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Human papillomavirus (HPV) is a clear etiology of cervical cancer (CC).

However, the associations between HPV infection and DNA methylation

have not been thoroughly investigated. Additionally, it remains unknown

whether HPV-related methylation signatures can identify subtypes of CC

and stratify the prognosis of CC patients. DNA methylation profiles were

obtained from The Cancer Genome Atlas to identify HPV-related methy-

lation sites. Unsupervised clustering analysis of HPV-related methylation

sites was performed to determine the different CC subtypes. CC patients

were categorized into cluster 1 (Methylation-H), cluster 2 (Methylation-

M), and cluster 3 (Methylation-L). Compared to Methylation-M and

Methylation-L, Methylation-H exhibited a significantly improved overall

survival (OS). Gene set enrichment analysis (GSEA) was conducted to

investigate the functions that correlated with different CC subtypes.

GSEA indicated that the hallmarks of tumors, including KRAS signaling,

TNFa signaling via NF-jB, inflammatory response, epithelial–mesenchy-

mal transition, and interferon-gamma response, were enriched in Methyla-

tion-M and Methylation-L. Based on mutation and copy number

variation analyses, we found that aberrant mutations, amplifications, and

deletions among the MYC, Notch, PI3K-AKT, and RTK-RAS pathways

were most frequently detected in Methylation-H. Additionally, mutations,

amplifications, and deletions within the Hippo, PI3K-AKT, and TGF-b
pathways were presented in Methylation-M. Genes within the cell cycle,

Notch, and Hippo pathways possessed aberrant mutations, amplifications,

and deletions in Methylation-L. Moreover, the analysis of tumor

microenvironments revealed that Methylation-H was characterized by a

relatively low degree of immune cell infiltration. Finally, a prognostic sig-

nature based on six HPV-related methylation sites was developed and val-

idated. Our study revealed that CC patients could be classified into three

heterogeneous clusters based on HPV-related methylation signatures.
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Additionally, we derived a prognostic signature using six HPV-related

methylation sites that stratified the OS of patients with CC into high-

and low-risk groups.

1. Introduction

Cervical cancer (CC) is a major public health concern

and is the fourth most frequently diagnosed cancer

and the fourth leading cause of cancer-related death in

women worldwide (Bray et al., 2018). A persistent

infection with oncogenic human papillomavirus (HPV)

can lead to cervical precancerous lesions that may ulti-

mately develop into cancer (Crosbie et al., 2013).

There are more than 100 identified HPV genotypes,

and types 16 and 18 are the most common in CC

(Munoz et al., 2006). HPV plays a significant role in

the pathogenesis of CC; it affects apoptosis, cell cycle,

cell adhesion, and DNA repair mechanisms within the

host cell and can also activate immune responses

(Coussens and Werb, 2002; Whiteside et al., 2008).

The integration of HPV virus into the host genome

often occurs within the transcribed genomic region,

and this mechanism is utilized by the virus to increase

the expression of certain viral products, including the

E6 and E7 viral oncogenes (Schmitz et al., 2012; Zie-

gert et al., 2003). Additionally, the integration of HPV

virus is strongly associated with the development of

CC (Li et al., 2008).

Aberrant DNA methylation is an epigenetic hall-

mark of tumors and leads to tumor development and

progression by silencing tumor suppressor genes

(TSGs) and activating oncogenes (Das and Singal,

2004; Egger et al., 2004). The characteristics of DNA

methylation make epigenetic changes ideal and clini-

cally applicable biomarkers for diagnosis or use as

prognostic indicators in cancer (Keeley et al., 2013). A

growing number of studies have shown that aberrant

DNA methylation plays a significant role in tumor

progression, and DNA methylation can serve as a bio-

marker for predicting the prognosis of patients with a

variety of tumors (Guo et al., 2004; Roh et al., 2016;

Zhou et al., 2014). In CC, aberrant DNA methylation

can occur on the integrated viral DNA, but it can also

occur within the host cell genome (Yanatatsaneejit

et al., 2011). HPV infection has been observed to be

correlated with the regulation of DNA methylation in

CC. Both E6 and E7 oncoproteins encoded by HPV

type 16 affect the DNA methyltransferase DNMT1

(Au Yeung et al., 2010; Burgers et al., 2007). The E7

protein directly combines with DNMT1 and stimulates

its DNA methyltransferase activity (Burgers et al.,

2007). On the other hand, E6 protein has been

reported to upregulate the DNMT1 through suppres-

sion of p53 (Au Yeung et al., 2010). The upregulation

of DNA methyltransferases by HPV oncoproteins can

increase methylation of the host cell genome and

repress transcription of TSGs. HPV can drive progres-

sion of CC through the aberrant DNA methylation in

plenty of TSGs, such as E-cadherin (Laurson et al.,

2010), p53 (Moody and Laimins, 2010), and RB1

(Yim and Park, 2005).

Many recent studies examining CC investigated only

aberrant DNA methylation of one or a few genes

using relatively small sample cohorts. These studies

also ignored the association of HPV infection with

DNA methylation. There are variations in the DNA

methylation profiles, suggesting that novel methylation

signatures are required for diagnosis and predicting

outcomes of CC. Therefore, this study was conducted

to determine the epigenetic alterations involved in CC

progression and HPV infection. The DNA methylation

profiles of CC samples from The Cancer Genome

Atlas (TCGA) were analyzed. HPV-related methyla-

tion sites were obtained in the present study. We then

performed unsupervised hierarchical clustering of

HPV-related methylation sites to determine the sub-

groups of CC patients. The gene expression RNA-se-

quencing, mutation, and copy number variation

(CNV) profiles in CC patients within the different

methylation subgroups were investigated. Finally, a

new signature possessing predictive power based on

HPV-related methylation sites was developed and vali-

dated to stratify the prognosis of CC.

