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Abstract: West Nile virus (WNV) is a mosquito-borne virus which causes symptomatic disease in a
minority of infected humans. To identify novel genetic variants associated with severe disease, we
utilized data from an existing case-control study of WNV and included population controls for an
expanded analysis. We conducted imputation and gene-gene interaction analysis in the largest and
most comprehensive genetic study conducted to date for West Nile neuroinvasive disease (WNND).
Within the imputed West Nile virus dataset (severe cases n = 381 and asymptomatic/mild controls =

441), we found novel loci within the MCF.2 Cell Line Derived Transforming Sequence Like (MCF2L)
gene (rs9549655 and rs2297192) through the individual loci analyses, although none reached statistical
significance. Incorporating population controls from the Wisconsin Longitudinal Study on Aging
(n = 9012) did not identify additional novel variants, a possible reflection of the cohort’s inclusion
of individuals who could develop mild or severe WNV disease upon infection. Many of the top
gene-gene interaction results were intergenic, with currently undefined biological roles, highlighting
the need for further investigation into these regions and other identified gene targets in severe WNND.
Further studies including larger sample sizes and more diverse populations reflective of those at risk
are needed to fully understand the genetic architecture of severe WNDD and provide guidance on
viable targets for therapeutic and vaccine development.

Keywords: West Nile virus; West Nile neuroinvasive disease; genome-wide association study;
gene-gene interactions; disease severity

1. Introduction

Mosquito-borne viruses such as West Nile virus (WNV) are a major global health threat, with
estimates of more than 340 million infections and more than 440,000 fatalities each year [1]. WNV
was first isolated in an individual from the West Nile region of Uganda and is now found in more
than 80 countries [2,3]. Since its introduction to the United States in 1999, the virus has since
spread throughout the continental states and into Mexico and Canada [4]. Among infected humans,
the majority—especially the young—remain asymptomatic, while approximately 20% mainly older
individuals present mild symptoms such as fever, and <1% exhibit severe, potentially life-threatening
West Nile neuroinvasive disease (WNND) [5–9].

Genetic factors are among the host characteristics identified to place a minority of individuals
at increased risk of severe disease. To date, 13 candidate-gene studies and one larger-scale 13,371
single-nucleotide polymorphisms (SNPs) study have been conducted to examine genetic factors
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associated with severe WNND [10]. The largest study conducted to date included 560 neuroinvasive
case patients and 950 control patients genotyped for 13,371 SNPs, and identified SNPs within the
genes replication factor C1 (RFC1), sodium channel neuronal type I α subunit (SCN1A), and ananyl
aminopeptidase (ANPEP) to be associated with severe disease, with p-values not reaching statistical
significance [11]. These genes function in several distinct cellular physiology processes with potential
relevance to WNV infection and disease progression [11], but did not reveal common immune-related
targets as has been noted in genome-wide association studies (GWAS) of related viral infections [12,13].

GWAS focus on common variants, most of which are associated with small increases in risk [14].
Additional risk factors for severe disease remain undiscovered, and strategies to further define risk
include conduction of larger studies that better account for the diverse affected populations and through
conduction of novel analyses of previous studies. Novel analyses can include incorporating population
controls to increase power or assessing gene-gene or gene-environment interactions, rare variants,
epigenetics, and pathways. Gene-gene interactions, or epistasis, measure the effect of variation at two
distinct loci and reflect how genes and their products interact within an organism and, in this scenario,
together affect disease severity. Using the first WNND GWAS published to date, we used imputation,
population controls, and gene-gene interaction analysis to further identify genetic targets and better
define genetic architecture for severe WNND, with the ultimate objective of providing guidance for
therapeutic and vaccine development [15].

