systems as well.

2. Materials and Methods
2.1. Generic Framework to Estimate Evolutionary Fitness

Here, we briefly introduce a mathematical framework to rigorously quantify evolu-
tionary fitness in self-replicating systems with strong inheritance. Note that more details
on defining evolutionary fitness in mathematical models are provided in [5,19,22]. We for-
mally introduce the space of hereditary strategy V of a certain population. The space V
includes all possible strategies v which can be considered as behavioral strategies or/and
life history traits. We assume V to be metric. Let each strategy v at each moment of time t
be associated with some non-negative value ρ(v, t), which quantifies its presence in the
self-replicating system. In the simplest case, ρ(v, t) is the number of individuals realizing
strategy v; this can be also understood as the density distribution of the population over V.
We assume that ρ(v, t) the following properties hold:

1. ρ(v, t) = 0 signifies the absence of v in the system at time t;
2. ρ(v, t) > 0 signifies the presence of v in the system at time t;
3. ρ(v, t) is a continuous function of v in V;
4. ρ(v, t) is a continuous function of time;
5. approaching zero by ρ(v, t) over time means the extinction of the strategy v;
6. if ρ(v, t0) = 0 at some time t0, then ρ(v, t) = 0 for all t > t0; and
7. ρ(v, t) is uniformly bounded by a constant, i.e., ρ(v, t) < C.

The above-introduced function ρ(v, t) is a general mathematical description of the
self-replicating system, for example, it can be defined via a certain mathematical model
(e.g., based on a system of differential equations). Thus, a self-replicating system is a pair
(V, ρ(v, t)), satisfying above the assumptions.

We can formally define ranking of strategies as follows. The strategy v is better than
strategy w (symbolically we denote this as v � w) in the ratio ρ(w, t)/ρ(v, t) tends to zero
with time, i.e.,

lim
t→∞

ρ(w, t)
ρ(v, t)

= 0. (1)

The above definition means that the subpopulation with strategy v goes extinct with
t→ +∞. Thus, the ranking order is introduced in V.

We assume there exists a functional J(v) that preserves the ranking of the strategies,
i.e.,

J(v) > J(w)⇔ v � w. (2)

The functional J can be referred to as evolutionary fitness. In general, the ranking
order, and thus J, may depend on the initial condition (e.g., systems with cyclic ranking
order, see in [17,19,34]). Note that dealing with scenarios, where J depends on initial
condition, is, in general, a challenging mathematical task [5]. For this reason, in this study,
we make the simplifying (but restrictive) assumption that evolutionary fitness does not
depend on the initial condition. In this case, J plays the role of a ranking function of in
the system. Mathematically, the existence of the above-introduced fitness is subject to
the requirements imposed by the Debreu theorem on continuity (i.e., in the case v � w,
we require the same ranking to hold between all strategies which are sufficiently close
to v and w) and rationality of v [35]; in this case J is a continuous function. From the
biological point of view, the requirements of rationality and continuity of strategies (or
life history traits) v seem to be natural, so we assume that they hold. The strategy v∗ for



Entropy 2021, 23, 35 4 of 17

which evolutionary fitness attains its maximum will be the optimal one in the sense that
this strategy will eventually outcompete all others for which fitness is lower.

For each v, the temporal dynamics of ρ(v, t) is usually determined by a few param-
eters (their total number is n) such as foraging rates, maturation times, mortality rates,
reproduction, etc., each of which is a function of the strategy v. The set of those parameters
can be described by a vector M(v) = (M1(v), M2(v), . . . , Mn(v)). Evolutionary fitness J
will be a multivariable function of M, i.e., J = J(M(v)).

We assume that we can approximate J using Taylor expansion around a certain point
M0. In particular, we can consider the following algebraic form of degree k (i.e., k is the
maximal power in the Taylor expansion)

J ≈ F ≡ ∑
1≤i1+i2+...+in≤k

λi1i2···in Mi1
1 Mi2

2 ...Min
n , (3)

where ij are non-negative integer numbers and 0 ≤ ij ≤ k, 1 ≤ j ≤ n, and λi1i2···in are the
coefficients of the Taylor expansion.

In our notation, F will denote an approximation of fitness J. The approximation F is
simpler to explore than the original function J; however, it still might be complicated to
estimate the coefficients in the above Taylor expansion. Below, we propose a computational
method of estimating the coefficients in (3) using modern methods of pattern recognition.
The crux of our computational method to reconstruct fitness is the following [27,28].

We introduce the following notation for the products of Mi

Qi1i2...in = Mi1
1 Mi2

2 ...Min
n , where 1 ≤ i1 + i2 + ... + in ≤ k.

Let P be an ordered set of Qi1i2...in , i.e.,

P =
{

Qi1i2...in , 1 ≤ i1 + i2 + ... + in ≤ k, 0 ≤ ij ≤ k, 1 ≤ j ≤ n
}

.

The entire set of P forms a vector space. The approximation of fitness provided by (3)
becomes a linear function of Qi1i2...in , i.e., the coordinates of the vector space P.

We next consider a pair of strategies (v, w) and the corresponding approximations
of the fitness functions related to those strategies. In the case, where v is better than w,
we have F(M(v)) > F(M(w)), i.e.,

∑
1≤i1+i2+...+in≤k

λi1i2···ik
[
Qi1i2...in(v)−Qi1i2...in(w)

]
> 0.