2. Materials and Methods

2.1. Data collection and processing

The Cancer Genome Atlas DNA methylation data

from 309 CC samples and three adjacent samples

based on the Illumina HumanMethylation 450 (450K)

platform (Illumina Inc., San Diego, CA, USA) were

downloaded from UCSC xena (https://xena.ucsc.edu/).

The genomic annotation of the CpG sites was based

on GRCh38. The methylation levels of the CpG sites
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were estimated as beta-values and calculated as M/

(M + U), where M is the signal from methylated

beads, and U is the signal from un-methylated beads

at the targeted CpG site (Bibikova et al., 2011). For

each CpG site, their beta-values ranged from 0 (no

DNA methylation) to 1 (100% DNA methylation)

(Bibikova et al., 2011).

Clinical information for 307 CC patients was

obtained from UCSC xena. A total of 13 CC patients

were then excluded because their survival time was

zero. We extracted the information regarding HPV

infection status from Table S2 of the study published

by TCGA (Cancer Genome Atlas Research Network,

2017).

The RNA-sequencing gene expression, somatic

mutation, and CNV profiles for 306, 289, and 297

patients with CC, respectively, were obtained from

TCGA data portal (https://portal.gdc.cancer.gov/).

Somatic mutation data, which stored in the form of

Mutation Annotation Format, were analyzed and

summarized using maftools (Mayakonda et al., 2018).

Significant amplification or deletion alterations were

determined using GISTIC 2.0 based on a robust algo-

rithm to detect recurrent somatic CNVs by evaluating

the frequency and amplitude of corresponding events

(Mermel et al., 2011).

2.2. Identification and screening of HPV-related

methylation sites

ChAMP was used to perform quality control, stan-

dardization, and calculation of methylation sites and

regions (Tian et al., 2017). By using the ChAMP pack-

age (parameters: adjusted P-value < 0.05, |deltabeta|
> 0.2), differentially methylated probes (DMPs)

between CC and adjacent tissue were identified. DMPs

between HPV-positive and HPV-negative CC tissue

were also identified based on the same criterion. The

intersection between these two groups of DMPs was

identified as HPV-related methylation sites in the pre-

sent study. Probes exhibiting deltabeta > 0.2 and

adjusted P-value < 0.05 were characterized as hyper-

methylated, and those exhibiting deltabeta < �0.2 and

adjusted P-value < 0.05 were characterized as

hypomethylated.

2.3. Unsupervised hierarchical cluster analysis

To identify subtypes of CC patients, we performed

unsupervised hierarchical clustering based on DNA

methylation data. Clustering was performed using the

beta-values of the HPV-related methylation sites with

prognostic value.

2.4. Development and validation of the HPV-

related methylation signature

For further analyses, 294 patients possessing survival

data were screened to investigate the relationship

between DNA methylation levels and OS in CC. These

294 patients with CC were divided randomly and

equally into two datasets (a training dataset and a test-

ing dataset). The training dataset was used for identify-

ing and establishing a prognostic signature, and the

testing dataset was used for validating its predictive

effectiveness (Yang et al., 2019). First, a univariate Cox

regression analysis was performed to determine HPV-re-

lated methylation sites with prognostic value in the

training dataset. If the P-value was < 0.01, the corre-

sponding methylated sites were considered as candidate

methylated sites. Through preliminary screening, there

may be excess candidate methylated sites. Therefore,

least absolute shrinkage and selection operator

(LASSO)-penalized Cox proportional hazards regres-

sion analysis was conducted to further reduce candidate

methylated sites by using the R package ‘glmnet’ (Fried-

man et al., 2010; Wang et al., 2019b); LASSO is a popu-

lar algorithm that adopts explicable prediction rules and

can solve the collinearity problem by dimension reduc-

tion (Gui and Li, 2005). Third, a stepwise multivariate

Cox regression analysis was performed to further screen

the methylated sites. An optimal predictive model was

selected, similar to that used for the lowest Akaike

information criterions value. The HPV-related methyla-

tion sites in the model were utilized to establish the risk

signature. The risk score was calculated using the fol-

lowing formula: Risk score = beta-value of methylated

site 1 9 coefficient + beta-value of methylated site

2 9 coefficient + . . . beta-value of methylated site

n 9 coefficient. The risk score for each patient in the

training dataset, testing dataset, and entire dataset was

calculated based on this formula. Based on the median

cutoff of the risk score, patients with CC were grouped

into high- and low-risk groups. Survival analysis was

performed to evaluate the OS difference between high-

and low-risk groups that were stratified according to the

signature using the ‘survival’ R package (Holleczek and

Brenner, 2013). To validate the prognostic capability of

this signature, we calculated area under the curve

(AUC) using the ‘timeROC’ R package (Lorent et al.,

2014). The high AUC suggested accurate predictive

capability of the signature (Lorent et al., 2014).

