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Abstract

Background: The human dynein cytoplasmic 1 heavy chain 1 (DYNCI1H]I) gene
encodes a large subunit of the cytoplasmic dynein complex. DYNCIHI1 mutations
are associated with various neurological diseases involving both the peripheral
and central nervous systems.

Methods: The clinical characteristics and genetic data of an infant carrying the de
novo DYNC1H]1 variant identified by trio exome sequencing were analyzed. Patients
with epilepsy with DYNC1H1 mutations were summarized by reviewing the literature.
Results: We first identified an infant presenting with epileptic spasms harbor-
ing a de novo missense mutation in DYNCIH]I (c.874C>T; p. Arg292Trp), once
reported in an adult case, and further summarized another 54 patients with
seizures or epilepsy caused by DYNCIH]1 pathogenic variants in the literature.
Refractory epilepsy, intellectual disability, and cortical developmental malfor-
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mations are crucial characteristics of patients with developmental and epileptic
encephalopathy (DEE) caused by DYNCIH]I variants. Notably, epileptic spasms
in this case were resistant to multiple anti-seizure medications, corticosteroids,
ketogenic diet, and vagus nerve stimulation treatment. The child also showed
cortical gyrus malformation and global developmental delay.

Conclusion: DYNC1H]1 variants can cause infantile developmental and epilep-
tic encephalopathy, in which Arg292Trp is a mutation hotspot of the DYNCI1H]1
gene. Epileptic seizures in this type of DYNCI1H1-related DEE are mostly resist-
ant to multiple antiepileptic strategies and need to explore optimized treatments.

KEYWORDS

developmental and epileptic encephalopathy, dynein cytoplasmic 1 heavy chain 1, epileptic
spasms, ketogenic diet, vagus nerve stimulation

1 | INTRODUCTION dynein 1 motor protein complex that transports organelles,
vesicles, and macromolecules to the minus ends of micro-
tubules. Mutations in DYNC1H1 are associated with various

clinical manifestations, including spinal muscular atrophy,

Dynein cytoplasmic 1 heavy chain 1 (DYNC1H1, MIM
#600112) encodes the heavy chain protein of the cytoplasmic

Tangfeng Su and Yu Yan contributed equally to this work.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.

© 2022 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals LLC.

Mol Genet Genomic Med. 2022;10:e1874.
https://doi.org/10.1002/mgg3.1874

wileyonlinelibrary.com/journal/mgg3 10f10


www.wileyonlinelibrary.com/journal/mgg3
https://orcid.org/0000-0002-1925-5519
mailto:﻿
http://creativecommons.org/licenses/by-nc/4.0/
mailto:sanqingx@163.com

SUET AL.

20f10 Wl LEy_Molecular Genetics & Genomic Me'i

lower extremity-predominant 1 (SMALED1; MIM #158600)
(Harms et al.,, 2010), Charcot-Marie-Tooth (CMT) dis-
ease, axonal type 20 (CMT20; MIM #614228) (Strickland
et al., 2015; Weedon et al., 2011), mental retardation, au-
tosomal dominant 13 (MRD13; MIM #614563) (Willemsen
et al., 2012), and other phenotypes reported in the litera-
ture, including hereditary spastic paraplegia (Strickland
et al., 2015), malformations of cortical development (MCD)
(Poirier et al., 2013), and epileptic encephalopathies (EE)
(Lin et al., 2017).