In the case where w is better than v, we have F(M(w)) > F(M(v)).
We next assign the pair of strategies (v, w) to the difference (P(v)− P(w)) and the pair

(w, v) to the difference (P(w)− P(v)). In the vector space P we consider the hyperplane
given by

Yk ≡ ∑
1≤i1+i2+...+in≤k

λi1i2···in Qi1i2...in = 0. (4)

Hyperplane (4) separates the sets of points in the vector space P with coordinates Qi1i2...in
with the two different ranking order generated by underlying strategies. The normal vector
of this hyperplane provides the coefficients λi1i2···in in the approximation of fitness F, i.e.,
Yk will be essentially a Taylor approximation of order k of evolutionary fitness.

The problem of separation of two or more sets of points with distinct properties is
a typical pattern recognition problem (known as linear classification) that can be solved
with the help of learning neural networks [36–38]. The problem essentially boils down
to determining whether the ordered pairs of elements “first, second” belong to one of
two classes: “the first is better than the second” or “the first is worse than the second”.
To separate two sets (domains) of pairs with different ranking order, we can use either the
classifier based on Fisher’s determinant, the nearest neighbor method or an artificial neural
network [38]. In particular, using several test examples, we conducted a brief comparison
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of the efficiency of the nearest neighbor method and a single-layer artificial neural network.
We observed that the accuracy of recognition for the neural network is higher than that
of the nearest neighbor method (98% against 95%). Moreover, using artificial networks
technology is more advantageous for the given problem since the weight coefficients of
individual neurons of the first layer of the network allow us to determine the coefficients of
the separating hyperplane Yk = 0, i.e., they give the coefficients in the Taylor approximation
of fitness. Note that another potential approach to solve the problem of identification of
parameters of fitness is linear programming. Linear programming was previously applied
to the problem of fitness identification [5]. However, linear programming methods have
several disadvantages: they are very sensitive to errors in data even if such errors are small.
The presence of even small errors in data often makes the system of linear inequalities
inconsistent, and the chance of having inconsistency increases with the overall number of
data points. On the other hand, a neural network can efficiently work even in the presence
of small errors in data. Finally, an increase in the amount of data usually requires rewriting
software using linear programming, whereas it is not the case of neural networks.

Note that separation of two finite sets of points from the learning sample with the
hyperplane Yk = 0 is generally non-unique. The concrete realization of the separation
procedure (and the corresponding approximation of fitness) depends on the method of
constructing the separating hyperplane. The location of this hyperplane can be slightly
different depending on the methods used in neural networks. In the case where one
implements a simple single-layer neural network, constructing a separating hyperplane will
be equivalent to the gradient descent for a certain function depending on the coefficients
of the hyperplane. There also exists the concept of an optimal hyperplane which can
be constructed using, for example, the Gauss–Seidel method. The problem of fitness
reconstruction can also be solved using pointwise methods of machine learning ranking,
for example, OPRF (polynomial regression) [39].

Finally, after estimating the coefficients in the approximation of evolutionary fitness,
one can derive the evolutionarily stable (optimal) strategy by the methods of calculus of
variations or the optimal control theory. Here, the term “evolutionarily stable” signifies
that such a strategy cannot be invaded by a different strategy in the course of natural
selection: all the other strategies would be eventually eliminated [4]. In this case, the fitness
function will be the objective functional of the corresponding optimizing problem [21,22].
We have designed particular software able to solve this problem numerically for any known
objective functional [40,41].

In this paper, we verify the efficiency of the proposed framework or some models
where the fitness function is can be derived analytically. As an important study case,
we explore optimal trajectories of diel vertical migration of herbivorous zooplankton in
the ocean and lakes, the phenomenon, which is considered to be the most significant
synchronous biomass movement on Earth.

2.2. Predicting Patterns of Optimal DVM via Machine Learning

It was previously shown, using both empirical data and mathematical modeling,
that the timing and amplitude of DVM of herbivorous zooplankton are mainly determined
by the following environmental factors [22,42]: the density of food E(x) (phytoplankton) at
the depth x of the column, the distribution of visual predators Sx(x) consuming zooplank-
ton (e.g., fish), and their daily activity St(t), other factors resulting to zooplankton mortality
such as the unfavorable temperature or/and hydrogen sulfide concentration [10,16]. All of
these factors can be considered as mathematical functions of the vertical coordinate x and
the time of day t (the time of day is rescaled, so t = 1 corresponds to 24 h). We suggest that
environmental characteristics do not evolve.

We can formally consider the daily trajectory x(t) of a zooplankton grazer in the
column to be its strategy. Note that herbivorous zooplankton have various developmen-
tal stages characterized by different life traits and distinct patterns of DVM. In this case,
the inherited strategy v of a subpopulation is defined mathematically as a set of N pe-
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riodic functions X(t) = (x1(t), . . . xN(t)), where N is the number of considered in the
model developmental stages of zooplankton. Note that for simplicity we can combine
several biological stages in a single one to simplify the model. We assume that every
xi(t) is a continuously differentiable function on the segment [0, 1], satisfying conditions
xi(0) = xi(1).