2.5. Gene set enrichment analysis (GSEA)

To explore differences in potential biological processes

in CC patients from different clusters, GSEA was
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performed using the hallmark gene sets (h.all.v7.0.sym-

bols), which were obtained from the Molecular Signa-

tures Database (https://www.gsea-msigdb.org/gsea/

msigdb/index.jsp). The hallmark gene sets display

coordinate expression and represent well-defined bio-

logical processes, providing a clearer biological space

for GSEA (Halvorsen et al., 2019; Liberzon et al.,

2015). The ‘fgsea’ R package was used, and 10 000

permutations were performed for each parameter ana-

lyzed to calculate the enrichment scores based on the

threshold of adjusted P-value < 0.05 (Sergushichev,

2016).

2.6. Single sample gene set enrichment analysis

(ssGSEA)

The immune infiltration levels of 24 different immune

cell types were estimated by performing ssGSEA in the

R package ‘gsva’ (http://www.bioconductor.org/packa

ges/release/bioc/html/GSVA.html). The marker gene

set for 24 types of immune cells was obtained from a

previous study (Bindea et al., 2013). The ssGSEA algo-

rithm transforms marker gene expression patterns into

quantities of immune cell populations in individual

tumor samples (Rooney et al., 2015). This algorithm

could identify 24 types of immune cells, including

innate immune cells [natural killer (NK) cells, NK

CD56dim cells, NK CD56bright cells, dendritic cells

(DCs), activated DCs (aDCs), plasmacytoid DCs

(pDCs), immature DCs (iDCs), neutrophils, mast cells,

eosinophils, and macrophages] and adaptive immune

cells [B cells, CD8+ T cells, cytotoxic cells, T cells, T

helper cells, central memory T cells (Tcm cells), effec-

tor memory T cells (Tem cells), follicular helper T cells

(Tfh cells), gamma delta T cells (Tgd cells), type 1T

helper cells (Th1 cells), type 2T helper cells, type 17T

helper cells, and regulatory T cells (Treg cells)] (Zhang

et al., 2018).

2.7. Tumor microenvironments analysis

Estimation of STromal and Immune cells in MAlig-

nant Tumor tissues using Expression data (ESTI-

MATE) algorithm was used to calculate immune and

stromal scores to predict the infiltration of tumor

microenvironment cells, by analyzing specific gene

expression signature of immune and stromal cells

(Yoshihara et al., 2013).

2.8. Statistical analyses

All statistical analyses were conducted by using GRAPH-

PAD PRISM 7(GraphPad Software Inc., San Diego, CA,

USA) and R software (version 3.5.2, R Foundation for

Statistical Computing, Vienna, Austria) unless other-

wise stated. Univariate and multivariate Cox regression

analyses were conducted to investigate the prognostic

value of HPV-related methylation signature and some

clinicopathological variables. Volcano plots were cre-

ated using R package ‘ggplot2’. Heatmaps were created

using R package ‘pheatmap’. Violin plots were created

using R package ‘vioplot’. Forest plots were created

using R package ‘forestplot’. All statistical results with a

P-value < 0.05 were considered significant.

3. RESULTS

3.1. Identification and screening of HPV-related

methylation sites

After removing a number of undetected methylated

probes, a total of 312 samples (309 CC and three adja-

cent normal samples) and 372 137 DNA methylated

sites were obtained from TCGA. Additionally, a total

of 178 samples (169 HPV-positive and nine HPV-nega-

tive CC samples) and 378 494 DNA methylated sites

were obtained. By performing ChAMP with the

adjusted P-value < 0.05 and |deltabeta| > 0.2, we iden-

tified 35 678 DMPs between tumor and normal tissue

(Fig. 1A). A total of 48 190 DMPs were screened

between HPV-positive and HPV-negative CC tissues

(Fig. 1B). By intersecting these two groups of DMPs,

we acquired 9249 HPV-related methylation sites

(Fig. S1). Then, 294 CC patients with survival data

containing information on 9249 HPV-related methyla-

tion sites were included in further analysis. These 294

patients were divided randomly and equally into a

training dataset and a testing dataset. The clinico-

pathological characteristics of patients are summarized

in Table S1. There were no statistically significant dif-

ferences between these two groups.

3.2. Identification of three methylation clusters

of CC exhibiting distinct survival outcomes

Univariate Cox regression analysis was conducted to

screen DNA methylation sites that related to overall

survival (OS) by using the HPV-related methylation

sites as variables in the training dataset. A total of 191

HPV-related methylation sites that were related to OS

in the training dataset (P < 0.05) were picked out for

unsupervised clustering analysis. Consequently, 294

patients with CC were categorized into three clusters

(Fig. 2A). The patients in cluster 1 (Methylation-H)

exhibited frequent hypermethylation among the 191
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Fig. 1. DMP analyses in cases and controls. (A) DMP analysis between CC and normal tissue. (B) DMP analysis between HPV-positive and

HPV-negative CC tissues. Volcano plots of DMPs and position of methylation probes in relation to the gene (IGR, intergenic region; TSS,

transcription start site; UTR) are displayed. The percentages of hypomethylated and hypermethylated DMPs are displayed on top. The

proportions of different genomic features are shown on the right.
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methylation sites. The methylation level of cluster 3

(Methylation-L) was the lowest, and the methylation

level of cluster 2 (Methylation-M) was intermediate.

Compared to Methylation-M or Methylation-L,

Methylation-H exhibited a significantly higher OS

(P = 0.009, Fig. 2B). To check for cluster stability,

clustering was compared for 9249 HPV-related methy-

lation sites (Fig. S2). The formation of clusters was

robust for the 9249 HPV-related methylation sites

selected for calculation. The results demonstrated the

presence of three different methylation clusters. Princi-

pal component analysis (PCA), which was further

employed to compare the transcriptional profiles

among the three clusters, displayed a clear distinction

among these clusters. In detail, PCA showed that the

samples from the three clusters were well separated

from each other (Fig. 2C).