2. Materials and Methods

2.1. WNV-Infected Study Population

Study participants were enrolled between 2004 and 2009 from Nebraska, Pennsylvania, Texas, and
Colorado in the United States and Alberta and Saskatchewan in Canada, as previously described [11].
All study participants were adults ≥18 years with confirmed infection with WNV based on the
guidelines of the Centers for Disease Control and Prevention. The 381 cases were diagnosed with
meningitis, encephalitis, or acute flaccid paralysis, while the 441 control patients did not have any of
these diagnoses. Blood samples from adults were collected for DNA extraction and genotyping with
the Illumina 1 Million Duo and Illumina OmniExpress as previously described (Illumina, San Diego,
CA, USA) [11].

2.2. Quality Control and Imputation

For quality control, we used PLINK (Harvard University, Boston, MA, USA) to remove all
individuals and SNPs with >5% missing rates and SNPs that deviated significantly from Hardy
Weinberg Equilibrium (p < 1 × 10−5) [16]. We updated the data for human genome build 37 (hg19)
using Batch Coordinate Conversion (LiftOver) [17]. Genotype phasing was conducted with SHAPEIT
(University of Oxford, Oxford, UK) and imputation was performed using IMPUTE2 (University
of Oxford, Oxford, UK), with 1000 Genomes Project, Phase 3 dataset serving as reference [18–20].
Imputation quality is scored by the INFO score (0–1.0, with a higher score indicating increased
certainty), and SNPs with INFO scores >0.7 were included in the analysis. Principal component
analysis was conducted on the directly genotype data using EIGENSTRAT (Harvard University, Boston,
MA, USA) [21,22]. We merged the two imputed chip datasets in PLINK and subsequently conducted
association analyses, with the top 10 principal components, sex, and the type of chip (1 Million Duo or
OmniExpress) as covariates (Supplemental Figure S1). To adjust for multiple testing, the genome-wide
Bonferroni-corrected threshold of 5 × 10−8 was used to assess p-value significance [23,24]. Manhattan
and quantile-quantile (QQ) plots were created through the R package qqman [25].

2.3. Population Controls

The cohort from the Wisconsin Longitudinal Study on Aging (dbGaP accession: phs001157.v1.p1)
was used as a population control dataset during an expanded analysis of the imputed WNV dataset [26,
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27]. The Wisconsin dataset was procured from dbGaP under an approved agreement [28]. As
previously described, 9012 individuals were enrolled and provided samples that were genotyped on
the Illumina HumanOmniExpress chip, human genome build 37 (Illumina, San Diego, CA, USA) [27,29].
Similar to the methods we used in the WNV dataset, they conducted imputation using the IMPUTE2
software (University of Oxford, Oxford, UK), with the 1000 Genomes Project, Phase 3 dataset serving
as controls [20,30]. We merged this Wisconsin population controls imputed dataset with the WNV
imputed dataset in PLINK, and conducted univariate analysis using the top 10 principal components,
sex, the type of chip for the WNV participants (1 Million Duo or OmniExpress), and the cohort
(Wisconsin population control or WNV sample) as covariates. Principal component analysis of
the merged, directly genotyped datasets was conducted using EIGENSTRAT [21,22,31]. To reduce
heterogeneity between the samples, we limited analysis to SNPs with population control minor allele
frequencies (MAF) ±5% of the WNV control MAF.

2.4. Analysis of Gene-Gene Interactions

To assess the directly genotyped dataset for gene-gene interactions, we applied PLINK’s fast
epistasis function, which compares genotype count tables, to test interactions between all SNPs with
MAF ≥10%. We then applied the regular epistasis function, which employs a logistic regression
approach, on all interactions with p-values below 5 × 10−8 from the fast epistasis test [16]. We used a
Bonferroni-corrected threshold of 5 × 10−14 to assess p-value significance.