To the best of our knowledge, up to October 2021, at
least 24 articles had reported 54 cases with seizures or
epilepsy due to DYNC1H]1 variants, including seven in-
fants with epileptic spasms (Table 1) (Amabile et al., 2020;
Becker et al., 2020; Benson et al., 2020; Das et al., 2018;
Di Donato et al., 2018; Gelineau-Morel et al., 2016; Gou
et al., 2019; Helbig et al., 2016; Hertecant et al., 2016;
Hu et al., 2018; Jamuar et al., 2014; Li et al., 2019; Lin
et al., 2017; Matsumoto et al., 2021; Otten et al., 2017;
Palmer et al., 2018; Poirier et al., 2013; Punetha et al., 2015;
Rochtus et al., 2020; Scoto et al., 2013; Singh et al., 2015;
Strickland et al., 2015; Tumiené et al., 2018; Willemsen
et al., 2012). Most of these patients have brain develop-
mental malformations and severe intellectual disabil-
ity (ID). Developmental and epileptic encephalopathies
(DEEs) are genetically heterogeneous conditions often
characterized by early onset drug-refractory epilepsy,
frequent epileptiform activity, and neurodevelopmental
impairments (Scheffer et al., 2016). Here, we report the
first case of a de novo p. Arg292Trp change caused by the
DYNC1H]1 gene that exhibited epileptic spasms, intellec-
tual disability, and brain malformation in a Chinese fam-
ily, further summarizing the clinical characteristics of this
kind of DEE related to DYNCI1H]1 variants and its treat-
ment and prognosis. Our observation of epileptic spasms
in this patient further broadens the clinical spectrum of
the known mutation p. Arg292Trp. However, this case was
unable to become seizure-free through multiple treatment
methods, including anti-seizure medications (ASMs), cor-
ticosteroids, ketogenic diet (KD), and vagus nerve stimu-
lation (VNS).

2 | MATERIALS AND METHODS

2.1 | Ethical compliance

This study was approved by the Medical Ethics Committee
of the Tongji Hospital, Tongji Medical College, Huazhong
University of Science and Technology, China. Written in-
formed consent was obtained from the patient for publica-
tion of this case report and the accompanying images.

2.2 | Whole exome and
Sanger sequencing

Whole exome sequencing (WES) was performed by the
WuXi NextCODE Genomics, Shanghai, China (CLIA Lab
ID: 99D2064856) using a previously described protocol
(Su et al., 2020).

2.3 | Literature review

Literature search was performed to identify relevant ar-
ticles using the terms “DYNC1H1 AND epilepsy”, or
“DYNC1H1 AND seizure” up to October 19, 2021, in the
following databases: PubMed, Google Scholar, China
National Knowledge Infrastructure, and WANFANG
DATA.

3 | RESULTS

3.1 | Case presentation

The female infant, born at 39 weeks, was the first child
of a non-consanguineous Chinese couple. Pregnancy
and delivery were uncomplicated. Her birth weight was
2850g, and her head circumference (HC) was within
the normal range. The family history of the infant was
negative for epilepsy and other neurological and muscle
disorders. Parents had few complaints about the devel-
opment of this infant during the first 4 months of her
life. At the age of 5 months, she presented with epileptic
spasms. At that time, the patient was found to have poor
head control. Her electroencephalogram (EEG) showed
hypsarrhythmia (Figure 1a), confirming the diagnosis of
West syndrome. Metabolic screening, including electro-
lytes and glucose, serum and urine organic acids, and
blood amino acid levels were all normal. Brain magnetic
resonance imaging (MRI) revealed that the bilateral
parieto-occipital gyri decreased, the flattened cortex and
related cortex thickened (oligogyri), and the frontotem-
poral extracerebral space widened (Figure 2). In addi-
tion to oral topiramate (TPM; 12.5 mga.m. & 25mgp.m.;
weight, 7 kg), she was initially given high-dose oral pred-
nisone (10 mg qid for the first week and the same dose
for the second week after epileptic seizures stopped,
then tapering off every week, that is, 10 mg tid, 10 mg
bid, 10 mg qd, and 5 mg qd, for a total of 6 weeks), which
was followed by seizure-free for 3 months. At the age of
10 months, wakefulness EEG displayed small occipital
sharp waves, while background hypsarrhythmia faded
(Figure 1b).
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FIGURE 1 Wakefulness EEG at 5 (a) and 10 months (b). (a) Interictal EEG showed a background of hypsarrhythmia with asymmetrical
or asynchronous high-amplitude, multifocal spike and wave discharges. (b) Interictal EEG showed a normal EEG background with a small
amount of sharp and slow waves in right posterior head region, as shown by the arrow

DISCUSSION

4 |

Dynein can be divided into two types: axonemal and
cytoplasmic. Cytoplasmic dynein is an important motor
protein complex in the nervous system and is responsi-
ble for the retrograde transport of important substances
in axons from the end to the cell body. Cytoplasmic

FIGURE 2 Brain MRI at 5 months.
(a, b) Dilated bilateral frontotemporal
extracerebral space. (c, d) Bilateral
parieto-occipital gyri are diminished
and flattened, and the related cortex is
thickened (oligogyri)

DYNC1HI1 is a key subunit of the cytoplasmic dynamic
protein complex, and its normal expression is closely
related to the development of the nervous system
(Eschbach & Dupuis, 2011).