3.3. Biological processes and mechanisms

related to different clusters of CC

Gene set enrichment analysis was performed to investi-

gate the underlying biological processes and mecha-

nisms related to different clusters of CC. The results

revealed that the hallmarks of tumors, including KRAS

signaling [normalized enrichment score (NES) = 1.44,

adjusted P-value < 0.05], coagulation (NES = 1.57,

adjusted P-value < 0.05), TNFa signaling via NF-jB
(NES = 1.52, adjusted P-value < 0.05), inflammatory

response (NES = 1.60, adjusted P-value < 0.01), and

epithelial–mesenchymal transition (NES = 1.84,

adjusted P-value < 0.01), were significantly and posi-

tively associated with Methylation-L (Fig. 3A). E2F

targets (NES = �1.65, adjusted P-value < 0.01) were

significantly and negatively associated with Methyla-

tion-L compared to Methylation-H (Fig. 3A). Addi-

tionally, interferon-gamma response (NES = 1.75,

adjusted P-value < 0.05) and TNFa signaling via NF-

jB (NES = 1.66, adjusted P-value < 0.05) were signifi-

cantly and positively associated with Methylation-M

compared to Methylation-H (Fig. 3B).

3.4. Analysis of mutations and CNVs in CC

patients within the three clusters

We further investigated the genomic alterations that

could be correlated with different survival outcomes in

the three clusters, with an aim to identify potential

drug targets to reverse the poor prognosis of Methyla-

tion-M and Methylation-L.

The mutation profiles in CC patients within the

three methylation clusters were investigated. Among

the 294 CC patients, 276 possessed available somatic

mutation data. The top 30 most frequently mutated

genes in the three clusters are presented in Fig. 4A–C.
The mutation frequencies of 10 common oncogenic

pathways among the three clusters were calculated

(Figs 4D and S3–S8). Mutations among the MYC,

Notch, PI3K-AKT, and RTK-RAS signaling pathways

were most frequently detected in Methylation-H

(Figs 4D and S3–S8). The cell cycle, Hippo, P53, and

Wnt signaling pathways exhibited higher mutation fre-

quencies in Methylation-L (Figs 4D and S3–S8). The
mutation frequencies of the Hippo and TGF-b path-

ways were high in Methylation-M (Figs 4D and S3–
S8). Additionally, differences in somatic CNV among

the CC patients in the three clusters were evaluated

using GISTIC 2.0. Among the 294 CC patients, 282

patients possessed CNV data. CNV analysis demon-

strated that amplifications of 8q24.21 [MYC (onco-

genic gene in MYC pathway)], 9p24.1 [JAK2

(oncogenic gene in RTK-RAS pathway)], 17q12

[ERBB2 (oncogenic gene in RTK-RAS pathway)], and

17q25.1 [RPS6KB1 (oncogenic gene in PI3K-AKT

pathway)] as well as deletions of 11q25 [CBL (TSG in

RTK-RAS pathway)], 10q23.31 [PTEN (TSG in PI3K-

AKT pathway)], 4q34.1 [FBXW7 (TSG in Notch path-

way)], and 15q15.1 [MGA (TSG in MYC pathway)]

were identified in Methylation-H (Figs 5A,B and S9).

Moreover, amplifications of 11q22.1 [YAP1 (oncogenic

gene in Hippo pathway)], 7p11.2 [EGFR (oncogenic

gene in PI3K-AKT pathway)], as well as deletions of

4q35.2 [FAT1 (TSG in Hippo pathway)], 10q23.31

[PTEN (TSG in PI3K-AKT pathway)], 17q25.3

[CSNK1D (TSG in Hippo pathway)], and 3p24.1

[TGFBR2 (TSG in TGF-b pathway)] were identified in

Methylation-M (Figs 5C,D and S9). Finally, amplifica-

tions of 11q22.1 [YAP1 (oncogenic gene in Hippo

pathway)] and 19q12 [CCNE1 (oncogenic gene in cell

cycle pathway)] and deletions of 13q14.2 [RB1 (TSG

in cell cycle pathway)] and 1p36.11 [HES2/3/4/5 (TSGs

in Notch pathway)] were identified in Methylation-L

(Figs 5E,F and S9).

3.5. Construction of the HPV-related methylation

signature

Univariate Cox regression analysis identified 20 HPV-re-

lated methylation sites with prognostic significance in the

training dataset (P < 0.01, Fig. S10a). After LASSO

regression analysis, 11 of the 20 HPV-related methylation

sites were selected (Fig. S10b). Subsequently, a stepwise

multivariate Cox regression analysis was performed for
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these 11 methylation sites. Finally, six methylation sites