3. Results

3.1. Imputation Increases Identification of Genes Associated with WNV

To identify additional gene loci with a role in infection with WNV, we made use of imputation to
analyze the existing GWAS dataset. The initial analysis covered 1,426,538 directly genotyped SNPs,
and with imputation, we increased the number of loci which can be assessed for a role in WNV
infection by 8-fold. Following imputation, 11,883,872 SNPs passed quality control (Supplemental Table
S1). The top hits from the imputed data set revealed several novel targets including rs3065938 in an
intergenic region of Chromosome 4 (p-value = 9.45 × 10−7) and rs78660320 in the Testis Expressed 15,
Meiosis and Synapsis Associated (TEX15) gene on Chromosome 8 (1.76 × 10−6) (Table 1; Manhattan
plot, Supplemental Figure S2; QQ plot, Supplemental Figure S3). While still short of the statistical
significance threshold of 5 × 10−8, these imputed SNPs were more significantly associated with disease
than the top associations from the original analysis (Supplemental Table S2). Other novel SNPs of
potential interest that approached significance were in the MCF.2 Cell Line Derived Transforming
Sequence Like (MCF2L) gene (rs9549655 and rs2297192; p-values 5.84 × 10−7 and 1.35 × 10−6), the
TIMELESS Interacting Protein (TIPIN) gene (rs36061431; p-value 2.43 × 10−6), and the Potassium
Calcium-Activated Channel Subfamily N Member 3 (KCNN3) gene (rs7553671; p-value of 2.49 × 10−6).
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Table 1. Top single-nucleotide polymorphisms (SNPs) following individual variant analysis of the
imputed West Nile virus (WNV) dataset. The table shows the top 10 results by chromosome (Chr),
single-nucleotide polymorphism (SNP), corresponding gene, base position, odds ratio (OR), and p-value.
None of the interactions passed the Bonferroni-corrected p-value of 5 × 10−8. Gene acronyms: MCF.2
Cell Line Derived Transforming Sequence Like (MCF2L), Testis Expressed 15, Meiosis and Synapsis
Associated (TEX15), TIMELESS Interacting Protein (TIPIN), Potassium Calcium-Activated Channel
Subfamily N Member 3 (KCNN3).

Chr SNP Gene Base Position OR p-Value

13 rs9549655 MCF2L 113725367 2.38 5.84 × 10−7

4 rs3065938 Intergenic 125374129 0.36 9.45 × 10−7

13 rs2297192 MCF2L 113720476 2.23 1.35 × 10−6

8 rs78660320 TEX15 30739132 0.44 1.76 × 10−6

13 rs701542 Intergenic 103581620 2.30 2.05 × 10−6

15 rs36061431 TIPIN 66669445 2.27 2.43 × 10−6

1 rs7553671 KCNN3 154737236 0.48 2.49 × 10−6

6 rs4706217 Intergenic 85705226 0.48 2.79 × 10−6

13 rs783448 Intergenic 103581492 2.29 2.89 × 10−6

13 rs783449 Intergenic 103581457 2.15 3.92 × 10−6

3.2. Population Controls Extend Univariate Analysis

The WNV dataset includes WNV patients of differing severity of disease but does not include
asymptomatic subjects who make up the majority of infections [11,32]. For additional power to discern
genes with a significant role in WNV infection, we added a large dataset of population controls from
the Wisconsin Longitudinal Study on Aging (n = 9012) [27]. We re-analyzed the imputed WNV dataset
after incorporating the imputed dataset of population controls. In order to reduce heterogeneity
between samples, results were restricted to SNPs with population controls MAF within 5% of the
WNV controls MAF. From the reanalysis with population controls, the top SNP was in the MCF2L
gene (rs2297192) on Chromosome 13; p-value of 2.30 × 10−6 (Table 2).