DYNC1H1 mutations have been reported in a series of
neurological diseases, including peripheral and central
nervous system disorders. Vissers et al. first reported in
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mutated not conserved
Ptroglodytes all identical
Jnulatta all identical
Featus all identical
Jnusculus all identical
Ggallus all identical
Trubripes all identical
Drerio no honologue

Dnelanogaster  all identical  FBgn0261797 202LERALYRIQERZESPEVALTLDT
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ENSPTRGO0000006735
ENSIIUGO0000005780
ENSFCAGO0000008938
ENSMUSGO0000018707
ENSGALG00000011330
ENSTRUG00000012516

292LERALYRIQEKEESPEVLLT
292LERALYRIQEKEESPEVLLT
206LERALYRIQEKZESPEVLLTLDI
200LERALYRIQEKRESPEVLLT
298LERALYRIQEKEESPEVLLTLDI
292LERALNRIQEKEESPEVLLTLDI

FIGURE 3 Sanger sequencing of DYNCIH]1 variants in

the infant and her healthy parents. (a) The shadow in the
electrophoretic pattern shows the site of the mutation. Exome
sequencing identified a de novo heterozygous mutation in the
DYNCIHI gene (NM_001376.4: c.874C>T) in exon 5. (b) The
amino acid sequence alignment of the DYNC1H1 protein from
different species shows that the Arg292 residue is highly conserved
during evolution

2010 that DYHCIH1 mutation was associated with men-
tal retardation in a 2-year-old boy. He had mild facial
deformities, while his brain MRI was normal (Vissers
et al., 2010). In 2013, Poirier et al. reported that 11 patients
with a DYHCIHI mutation had posterior pachygyria and
seizures, about half of them had early onset epilepsy,
and one proband had Lennox-Gastaut syndrome (LGS)
(Poirier et al., 2013). DEE is a group of heterogeneous

[Open Access]

neurodevelopmental disorders characterized by early
onset intractable seizures, abundant EEG epileptiform ac-
tivity, intellectual disability, or regression. West syndrome
and LGS are representative of DEE in both infants and
children. To the best of our knowledge, including this re-
ported case, eight infants with DYNC1H]1 variants had epi-
leptic spasms (including a pair of twins) (Table 1), and the
age of seizure onset was 3-7 months. All of these children
had intellectual disability and brain dysplasia, mainly
manifesting as gyrus malformations (Table 1). It should be
mentioned that a total of three children described autism
or autism-like features in the literature (P7, P39, P54).

DYNCIHI encodes a large protein (>530kDA and
4646 amino acid residues), which consists of three main
domains. The C-terminal motor domain region (residues
1846-4646, ~380kDa) contains six ATPases associated
with diverse cellular activities (AAA) and a microtubule-
binding stalk located between AAA4 and AAAS (Pfister
et al., 2006). The N-terminal region (~160kDa) is known
as the stem domain (tail domain) and contains binding po-
sitions for light intermediate and light chains (Figure 4).
Previous studies have shown that DYNCIH]1 variants have
obvious phenotypic heterogeneity and that mutations in
different domains or at different locations in the same do-
main also show different clinical phenotypes. Mutations
in the tail domain of DYNCIHI cause mutations in
SMALED1 (Harms et al., 2012) and CMT20 (Weedon
et al., 2011). Damage caused by motor domain mutations
is mainly caused by MCD and intellectual impairments,
such as MRD13 (Poirier et al., 2013; Vissers et al., 2010).
Mutations in both tail and motor domains have also been
reported to cause SMALED (Fiorillo et al., 2014) and
MRD13 (Jamuar et al., 2014).