(cg23170347, cg16376000, cg13759702, cg01727408,

cg05008070, and cg07227049) were identified to construct

the optimal prognostic model (Fig. S10c). The risk score

formula based on the DNAmethylation levels and coeffi-

cients of these six HPV-related methylation sites was cal-

culated as follows: Risk score = 1.9939 9 beta-value of

cg13759702 � 1.6941 9 beta-value of cg23170347 �
1.5290 9 beta-value of cg16376000 � 3.9910 9 beta-

value of cg01727408 � 2.4146 9 beta-value of

cg05008070 � 4.8805 9 beta-value of cg07227049. The

DNA methylation level of cg13759702 was correlated

with high risk, while the DNA methylation levels of

cg23170347, cg16376000, cg01727408, cg05008070, and

cg07227049 were correlated with low risk. The genes

corresponding to five methylation sites (cg05008070,

cg07227049, cg13759702, cg16376000, and cg23170347)

were Disheveled Binding Antagonist of Beta Catenin 1

(DACT1), VRK Serine/Threonine Kinase 2 (VRK2),

Melanotransferrin (MELTF), Fibroblast Growth Factor

12 (FGF12), and Prickle Planar Cell Polarity Protein 2

(PRICKLE2); all of these genes were protein coding

genes. The list of the six HPV-related methylation sites,

their chromosomal locations, P-values, and the coeffi-

cients obtained in multivariate Cox regression analysis

are provided in Table 1. Pearson’s correlation test was

conducted to measure the correlations between the

expression of the above five protein coding genes and the

methylation levels of the corresponding methylation sites

(Fig. S11). Significant and negative correlations were

observed between the expression of the five genes and the

methylation level of corresponding methylation sites

(P < 0.001, R < �0.10, Fig. S11).

3.6. Evaluating the predictive capability of the

HPV-related methylation signature

Kaplan–Meier survival analyses were conducted in the

training and testing datasets to evaluate the predictive

capability of our HPV-related methylation signature.

Fig. 3. Summary of GSEA results with hallmark gene sets in Methylation-L (A) or Methylation-M (B), compared to Methylation-H. Six

positively enriched hallmarks and one negatively enriched hallmark with adjusted P-value < 0.05 were identified in Methylation-L. Three

positively enriched hallmarks and one negatively enriched hallmark with adjusted P-value < 0.05 were identified in Methylation-M.

Fig. 2. Identification of three methylation clusters of CC with distinct survival outcomes. (A) Heatmap of three methylation clusters

generated by performing unsupervised hierarchical clustering. (B) Kaplan–Meier curves of OS of three methylation clusters. (C) PCA of the

total RNA expression profiles in the TGGA CC dataset.
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In the training dataset, CC patients were stratified into

either high-risk (n = 74) or low-risk (n = 74) group.

These two groups possessed distinct survival outcomes

(P < 0.0001, Fig. 6A). Low-risk patients exhibited bet-

ter OS compared to high-risk patients. The 5-year

AUC for the six-DNA methylation signature was

0.899; the 3-year AUC was 0.888 (Fig. 6B). A similar

result was observed in the testing dataset and the

entire dataset. The risk score was calculated for

patients in the testing dataset and the entire dataset,

and then, each patient was marked as high risk or low

risk, as previously described (Yang et al., 2019). There

were 73 high-risk patients and 73 low-risk patients

within the testing dataset. The survival for low-risk

patients was improved than that for the high-risk

patients (Fig. 6C, P < 0.0001). The AUC at 5 years

was 0.74, and the 3-year AUC was 0.728 in the testing

dataset (Fig. 6D). There were 147 high-risk patients

and 147 low-risk patients in the entire dataset. The

low-risk patients exhibited longer median survival than

the high-risk patients (2.50 vs. 1.48 years, P < 0.0001,

Fig. 6E). In the entire dataset, the 5-year AUC was

0.813, and the 3-year AUC was 0.807 (Fig. 6F). The

distribution of risk score, survival status, and heatmap

of the six methylation sites for patients with CC in the

training, testing, and entire datasets are displayed in

Fig. 4. Comparison of mutations among the three methylation clusters of CC. The top 30 most frequently mutated genes in the CC patients

of Methylation-H (A), Methylation-M (B), and Methylation-L cluster (C). (D) The mutation frequencies of ten common oncogenic pathways

among three clusters.
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Fig. 5. GISTIC 2.0 amplifications

and deletions in Methylation-H (A,

B), Methylation-M (C, D), and

Methylation-L (E, F) cluster.

Chromosomal locations of peaks of

significantly recurring focal

amplifications (red) and deletions

(blue) are displayed. The q-values,

representing the statistical

significance, are displayed along

the bottom. Regions with q-values

< 0.25 (green lines) were

considered significantly altered. The

locations of the peak regions of

maximal copy number change and

the known cancer-related genes

within those peaks are indicated to

the right of each panel.
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Figs S12-S14. Furthermore, the DNA methylation

levels of the six methylation sites in the high- and low-

risk patients in the entire dataset were measured. We

found that high-risk patients possessed significantly

higher methylation levels for cg13759702 and signifi-

cantly lower methylation levels for the other four

methylation sites, with the exception of cg01727408, in

the entire dataset (Fig. S15, P < 0.001).

3.7. Independence of the HPV-related

methylation signature in the OS prediction from

clinicopathological factors

Univariate (Fig. S16a) and multivariate Cox regression

analyses (Fig. S16b) were carried out to explore if the

HPV-related methylation signature was an independent

predictive indicator for the OS of CC patients. The

results were adjusted for certain clinicopathological

variables including age, grade, pathologic stage, clini-

cal stage, and tumor status. The sample size was small

after we excluded samples with unknown M stage

(n = 169, >50%) and unknown HPV status (n = 118,

40.14%); therefore, M stage and HPV status were not

included in the univariate and multivariable models.

As a result, our signature could serve as an indepen-

dent prognostic indicator within the entire dataset in

the multivariate analysis (HR (95% CI) = 1.096(1.037–
1.159), P = 0.001, Fig. S16b). To assess the indepen-

dence of this HPV-related methylation signature, CC

patients were reclassified according to different

clinicopathological characteristics (Table 2). The

results revealed that the signature was independent of

age, clinical stage, histologic grade, T stage, lymph

node metastasis, and tumor status; the signature was

effective to stratify the prognosis of patients with CC.