One substantial obstacle for identification of parameters of the fitness function using
neural networks techniques is the lack of a sufficient amount of empirical data necessary to
create a learning sample. Often ecological observation is focused on systems with only a
small number (e.g., dozens) of competing species described by distinct life history traits
or strategies. This number is often too small to guarantee efficient learning of a proper
neural network. Here, we suggest the following solution to the problem. We assume that
the observed strategy or life history trait is the result of long-term selection, thus can be
considered to be evolutionarily stable under the given environmental conditions. Thus,
deviation from this strategy would reduce evolutionary fitness. Mathematically, the above
assumption can be formulated as follows.

Consider that the observed strategy (trajectory) of diel vertical migration is evolu-
tionarily stable, so it realizes the maximum of fitness F. This strategy is described by the
trajectory x∗(t). We may consider an arbitrary function y(t) satisfying y(0) = y(1) and
some positive ε, so the deviation from the optimal trajectory will be εy(t). In this case,
we have for fitness J(x∗(t)) > J(x∗(t) + εy(t)). For sufficiently small ε > 0 (i.e., in the
neighborhood of x∗(t)), using a smaller in absolute value ε will result in a higher value of
fitness, i.e., for | ε1 |>| ε2 |> 0 we have J(x∗(t) + ε1y(t)) > J(x∗(t) + ε2y(t)). This assump-
tion allows us to generate a large number of samples necessary to guarantee a successful
machine learning process.

The above approach can be realized as follows. The observed strategy is set as a vector
of vertical positions of an organism at some moments throughout the day. Next, we modify
some components of this vector by adding to them some constants multiplied by ε. As a
result, we obtain new vectors of daily vertical locations of zooplankton. We may assume
that an artificially generated strategy is negatively correlated with the absolute value of ε.
The generated samples are added to improve the learning sample.

To explore optimal patterns of DVM, we used the empirical data collected in the
northeastern Black Sea. The details about the data are provided in [42]. We considered
data on DVM in summer 2011 for migration of a dominant herbivorous copepod Calanus
euxinus. To describe the vertical distribution of predators and their activity throughout the
day, we used the data from in [10,16].

Technically, we used the following programming software: machine learning library
Scikit-learn for Python; library Pandas (This is a programming library based on Python for
processing and analysis of data); module CSV (comma-separated value), which allows one
to work with the same format of tables (it is needed for correct reading of the input data
from a file with the extension .csv); and library Numpy, which allows one to work with
large multi-dimensional arrays and matrices, as well to implement functions to quickly
process multidimensional arrays and matrices.

3. Results
3.1. Revealing Fitness in a Non-Structured Population

We firstly consider a non-structured population of zooplankton, i.e., we neglect the
difference of individuals in terms of their developmental stages, and disregard the mat-
uration effects. As explained in Section 2, fitness function can be constructed using the
coefficients of the separating hyperplane Y1(P) = 0 defined by (4). Note that previous stud-
ies using empirical data of DVM of herbivorous zooplankton indicate that the following
four (macro)-parameters have the greatest impact on population success of grazers [19,42]:

M1(v) =
∫ 1

0
E(x(t))dt, M2(v) = −

∫ 1

0
St(t)Sx(x(t))dt,
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M3(v) = −
∫ 1

0

[
x′(t)

]2dt, M4(v) = −
∫ 1

0
G(x(t))dt.

The above parameters have the following transparent biological meaning. M1 is the
amount of consumed food (phytoplankton) per day; M2 is the daily mortality due to
visual predation (e.g., by fish); M3 is the metabolic cost of vertical migration (we assume
it to be proportional to the losses due to resistance forces or drag); M4 is an increase in
mortality of zooplankton when entering surface or deep water which are characterized by
unfavorable temperature and hydrogen sulfide conditions [42]. In the above expressions,
t = 1 corresponds to 24 h.

Following previous studies [19], we approximate evolutionary fitness of a non-
structured population with the simplest linear function(al), which is a weighted sum
of the terms Mi,

F(v) = αM1(v) + γM2(v) + βM3(v) + δM4(v), (5)

where α, β, γ, δ are unknown positive coefficients which have the same meaning as λi in (3).
These coefficients quantify the degree of impact of each particular factor Mi on fitness.
To fully specify fitness in the above model, one needs to evaluate α, β, γ, δ from available
data (note that only three of them are independent).

It is important to stress that the linear form of fitness (5) can arise in some nonlinear
models of population dynamics, for example, they can include effects of intraspecific
competition [19], and an example of such models is given in Appendix B. On the other hand,
to derive the optimal trajectory of DVM of zooplankton one can solely use expression (5) for
fitness combined with available data on the ranking of DVM trajectories, i.e., just keeping
in mind that some underlying mathematical model exists. As such, in this subsection,
we will reveal the optimal DVM trajectory exclusively using (5) and data.

In practice we have only discrete values of the rates E, S, and G measured at some
particular moment of the day as it is impossible to continuously collect zooplankton
samples across the water column (in this study the sampling interval was 3 h, see [42]).
Therefore, we should formally use a discrete version (approximation) of the above integrals.
This gives

F = α
L

∑
l=1

E(x(ti))− β
L

∑
l=1

S(x(ti), ti)− γ
L

∑
l=1

(x′(ti))
2 − δ

L

∑
l=1

G(x(ti)).