In this case, the ¢.874C>T mutation is located in the
tail domain of DYNCI1H]1, near the N-terminus, which is
a de novo missense mutation. The phenotypes of this case
mostly consisted of brain malformations, global devel-
opmental delays, and seizures. Compared with an adult
case reported by Benson et al., both patients had intellec-
tual disability, abnormal MRIs, and early onset epilepsy,
while there were no epileptic spasms or hypsarrhythmia
EEG background in Benson's case (Benson et al., 2020).
As shown in Figure 4, the DYNC1H1 mutation sites in pa-
tients with seizures were found in both the motor and tail
domains, mainly clustering in and around the stalk region
of the motor domain, junction area of the motor and tail
domain, and N-terminal region of the tail domain. In ad-
dition, this patient had decreased muscle strength of her
lower limbs, and she was unable to achieve independent
walking at the age of 2years, which was, to a certain ex-
tent, similar to the phenotypes of spinal muscular atrophy,
lower extremity-predominant 1 caused by a DYNCI1H]I
mutation.
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FIGURE 4 Schematic representation of human DYNC1H]1 and mutations in patients with seizures or epilepsy. The DYNC1H1 mutation
sites in patients with seizures were found in both motor domain and tail domain, mainly clustering in and around the stalk region of the

motor domain, the junction area of motor and tail domain, and the N-terminal region of the tail domain

Seizure Seizure
ID onset type Drugs
P20 3m Spasms Prednisolone, VGB
P41 NA Spasms PB, LEV, CZP, VPA
P42/43 7 m Spasms LEV, TPM, VPA
P44 ly5m LGS LEV, VPA, RUF
P55 5m Spasms Prednisolone, TPM

TABLE 2 Treatmentsin DYNCIHI1

. . ith epilenti
Seizure < 50% mutation patients with epileptic
encephalopathy

NA

NA

Vigabatrin
LEV+KD
LEV+KD+ VNS

Abbreviations: CZP, clonazepam; KD, ketogenic diet; LEV, levetiracetam; LGS, Lennox-Gastaut
syndrome; m, month; NA, not available; PB, phenobarbital; RUF, rufinamide; TPM, topiramate; VGB,

vigabatrin; VNS, vagus nerve stimulation; VPA, valproate; y, year.

Epileptic spasms are often accompanied by hypsar-
rhythmia on EEG, and the use of standard first-line
drugs, such as ACTH, vigabatrin, and prednisolone,
may provide the greatest benefit in terms of seizures,
EEG changes, and long-term prognosis in children
(Knupp et al., 2016). Regarding the seizure treatments
in these 55 patients, 27 had no information available in
the literature, 13 were reported as refractory epilepsy,
seven were reported as controlled seizures, eight cases
mentioned specific treatment drugs, and all were drug-
resistant epilepsy (P20, P41, P42/43, P44, P53, P54, P55,
see Table 2). Five of these eight patients were diagnosed
with epileptic spasms, and one with LGS. Similar to
Li’s case report (Li et al., 2019), seizures were reduced
by more than 50% after introduction of KD in our case
(8 months follow-up for Li’s case, and 33 months in this
study). Although combined with oral ASMs, KD, and
VNS, our case still had at least one cluster of spasms
per day and global development delay, including phys-
ical growth, motor, and language skills. These results
indicate that the existing encephalopathy in this infant,
due to a DYNCI1HI mutation, was not only caused by
epileptic spasms, but also by the developmental conse-
quences of the gene variant itself, known as one type
of DEE.

In summary, DYNCIHI mutations can cause lesions
in the central and peripheral nervous systems with vari-
ous heterogeneous manifestations. Mutations in both the
motor and tail domains of DYNC1H1 can cause cortical
developmental malformations and refractory seizures.
Epileptic spasms were resistant to multiple treatments
(ASMs, corticosteroids, KD, and VNS) in this p.Arg292Trp
mutation patient. Refractory epilepsy, developmental re-
tardation, and brain malformations are core symptoms of
DYNCI1H]1-related DEE.
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