3.8. Immune landscape of cervical cancer

patients within different subgroups

To compare the differences in the proportions of 24

immune cells between CC low- and high-risk patients

and to explore the heterogeneity of immune infiltration

in CC of the three methylation clusters, ssGSEA was

conducted to estimate the relative proportion of the 24

immune cells in individual CC patient. The heatmap

revealed the tumor-infiltrating immune-cell landscape

of 294 CC patients from TCGA (Fig. 7).

Among the 13 adaptive immune cell types, the low-

risk group possessed significantly high proportions of

B cells, CD8 T cells, cytotoxic cells, T cells, T helper

cells, Tcm cells, Tfh cells, Th1 cells, and Treg cells

(P < 0.05, Fig. S17a) compared to those of the high-

risk group. Among the 11 innate immune cell types,

the low-risk group possessed significantly higher pro-

portions of DCs, aDCs, pDCs, iDCs, and neutrophils

compared to those of the high-risk group (P < 0.05,

Fig. S17b). Additionally, Methylation-H was charac-

terized by relatively low infiltration of adaptive

immune cells and innate immune cells, including CD8

T cells, cytotoxic cells, T cells, Tem cells, Tfh cells,

Table 1. Six HPV-related methylation sites in the signature. NA, not available.

Probe ID Chromosomal location

Gene

symbol Gene type CGI coordinate

Feature

type Coefficienta P valuea

cg01727408 chr16: 85575465–85575466 NA NA chr16:85586333-

85586656

NA �3.9910 0.0007

cg05008070 chr14: 58639944–58639945 DACT1 Protein

coding

chr14:58637581-

58638859

S_Shore �2.4146 0.0599

cg07227049 chr2: 58107873–58107874 VRK2 Protein

coding

chr2:58046507-

58047287

NA �4.8805 < 0.0001

cg13759702 chr3: 197001599–197001600 MELTF Protein

coding

chr3:197002087-

197004007

N_Shore 1.9939 0.0349

cg16376000 chr3: 192409541–192409542 FGF12 Protein

coding

chr3:192408032-

192410205

Island �1.5290 0.0241

cg23170347 chr3: 64268119–64268120 PRICKLE2 Protein

coding

chr3:64267857-

64268143

Island �1.6941 0.0958

a

In multivariate Cox regression analysis.

Fig. 6. The prognostic role of the HPV-related methylation signature in the training, testing, and entire datasets. Kaplan–Meier OS curves for

patients assigned to high- and low-risk groups based on the risk score in the training (A), testing (C), and entire datasets (E) are shown.

Time-dependent ROC curves in the training (B), testing (D), and entire datasets (F) are displayed.
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Tgd cells, Th1 cells, Treg cells, DCs, aDCs, iDCs, neu-

trophils, and macrophages (P < 0.05, Fig. S18). Con-

sistent with this, the analysis of tumor

microenvironments demonstrated that Methylation-H

exhibited a lower ESTIMATE score, immune score,

stromal score, and a higher tumor purity compared to

the other two clusters (P < 0.05, Fig. S19). These

results indicated that compared to the other two clus-

ters, Methylation-H possessed a different immune phe-

notype that was featured by less immune infiltration

and lower immune activation.

4. Discussion

Accurate subtype identification, prognostic stratifica-

tion, and characterization of the underlying mecha-

nism are crucial for our understanding of cancers and

for the guidance of treatment management and person-

alized therapies. DNA methylation profiling is a recent

method that has been used to improve tumor classifi-

cation, and this technique has already led to re-defini-

tions and sub-classifications of various tumors such as

glioblastoma (Noushmehr et al., 2010), head and neck

squamous carcinoma (Brennan et al., 2017), adreno-

cortical carcinoma (Barreau et al., 2013), and hepato-

cellular carcinoma (Li et al., 2019). Furthermore,

several prognostic signatures based on DNA methyla-

tion sites have been reported to stratify the prognosis

of various cancers such as cutaneous melanoma (Guo

et al., 2019), ovarian cancer (Guo et al., 2018), lung

adenocarcinoma (Wang et al., 2019a), and breast can-

cer (Tao et al., 2019). These studies support that DNA

methylation sites can serve as promising biomarkers

for subtype identification and prognostic stratification

in cancer. HPV infection is a key oncogenic driver in

CC. HPV infection causes epigenetic reprogramming

of the host cell during malignant transformation, sub-

sequently resulting in distinct HPV-related epigenetic

phenotypes. Therefore, this study was intended to

determine the epigenetic alterations involved in CC

progression and HPV infection. Additionally, HPV-re-

lated DNA methylation signatures were explored to

identify the different CC subtypes in patients and to

stratify the prognosis of CC.

4.1. Subtype identification

Based on the HPV-related methylation sites, CC

patients were classified into three heterogeneous clus-

ters. Compared to Methylation-M and Methylation-L,

Methylation-H exhibited a significantly improved OS.