In the above expression, we considered L = 8 data time points for the zooplankton
positions during the day following the observation data from in [42]. Note that time
increment ∆t = ti+1 − ti = 3h is constant (for simplicity, we do not multiply each term in
the above expression by the same multiplier ∆t). In Appendix A, we provide details on the
AI procedure used for comparison of two different strategies of zooplankton DVM based
on empirical data.

We start solving the problem of fitness identification from data with simple func-
tional parameterizations of E, S, and G given by a linear and quadratic functions. In other
words, we consider E = σ1(x + C), Sx = σ2(x + C),−C < x < 0; G = (x + C0)

2, St =
cos(2πt) + 1, 0 < t < 1, where C and C0 are some characteristic depths. This approach
seems to be logical as it allows us to obtain a reasonable first approximation of the optimal
DVM trajectory and coefficients α, γ, β, δ which can differ by several orders of magnitude:
this knowledge will be essential when considering more complicated parameterizations
of E, S and G. On the other hand, we can easily verify the efficiency of the method since
for the considered E, S and G one can derive an analytic expression for the optimal strat-
egy. Using available data (see, e.g., in [42]), we can roughly estimate the parameters
C, σ1, σ2, C0 in the above simple parameterization of E, S and G. For example, considering
C = 140 m, C0 = 60 m, σ1 = 0.25, σ2 = 0.003 will be in accordance to empirical data [42].
The above linear and quadratic functions should be regarded as the simplest approxima-
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tions of the realistic nonlinear parameterizations of E, S, and G, which are described in
detail further in this subsection.

It was demonstrated in [19] that for the considered linear and quadratic parameteri-
zations of E, S, and G, the optimal solution (realizing the maximum of the functional (5))
will be given by x∗(t) = A + B cos(2πt), where the constant mean depth through the
day A is determined by A = (σ1α − σ2γ)/2δ − C0 and the amplitude of vertical mi-
gration B is determined by B = −σ2γ/(2δ + 2(2π)2β). The integral parameters Mi can
be expressed as M1 = σ1(A + C), M2 = −σ2(A + C + B/2), M3 = −(2π)2B2/2, and
M4 = −((A + C0)

2 + B2/2). The obtained analytical solution can then be compared with
the available empirical data.

We used artificial neural network methods to find the coefficients α, γ, β, δ. For the
training set, we used 202 different strategies and 2031 pairs. The considered sample
consisted of the learning part (70%) and the part used for testing (30%) with the help of the
module train_test_split from the library sklearn.model_selection. To evaluate the efficiency
of learning, we used Logloss, which was very low (logloss = 0.01701). We also use another
way to verify the efficiency of learning based on the function cross_val_score from the
library sklearn.model_selection. In this case, the success of object detection is 99.89%.

The result of the comparison of pairs of strategies (trajectories of DVM) based on
their relative ranking (i.e., w � v or w ≺ v) is shown in Figure 1. As the dimensionality
of the key parameter space Mi is n = 4, we only show two examples of cross sections
in 2D and 3D spatial settings by fixing the remaining parameters. Each point in the
diagram represents a pair of strategies (more precisely, we plot the differences between the
parameters calculated as (Mi(v)−Mi(w)). In Figure 1a, we show the strategies in the plane
(M1(v)−M1(w), M2(v)−M2(w)). Two different colors of the plotted points correspond
to the two possible outcomes of ranking, i.e., either w � v or w ≺ v. The straight line
separates the points with different rankings. Figure 1b shows a 3D cross section of the
parameters (M1(v)−M1(w), M2(v)−M2(w), M3(v)−M3(w)) by fixing M4. The black
hyperplane separates the pair points with different ranking order. Note that variation of
the fourth parameter M4 shows in a similar pattern as those shown in Figure 1, so we do
not present here the corresponding diagrams for brevity. We found that the above cross
section patterns are not very sensitive to the choice of the remaining parameters unless
these parameters are taken from peripheral parts of the region of data points.

Figure 1. Revealing evolutionary fitness in an unstructured (single-stage) zooplankton DVM model by separating pair strategies with
the different ranking order. (a) Two-dimensional cross section (M1(v)−M1(w), M2(v)−M2(w)) of the four-dimensional parameter
space {Mi(v)−Mi(w)}, i = 1, 2, 3, 4. (b) Three-dimensional cross section (M1(v)−M1(w), M2(v)−M2(w), M3(v)−M3(w)) of the
four-dimensional parameter space. In both figures, each dot represents the difference Mi(v)−Mi(w) (or equivalently, Mi(w)−Mi(v))
and corresponds to the pair strategies (v, w). In both figures, dark dots denote pairs with w � v and bright dots denote pairs where
w ≺ v. The considered key parameters denote food availability (M1), predator pressure (M2), and the metabolic cost of migration
(M3). The strategies are obtained from empirical data on vertical trajectories of DVM of Calanus euxinus (adult stage) in the northeastern
Black Sea in the summer period (see Section 2 for detail).
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By separating the pairs of strategies with distinct ranking order (see Figure 1), we ob-
tained the following estimates for the parameters α, γ, δ, and β: α = 1.96, γ = 3.3 · 102,
δ = 10−2, and β = 2.5 · 10−5 in the fitness function. Then, using the provided above analyt-
ical expressions for A and B, we derive the mean depth and the amplitude of migration:
A = 80.16 m and B = 45.0 m. In Figure 2a, we plot the DVM trajectory (dashed line) along
with the empirical data which we used in this study [42].