Vaccines 2020, 8, 744 5 of 13

Table 2. Top SNPs following individual variant analysis of the imputed datasets of WNV severe cases, non-severe WNV-infected controls, and population controls
from the Wisconsin Longitudinal Study on Aging. The table shows the top 10 results by chromosome (Chr), single-nucleotide polymorphism (SNP), odds ratio (OR),
p-value from the combined WNV cohort and population control analysis, p-value from the WNV-only cohort analysis, and minor allele frequency (MAF) within the
WNV severe cases, WNV-infected non-severe controls, and population controls from the Wisconsin Longitudinal Study on Aging. None of the interactions passed
the Bonferroni-corrected p-value of 5 × 10−8. Gene acronyms: MCF.2 Cell Line Derived Transforming Sequence Like (MCF2L), Nicotinamide N-Methyltransferase
(NNMT), Coagulation Factor X (F10).

Chr SNP Gene OR p-Value from Population
Control Analysis

p-Value from
WNV-Only Analysis

WNV Cases
MAF

WNV Controls
MAF

Population
Controls MAF

13 rs2297192 MCF2L 2.13 2.30 × 10−6 1.35 × 10−6 0.203 0.127 0.167
3 rs9834139 Intergenic 1.91 1.13 × 10−5 5.60 × 10−5 0.381 0.288 0.337
1 rs1245487 LOC105378861 1.84 3.48 × 10−5 2.28 × 10−5 0.357 0.291 0.317
12 rs10850475 Intergenic 0.54 5.74 × 10−5 1.10 × 10−4 0.144 0.217 0.191
1 rs10489329 Intergenic 1.78 8.06 × 10−5 3.44 × 10−4 0.327 0.225 0.257
13 rs3814264 MCF2L 1.79 9.14 × 10−5 2.51 × 10−5 0.249 0.179 0.224
11 rs576598 Intergenic 0.56 9.23 × 10−5 4.88 × 10−5 0.302 0.379 0.341
11 rs694539 NNMT 0.54 9.71 × 10−5 1.47 × 10−4 0.133 0.206 0.183
21 rs2407581 LOC105372745 1.77 1.05 × 10−4 5.16 × 10−5 0.298 0.229 0.267
13 rs556694 F10 0.48 1.08 × 10−4 4.93 × 10−4 0.073 0.137 0.106
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Table 3. Top gene-gene interactions, with corresponding chromosome (Chr), single-nucleotide polymorphism (SNP), base position (BP), and gene in the WNV
dataset. None of the interactions passed the Bonferroni-corrected p-value of 5 × 10−14. Gene acronyms, in order of appearance: Heparan Sulfate-Glucosamine
3-Sulfotransferase 4 (HS3ST4), Neuregulin 1 (NRG1), Microtubule-Associated Serine/Threonine Kinase Family Member 4 (MAST4), Ribosomal Protein L17 (RPL17),
Polypeptide N-Acetylgalactosaminyltransferase 10 (GALNT10), Olfactory Receptor Family 5 Subfamily R Member 1 (OR5R1), Solute Carrier Family 25 Member 21
(SLC25A21), CUB And Sushi Multiple Domains 1 (CSMD1), Forkhead Box P1 (FOXP1), Proline Rich 5 Like (PRR5L), Musashi RNA Binding Protein 2 (MSI2), Cadherin
13 (CDH13), Amphiphysin (AMPH).