The hallmarks of tumors, including KRAS signaling,

TNFa signaling via NF-jB, inflammatory response,

epithelial–mesenchymal transition, and interferon-

gamma response, were enriched in Methylation-M and

Methylation-L. A great deal of research work has sug-

gested that these biological processes or pathways play

a significant role in tumorigenesis and the progression

of CC (Kang et al., 2007; Kloth et al., 2005; Lages

et al., 2011; Lee et al., 2008). We reasoned that the

HPV-related methylation signature might take an

important part in CC via the above biological processes

or pathways. Based on mutation and CNV analyses,

we found that mutations among the MYC, Notch,

PI3K-AKT, and RTK-RAS pathways were most fre-

quently detected in Methylation-H. Concurrently, the

amplifications of oncogenes, such as JAK2 and ERBB2

in the RTK-RAS pathway and RPS6KB1 in the PI3K-

AKT pathway, and the deletions of TSGs, such as

CBL in the RTK-RAS pathway and PTEN in the

PI3K-AKT pathway, were identified in Methylation-H.

Therefore, we speculated that hyper-activated RTK-

RAS or PI3K-AKT pathways in tumor may take an

important part in Methylation-H. The mutation fre-

quencies of the Hippo and TGF-b pathways were high

in Methylation-M. The amplifications of oncogenic

genes, such as YAP1 within the Hippo pathway and

EGFR within the PI3K-AKT pathway, and the dele-

tions of TSGs, such as FAT1 and CSNK1D within the

Hippo pathway, TGFBR2 within the TGF-b pathway,

and PTEN within the PI3K-AKT pathway, were iden-

tified in Methylation-M. Moreover, the cell cycle and

Hippo signaling pathways exhibited higher mutation

frequencies in Methylation-L. The amplifications of

oncogenic genes, such as YAP1 within the Hippo

Table 2. Results of Kaplan–Meier and ROC analyses based on

different subgroups. ROC, receiver operating characteristic.

Variables Group

Sample

size

Kaplan–

Meier, P

value

3-year

AUC

5-year

AUC

Age(years) ≤ 50 182 < 0.0001 0.815 0.778

> 50 112 < 0.0001 0.806 0.859

Clinical stage I/II 225 < 0.0001 0.790 0.814

III/IV 63 0.0007 0.851 0.831

Histologic

grade

G1/2 148 < 0.0001 0.785 0.823

G3/4 119 0.0023 0.838 0.824

T stage T1 169 0.0012 0.800 0.760

T2/3/4 104 < 0.0001 0.845 0.936

Lymph node

metastasis

No 164 0.0002 0.814 0.773

Yes 64 0.0180 0.795 0.789

Tumor status Tumor

free

199 0.0340 0.838 0.789

With

tumor

80 0.0004 0.776 0.903
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pathway and CCNE1 within the cell cycle pathway,

and the deletions of TSGs, such as RB1 within the cell

cycle pathway, were identified in Methylation-L. There-

fore, we speculated that the Hippo, TGF-b, and cell

cycle pathways might be responsible for the poor out-

come observed in Methylation-M and Methylation-L.

Overall, our analyses revealed that certain biological

processes, pathways, and genomic alterations may

result in a worse OS in Methylation-L and Methyla-

tion-M. Future studies are required to elucidate the

role of these biological processes, pathways, and geno-

mic alterations in HPV-related epigenetic phenotypes

that specifically drive cancer development.

4.2. Risk stratification

We constructed and verified a prognostic risk signature

using six HPV-related methylation sites (cg01727408,

cg05008070, cg07227049, cg13759702, cg16376000, and

cg23170347) that stratified CC patients into high- and

low-risk groups. The genes corresponding to the five

methylation sites (cg05008070, cg07227049, cg13759702,

cg16376000, and cg23170347) were DACT1, VRK2,

MELTF, FGF12, and PRICKLE2, which were all pro-

tein coding genes. DACT1, VRK2, MELTF, and FGF12

have been implicated in cancers other than CC (Dmi-

triev et al., 2015; Fernandez et al., 2010; Guo et al.,

2017), and PRICKLE2 has been reported to correlate

with CC (Senchenko et al., 2013). Future studies will be

required to elucidate the functional impact of aberrant

methylation of these five genes in CC development. The

corresponding encoded proteins affected by aberrant

methylation may also represent promising drug targets

for cancer therapy.

Our HPV-related methylation signature could still

act as an independent prognostic predictor, after

Fig. 7. Immune landscape of CC patients within different subgroups. The heatmap showed single sample GSEA scores from 24 immune

cell types of 294 patients from TCGA. HPV status, clinical stage, tumor status, histologic grade, T/N/M stage, histological type, methylation

cluster, and risk were annotated in the lower panel. Hierarchical clustering was performed with Euclidean distance and Ward linkage. Two

distinct immune infiltration clusters, here termed high infiltration and low infiltration, were defined.
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adjusting for certain clinicopathological variables. Sub-

group analyses further highlighted that the signature

possessed strong and independent predictive power

when CC patients were regrouped according to differ-

ent clinicopathological characteristics. Additionally,

this signature possessed higher predictive performance

for patients in advanced T and clinical stages (3-year

AUCs were 0.845 and 0.851, respectively). Based on

this, combining this signature with other clinical fac-

tors could serve as a promising tool for the prognosis

of CC patients.

Finally, GSEA further revealed the connection

between the signature and immune systems. Therefore,

ssGSEA was conducted to estimate the relative pro-

portion of the 24 immune cells in individual patient

with CC. We aimed to compare the differences in the

proportions of 24 immune cells between low-risk and

high-risk patients with CC and to explore the hetero-

geneity of immune infiltration in CC within the three

methylation clusters. Consequently, the low-risk group

possessed a significantly higher proportion of immune

cells that were involved in adaptive and innate immune

responses compared to that of the high-risk group.

Contrary to expectations, Methylation-H was charac-

terized by relatively low infiltration of adaptive

immune cells and innate immune cells.