We further explored DVM of zooplankton under a more realistic parameterization
of E, Sx, and G, in particular the one based on hyperbolic functions [19]. We consider
that E(x) = σ1(tanh(ξ1(x + C1) + 1), Sx(x) = σ2(tanh ξ2(x + C1) + 1), and G(x) =
cosh(ξ3(x + C0)) with model parameters C = 140 m, C0 = 80 m, C1 = 40 m, σ1 = 0.25,
σ2 = 0.003, ξ1 = ξ2 = 0.025 1

m , and ξ3 = 0.2 1
m . For the daily activity of visual predators

St we use the same parameterization as before, i.e., St = cos(2πt) + 1. Note that the
parameterization of the vertical distribution of food E(x) in the form of tanh is justified by
empirical observation [42], the same concerns the vertical distribution of visual predation
load S(x) [16]. The parameterization of the natural mortality G(x) is in fact an approxima-
tion of the sum of two sigmoidal functions used in [42] which has an empirical justification.
The values of parameters functions in E, S, G are taken close to those considered in [42].

Implementation of artificial neural networks for the above-mentioned parametrization
gives the following values for the coefficients in (5): α = 2.5, γ = 3.33 · 102, β = 7.5 · 10−9,
and δ = 10−5. The figures separating ranking order of pairs of strategies are similar to
those shown in Figure 1 and thus are not presented here. Using the obtained values of
α, β, γ, δ, we derived the optimal trajectory x(t) of zooplankton DVM, which is shown in
Figure 2b. Mathematically, we apply the standard methodology of the optimal control
based on the Pontryagin’s maximum principle (see in [19] for details).

Figure 2. Optimal trajectories of DVM of zooplankton predicted by an unstructured (single-stage) population model: (a) E, Sx, and G in
Mi are modeled by the simple linear and quadratic parameterization; (b) E, Sx, and G are modeled by hyperbolic functions. Blue dots
show the empirical data of vertical migration of Calanus euxinus in the northeastern Black Sea in summer (adult stage) [42]. For details
on the construction of trajectories and parameterization of E, Sx, and G see the text. The depth x in the graphs is measured in meters.

3.2. Revealing Evolutionary Fitness in a Structured Population

We can improve our prediction of the optimal DVM by considering a more realistic
situation with age structuring in the zooplankton population. It is known that different
developmental stages may show distinct patterns of migration, in particular, the earli-
est stages of marine copepods usually do not show a pronounced migration [12,16,42].
Note that herbivorous mesozooplankton such as the Calanus genus are often characterized
by six distinct developmental stages; however, for the sake of simplicity, here we combine
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some stages and consider only two categories: juveniles and adults. The modeled strategy
of DVM is now described by a vector (x1(t), x2(t)), which describes the daily change of
the depth by (trajectory) of a juvenile and an adult grazer, respectively. As previously, we
assume that fitness of each developmental stage is determined by only four main factors
(food consumption, predation losses, the metabolic cost of migration, and extra mortality
at unfavorable depths), so the resultant number of parameters now increases up to eight:

M1(v) =
∫ 1

0
E(x1(t))dt, M2(v) = −

∫ 1

0
St(t)Sx(x1(t))dt,

M3(v) = −
∫ 1

0

[
x′1(t)

]2dt, M4(v) = −
∫ 1

0
G(x1(t))dt,

M5(v) =
∫ 1

0
E(x2(t))dt, M6(v) = −

∫ 1

0
St(t)Sx(x2(t))dt,

M7(v) = −
∫ 1

0

[
x′2(t)

]2dt, M8(v) = −
∫ 1

0
G(x2(t))dt.

which have the same meaning as previously. Note that the parameters M1, M2, M3, M4 are
related to juveniles, whereas M5, M6, M7, M8 characterize the adult stage.

We construct the fitness function based on the following quadratic form (the quadratic
terms are needed to make the interconnection between the two stages, for example, via
maturation of juveniles and reproduction of adults),

F =
8

∑
i=1

λi Mi +
8

∑
i=1

8

∑
j=1

λij Mi Mj, (6)

where the parameters Mi are (as before) time discrete approximations (measured every
3 h) of the corresponding integrals (here λij = λji). The choice of F in the form (6) for a
two-stage population is confirmed by analytical results based on a system of differential
equations (see Appendix B for detail).

We further apply the same methodology to find the optimal trajectory of DVM as
in the case of an unstructured model using empirical information about the ranking of
different DVM trajectories. For the sake of simplicity, we do not list here the estimated
coefficients λi based on machine learning. We consider the same two parameterization
sets (as in the previous section) for the functions E, S, and G. The resultant graphs of the
optimal (x1(t), x2(t)) are shown in Figure 3. The dots in the figures show the empirical
data on daily zooplankton migration for adults and young stages [42].