4.3. Strength and limitations

To our knowledge, this is the first study to explore

HPV-related DNA methylation signatures to identify

the different subtypes of CC and to stratify the prog-

nosis of CC. The molecular differences between the

identified subtypes may allow these subtypes to be tar-

geted separately under specific therapeutic approaches.

In terms of clinical utility, a novel risk signature based

on six HPV-related methylation sites was identified

and verified. This signature can be tested as a prognos-

tic tool to determine patients at high risk with the

potential for multimodal therapy.

This study has a few limitations. Firstly, the sam-

ple size containing information with HPV status and

HPV subtypes was relatively small, and we were

unable to explore the association between the HPV-

related methylation signature and HPV subtypes.

Secondly, an ideal prognostic signature is one that

can also efficiently risk-stratify in other independent

datasets, and we could not yet locate another dataset

to further validate the performance of our six-DNA

methylation signature. Lastly, the TCGA dataset

enrolled for analysis was primarily collected from

patients with CC in Western countries and lacked

data from Asian countries.

5. Conclusions

In conclusion, our study revealed that CC patients

could be classified into three heterogeneous clusters

based on the HPV-related methylation sites. Specific

biological processes, pathways, and genomic alter-

ations could be correlated with the different outcomes

in the three clusters. Additionally, we derived a prog-

nostic risk signature using six HPV-related methylation

sites that stratified the patients with CC into high- and

low-risk groups. This study provides new insight into

epigenetic biomarkers that could help to improve sub-

type identification, risk stratification, and treatment

management.
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online in the Supporting Information section at the end
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Fig. S1. Venn diagram for the intersections between

48 190 DMPs (HPV-positive vs. HPV-negative) and

35 678 DMPs (tumor vs. normal). vs.: versus; DMPs:

differentially methylated probes.

Fig. S2. Unsupervised clustering analysis of 9249

HPV-related methylation sites.

Fig. S3. Comparison of mutations among the three

methylation clusters of cervical cancer. The mutation

frequencies of the cell cycle (a), MYC (b), NRF2 (c),

TGF-b (d), and P53 (e) signaling pathways among the

three clusters are shown.

Fig. S4. The mutation frequencies of the Hippo signal-

ing pathway among the three clusters are shown.

Fig. S5. The mutation frequencies of the Notch signal-

ing pathway among the three clusters are shown.

Fig. S6. The mutation frequencies of the RTK-RAS

signaling pathway among the three clusters are shown.

Fig. S7. The mutation frequencies of the PI3K-AKT

signaling pathway among the three clusters are shown.

Fig. S8. The mutation frequencies of the Wnt signaling

pathway among the three clusters are shown.

Fig. S9. Comparison of copy number variations

among three methylation clusters of cervical cancer.

(a) Copy number gistic score for Methylation-H,

Methylation-M, and Methylation-L cluster. (b) Copy

number frequency for Methylation-H, Methylation-M,

and Methylation-L cluster. Copy number gistic score/-

copy number frequency is indicated on the y-axis and

chromosome on the x-axis. Individual chromosomes

are separated by dotted lines with ‘red’ indicating copy

number gain and ‘blue’ indicating copy number loss.

Fig. S10. The process of developing a prognostic sig-

nature containing six HPV-related methylation sites.

The hazard ratios (HR), 95% confidence intervals (CI)

calculated by univariate Cox regression (a), the results

of LASSO regression (b), and the coefficients calcu-

lated by multivariate Cox regression analysis (c) are

shown.

Fig. S11. Association between the expression of five

genes and the methylation levels of the corresponding

methylation sites. Level of gene expression is reported

as log2-transformed FPKM, and the methylation levels

of methylation sites were beta-values.

Fig. S12. The distribution of risk score, survival status,

and the heatmap of six methylation sites for cervical

cancer patients in the training dataset.

Fig. S13. The distribution of risk score, survival status,

and the heatmap of six methylation sites for cervical

cancer patients in the testing dataset.

Fig. S14. The distribution of risk score, survival status,

and the heatmap of six methylation sites for cervical

cancer patients in the entire dataset.

Fig. S15. Boxplots of beta-value in samples of patients

in high- and low-risk groups in the entire dataset.

Mann–Whitney U test was used to determine the dif-

ferences between the two groups.

Fig. S16. Univariate and multivariate Cox regression

analyses of the association between clinicopathological

factors, risk score and overall survival of patients in

the TCGA cervical cancer dataset.

Fig. S17. The relative abundance of the 24 immune

cells types in cervical cancer high-risk and low-risk

groups. A green violin represents the low-risk group.

A red violin represents the high-risk group. The white

points inside the violin represent median values. Wil-

coxon test was implemented to evaluate the differences

in infiltration levels of the 24 immune cell types

between the two groups.

Fig. S18. The relative abundance of the 24 immune

cells among the three clusters. Kruskal–Wallis test was

used to determine the differences between the three

clusters. ns no significance, *P < 0.05, **P < 0.01, and

*** P < 0.001.

Fig. S19. The analysis of tumor microenvironments

among the three clusters. (a) Distribution of ESTI-

MATE scores of three clusters. (b) Distribution of

immune scores of three clusters. (c) Distribution of

stromal scores of three clusters. (d) Distribution of

tumor purity of three clusters. Kruskal–Wallis test was

used to determine the differences between the three

clusters. ns no significance, **P < 0.01, and ***

P < 0.001.

Table S1. Clinical variables in the training and testing

datasets.

Table S2. HPV infection status of 178 cervical cancer

patients from TCGA.
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