Figure 3a shows the trajectories in the case the functions E, S and G are given by linear
and quadratic parameterization, i.e., E = σ1(x + C), Sx = σ2(x + C), and G = (x + C0)

2.
One can prove that the optimal trajectories for both juveniles and adults are given by
x1 = A1 + B1 cos 2πt, x2 = A2 + B2 cos 2πt, where A1, A2 have the meaning of the average
depths through the cycle and B1, B2 describes the amplitude of vertical migration. Although
the mathematical form of the trajectories is the same as in the unstructured population
model, for the stage-structured it is impossible to obtain the exact analytical dependence of
A1, A2, B1, B2, on parameters Mi. Implementation of machine learning methods gives the
following values for the migration amplitude and the mean depths: A2 = −49.2 m; B2 =
−46.9 m; A1 = −5.4 m; B1 = −1.568 m. Figure 3b shows the optimal trajectories of DVM
in the case E, S and G are given by hyperbolic functions. For the given values of λi, the
optimal trajectories were found using the optimal control method similar to those in [19].
For both sets of functional forms of E, S, and G, one can see that early stages of zooplankton
do not migrate whereas older stages perform a large-amplitude vertical migration.
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Figure 3. Optimal trajectories of DVM of zooplankton predicted by a two-stage model in the case where the functions E, Sx, and G
are the given by linear and quadratic functions (a) and in the case where E, Sx, and G are given by hyperbolic functions (b). In both
figures, the dots show the empirical data of vertical migration of Calanus euxinus in the northeastern Black Sea in summer from [42]:
blue and red color denote, respectively, juveniles and adults. The blue and red lines denote the optimal trajectories for juveniles and
adults, respectively, predicted by the optimization of fitness (6). For details on the construction of trajectories, see the text. The depth x
in the graphs is measured in meters.

Note that compared to the unstructured population model, the system accounting
for two or more developmental stages is substantially more complicated, which may
result in uncertainty in predictions entirely based on data. The main reason of increasing
of uncertainty and sensitivity is the presence of nonlinear terms as well as the increase
of the total number of terms in the fitness function. Therefore, it would be helpful to
have some additional way of verification of the computational results obtained based on
empirical data only. A possible verification can be a comparison of the fitness reconstructed
from empirical data and fitness obtained using a trustable analytical model of population
dynamics. A possible candidate for a trustable analytical model is a classical two-stage
population model based on two coupled differential equations for the densities of juveniles
and adults. We should stress that it is a nonlinear model as it includes the effects of
intraspecific competition (see Appendix B). For the mentioned model, it is possible to
derive the expression of evolutionary fitness analytically. By applying the theoretical
model, we assume that it can provide a reasonably good approximation of the underlying
ecological process. We also assume that the parameters r, s, p, and q in the analytical model
describing, respectively, the reproduction, the mortality rate of juveniles, the maturation
of juveniles, and the mortality rate of adults can be expressed as the following linear
combination of Mi,

p = θ1M1 + φ1M3 + ψ1M4, q = ζ1M2, (7)

r = θ2M5 + φ2M7 + ψ2M8, s = ζ2M6, (8)

where the positive coefficients θ1, φ1, ψ1, ζ1, θ2, φ2, ψ2, ζ2 have the meaning of weights. Note
that mathematically, expressions (7)–(8) can be considered as a linear change of variables.
However, their use has also some biological rationale, for example, the reproduction is
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based on the food consumption, which we subtract the cost of migration and losses due to
entering in the unfavorable zones.

We can rewrite evolutionary fitness (6) in terms of new parameters p, q, r, s

F ≈ h1 p + h2q + h3r + h4s + h11 p2 + h22q2 + h33r2 + h44s2+

+ h12 pq + h13 pr + h14 ps + h23qr + h24qs + h34rs. (9)

Substitution of (7–8) in (9) results in the following expression,

F = h1(θ1M1 + φ1M3 + ψ1M4) + h2(ζ1M2) + h3(θ2M5 + φ2M7 + ψ2M8) + h4(ζ2M6)+

+h11(θ1M1 + φ1M3 + ψ1M4)
2 + h22(ζ1M2)

2 + h33(θ2M5 + φ2M7 + ψ2M8)
2 + h44(ζ2M6)

2+

+h12(θ1M1 + φ1M3 + ψ1M4)(ζ1M2) + h34(θ2M5 + φ2M7 + ψ2M8)(ζ2M6)+

+h13(θ2M5 + φ2M7 + ψ2M8)(θ2M5 + φ2M7 + ψ2M8) + h14(θ1M1 + φ1M3 + ψ1M4)(ζ2M6)+

+ h23(ζ1M2)(θ2M5 + φ2M7 + ψ2M8) + h23(ζ1M2)(ζ2M6). (10)

We can now compare expressions (6) and (10) to extract the coefficients corresponding
to the same terms Mi and Mi Mj. Suppose we know the values of λi, then we can find
the values of θ1, φ1, ψ1, ζ1, θ2, φ2, ψ2, and ζ2 up to some multiplies, for example, by fixing
a number of coefficients hi (e.g., one can choose four parameters h1, h2, h3, h6). The other
coefficients hi and hij can be found from the comparison of (6) and (10). Then, using
expressions (7)–(8) and already determined values Mi, we can find the point (p, q, r, s)
in the 4D space. Using the analytical expression for the evolutionary fitness provided in
Appendix B, we construct the Taylor expansion in the vicinity of this point. We can compare
the coefficients in the expansion of the analytical model and those in (9). By modifying
h1, h2, h3, h6 and using integrational optimization procedure one can fit the coefficients hi
and hij in the expression of fitness (9) and Taylor expansion of the fitness in the analytical
model. The convergence of this procedure is guaranteed in the case the analytical model
adequately describes the system. The criterion of a successful verification is that all
coefficients hi and hij should be close for both approaches. An example of the comparison
between the analytical and our computational method based on recognition of pair is
provided in Table 1. The coefficients in the Taylor expansion of fitness in the analytical form
were computed in the vicinity of the point r = 0.2344; p = 0.1195; q = 0.0075; s = 0.1086.
Note that we rescaled the coefficients, so we set r = 1.

Table 1. Comparison of the coefficients of evolutionary fitness function from the analytical form and
the computational method using recognition of ranking of pairs.

Coefficient Analytical Model Recognition of Pairs

h3 1.00 1.00
h1 0.6478 0.6332
h2 −1.3472 −1.3692
h4 −1.4809 −2.4853
h33 −2.1204 −2.0251
h34 0.1417 0.1436
h23 −0.1417 −0.1589
h13 4.1073 3.8467
h44 4.2301 4.0135
h24 −4.2301 −4.7115
h14 −3.9474 −3.3190
h22 4.2301 4.8529
h12 3.9474 −3.9102
h11 −4.7742 −5.4857
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From the above table, one can see that there is a good match between the proposed
computational method of pair ranking recognition and the analytical model of population
dynamics. This provides additional support for the method.

4. Discussion

There exist two main approaches to biological fitness identification using data. The first
one is based on dynamical models of population dynamics. According to this approach, one
first needs to estimate the model parameters and then identify fitness from the underlying
dynamical system [10,16,42]. The second approach to fitness identification implies direct
evaluation of fitness based on collected empirical data [27]. In this respect, we focus
on the second approach, which allows us to reveal evolutionary fitness using empirical
data which can be partially guided (but not entirely based on) by underlying theoretical
models. The methodology is based on the recently developed framework which defines
evolutionary fitness in self-replicating systems as a function, which preserves ranking order
of strategies and provides a way to find the evolutionarily stable strategy (i.e., unbeatable
by other strategies), as the one which maximizes fitness.

The existence of fitness in the system is related to an important characteristic of
the system: its entropy. One can show that in the absence of mutations (or where the
mutation rate is low), the evolution of the system should decrease the entropy to its
minimal value. This can be seen from the following reasoning. The data set used for
learning by artificial network consists of N strategies, the presence of each strategy vi is
described by ρ(vi, t), which for simplicity can be considered as the population density.
We can always rescale to verify the condition ∑N

i=1 ρ(vi, t) = 1. In other words, we have
a probabilistic distribution of strategies. We can define the entropy for such distribution
given by H(v1, . . . , vN) = −∑N

i=1 ρ(vi, t) ln ρ(vi, t). In the case, we define a partial order
for comparison of strategies, it was shown that ρ(vi, t) → 0 for vi 6= v∗, ρ(v∗, t) → 0 for
t→ ∞. The entropy tends to its minimal value, i.e., zero. The Shanon entropy characterizes
the diversity of the system, thus the diversity of the system tends to its minimal value: a
single strategy.

A similar interpretation can be provided for the entire space V of strategies, where
instead of summation one needs to integrate ρ(v, t) over the entire space V (in this case
we need to introduce a Borel measure µ, see [22] for detail). One can assume that without
losing generality that

∫
V ρ(v, t)µ(dv) = 1 (which can always be done by rescaling), i.e.,

ρ(v, t) describes a probabilistic distribution over V with respect to measure µ. In this case,
we can define the Shannon entropy of the distribution ρ(v, t) via the following integral
H(V) = −

∫
V ρ(v, t) ln ρ(v, t)µ(dv). If the best element v∗ exists in the system, the selection

will result in H(V) → −∞ for t → −∞, in other words, the entropy tends to its smallest
value, which can be interpreted as the decrease of diversity in the system. In the study by
A. Gorban, it was shown that for an appropriate choice of measure, the decrease of entropy
over time will be a monotonic function [43].

To reconstruct fitness function, we implement computational methods of artificial
neural networks to efficiently separate pairs of strategies having the opposite ranking
order (i.e., v ≺ w or v � w). Machine learning seems to be a natural tool to extend the
ranking order of strategies based on the available empirical data to some wider ranges of
life history traits. The eventual goal is to predict the evolutionarily optimal strategy over
all the feasible ranges of life traits and behavioral patterns. We argue that the proposed
approach is rather generic and goes beyond theoretical biology, for example, it is applicable
in economics and business to predict the eventual result of the competition of produced
goods, services, etc. However, reconstructing evolutionary fitness using machine learning
has several important caveats that might make it complicated. First, we require a sample of
the time series to be sufficiently long. Second, we assume that the set of evolving strategies
is not finite but is a certain continuum (e.g., function space). Third, the main task is not to
establish ranking order by itself, but by using it to derive fitness function following this
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order with the final goal being to predicting the evolutionarily stable strategy. Finally, it is
often practically hard to validate the appropriate software.

In this paper, we apply our methodology to explore optimal strategies of regular diel
vertical migration (DVM) of herbivorous zooplankton in the ocean and lakes. The method-
ology overall demonstrated great potential in predicting the evolutionarily stable strategies
of zooplankton. In this study, we produced a set of distinct daily vertical trajectories of
zooplankton using the existing data on vertical under the assumption that the observed
trajectory is the optimal one, i.e., for which fitness is maximal. This was ideal for testing
the method since we already know the answer to the problem: which trajectory would
be the evolutionarily optimal solution. Note that for the biological systems, which are
currently experiencing processes of natural selection, the eventual evolutionary outcome is
unclear. As a possible extension the current work on zooplankton migration, it would be
interesting to consider a large number of reported empirical cases of DVM and to include
more complicated theoretical models of zooplankton population growth to better train
neural networks.

Reconstruction of evolutionary fitness from empirical data becomes more difficult
in the case where the number of parameters Mi is large or/and the expression of fitness
contains a large number of nonlinear terms. For example, this problem occurs when
considering a population with multiple developmental stages: each stage is characterized
by a distinct strategy (e.g., Figures 2 and 3). In this case, additional information about
the system would be important to ensure that the weights λ in (4) estimated via machine
learning provide a reasonable approximation. Implementation of mathematical models
of population dynamics can be of great help as they provide an analytical expression for
evolutionary fitness. A good match between the Taylor coefficients of the analytical model
and those of the fitness function derived from empirical data gives extra support to the
latter. On the other hand, using a fitness function constructed from empirical data by the
methodology proposed herein can be helpful to justify the implementation of a particular
analytical model of population dynamics. Note that apart from the structured model
given in Appendix B, one can consider more complex population models, for example,
those including delay [22] or considering continuous aging as given by integro-differential
equations [22,42]. Combining these models with available DVM data and revealing fitness
might be an interesting extension of the current research.
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Appendix A

Here, we provide details on the AI procedure implemented in this study to compare
two different strategies of zooplankton DVM. The corresponding flowchart is shown in
Figure A1.
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The meaning of the numbered boxes in the figure is the following.

1. Input box. Input two vectors v and w of vertical locations of zooplankton measured
every 3 h (determining two different strategies of DVM). The components of these
vectors are denoted by xi(v), xi(w) with i = 1, 2, ..., 8.

2. Evaluation of values of the functions E, S, G as well as the velocity x′ for both
strategies v and w at the considered discrete points xi(v), xi(w) with i = 1, 2, ..., 8.
We calculate the values of E(xi(v)), S(xi(v)), G(xi(v)), (x′i(v))

2, E(xi(w)), S(xi(w)),
G(xi(w)), (x′i(w))2.

3. Computation of the key parameters Mi via summation of components obtained
in step 2 with appropriate signs: M1 = ∑8

1 E(xi(v)); M2 = −∑8
1(x′i(v))

2; M3 =

−∑8
1 S(xi(v)); M4 = −∑8

1 G(xi(v)) (for w the corresponding expressions will be
similar).

4. Calculation of the difference between the key parameters Mi(v, w) = Mi(v)−Mi(w),
i = 1, 2, 3, 4.

5. Computation of convolution of the differences Mi(v, w) with the corresponding
weighting coefficients as αM1(v, w) + γM2(v, w) + βM3(v, w) + δM4(v, w).

6. Implementation of a sigmoid function to the convolution found in step 5. Comparison
with a fixed threshold value.

7. Output box: interpretation of the obtained result as comparison of strategies by
concluding if v � w or w � v.

Figure A1. Flowchart of the AI procedure used in the current study to reveal the ranking order of two different strategies of
zooplankton DVM.

Appendix B

Evolutionary fitness can be analytically derived for an important class of population
dynamics models accounting for age structure [18,22] given by the following equation,

z′t = L(v)z− f (t, z)z,

where z(v, t) = (z1(t, v), z2(t, v), . . . , zN(t, v)) is a vector describing the population size
(density) of each group with the strategy v (which is a vector itself), L(v) is nxn matrix
describing population growth, mortality and aging, f is a term which models self-limitation
of the population growth for high densities (we assume that f does not depend on v),
this term describes effects of the intraspecific competition within the population. The num-
ber N can be understood as the number of developmental stages. Using the above model,
the relation between ρ(v) (the indicator of the presence of v in the system) and z can be
understood as ρ(v) ≡ ∑ zi(v).

It was shown that for the above model the evolutionary fitness is given by J(v) =
λ1(v), where λ1(v) is the eigenvalue of L(v) with the largest real part.

In this paper, we consider a two-stage population model. The model equations are
given by

dz1(t, v)
dt

= r(v)z1(t, v)− p(v)z1(t, v)− q(v)z1(t, v)− f (t, z)z1(t, v)

dz2(t, v)
dt

= p(v)z1(t, v)− s(v)z2(t, v)− f (t, z)z2(t, v)
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where z1(t, v) is the population density of the juvenile (non-reproducible) stages of zoo-
plankton; z2(t, v) is the population density of adults which can reproduce. In both cases,
v denotes the corresponding inherited strategy. In the model, the coefficients r, s, p, and q
describe, respectively, the reproduction, mortality of juveniles, maturation of juveniles, and
mortality of adults. They are all functions of the strategy v. Note that J does not depend on
f ; this fact can be proved for the generic population model settings with n stages and an
arbitrary matrix L (see in [44] for details).

Previously, it was shown that fitness function for the above two-stage population
model is given by [22]

J = −s(v)− p(v)− q(v) +
√

4r(v)p(v) + (p(v) + q(v)− s(v))2.

It was also demonstrated that evolutionary fitness in the above model does not depend
on the initial condition.
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