First SNP Second SNP p-Value
Chr SNP BP GENE CH SNP BP GENE

9 rs7021419 2322572 Intergenic 16 rs9989408 25879109 HS3ST4 2.42 × 10−11

9 rs7021419 2322572 Intergenic 16 rs12708686 25881959 HS3ST4 6.22 × 10−11

3 rs941304 74887781 LOC 105377167 8 rs3847131 32282019 NRG1 2.08 × 10−10

5 rs465962 66197511 MAST4 18 rs1943676 47017820 RPL17 3.41 × 10−10

5 rs153411 153753481 GALNT10 11 rs11228306 56184659 OR5R1 4.04 × 10−10

3 rs2030874 5547942 Intergenic 14 rs17105314 37257671 SLC25A21 4.44 × 10−10

8 rs2627359 3743017 CSMD1 12 rs12304940 68457881 LOC 107984526 4.53 × 10−10

5 rs154620 66200248 MAST4 18 rs1943676 47017820 RPL17 4.57 × 10−10

2 rs4426483 155807051 LOC 105373696 3 rs2568844 71288864 FOXP1 5.04 × 10−10

11 rs1425936 36399514 PRR5L 17 rs758142 55740786 MSI2 6.77 × 10−10

16 rs173839 83782302 CDH13 22 rs2075120 17326432 Intergenic 7.40 × 10−10

7 rs10464364 38652088 AMPH 18 rs4468704 37727465 Intergenic 8.29 × 10−10
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The top SNPs from the univariate WNV-only analysis (Table 1) were not included in this analysis
as the MAF between the WNV controls and Wisconsin population controls was greater than the 5%
cutoff. Many of the p-values of the population controls analysis were similar or even slightly higher
than the WNV-only data analysis, suggesting the frequency of the risk alleles may be greater in the
population controls than in the WNV controls. Notably, for some of the SNPs, the population control
MAF was between the WNV case MAF and WNV control MAF, limiting the potential boost in p-values
despite the comparatively large number of population controls. No additional novel areas of interest
were noted in the Manhattan plot (Supplemental Figure S4; QQ plot, Supplemental Figure S5).

3.3. Gene-Gene Interactions Identify Combined Effects of Variation at Two Loci of Interest

To identify potential interactions of two genes which may contribute to genetic susceptibility
to infection with WNV, we examined gene-gene interactions across the genome. None of the
interactions passed the Bonferroni-corrected p-value of 5 × 10−14 (Table 3). Although not reaching
significance, the top interaction was between rs7021419, an intergenic SNP on chromosome 9, and
rs9989408, a SNP located in the Heparan Sulfate-Glucosamine 3-Sulfotransferase 4 (HS3ST4) gene on
chromosome 16 (p-value of 2.42 × 10−11). Other top interactions included SNPs from the Neuregulin
1 (NRG1), Microtubule-Associated Serine/Threonine-Protein Kinase 4 (MAST4), Ribosomal Protein
L17 (RPL17) genes. No additional interactions were identified in the combined cohort of WNV cases
and controls and the Wisconsin population controls. As expected, and consistent with the univariate
analysis outlined above, the addition of the population controls resulted in less significant findings of
gene-gene interactions.

4. Conclusions

With only a minority of individuals infected with WNV developing severe, potentially
life-threatening disease, it is vital to identify factors associated with susceptibility to disease [33,34].
Human genetic variation is of critical importance to an individual’s response to infection and subsequent
progression to severe disease and previous studies have identified several genes associated with WNV
infection [35–40]. To identify additional novel genetic variants associated with severe WNND, we
conducted advanced genetic analyses of loci in a North American cohort by using an imputation
approach, incorporating population controls, and analyzing gene-gene interactions. Through univariate
analysis of the imputed dataset, we found novel loci, particularly near the MCF2L gene on Chromosome
13, that may be associated with severe WNND. MCF2L belongs to the Rho guanine nucleotide exchange
factors, which are one of three groups of proteins that control Rho GTPases [41]. Viruses have been
shown to interact with and evade Rho GTPase signaling, including WNV during its infiltration of
murine neurons [42,43]. While many of the other top SNPs were intergenic, one SNP is located
in the TIPIN gene. The TIPIN gene product is the TIMELESS-interacting protein, which has been
implicated in Epstein–Barr viral replication and at the pathway level during infection with zika, a
related flavivirus [44–46]. These newly identified SNPs, while not reaching statistical significance in
our study sample, are more significant than the findings of the original study. The advanced analysis
using imputation provided important additional clues of genetic susceptibility. Future investigations,
both of these and other SNPs analyzed within larger samples sizes with greater statistical power,
integrated with profiles of WNV immune responses and animal models, can illuminate the potential
roles of these genes on disease pathogenesis [47–51].

To expand the sample size and increase power for our analysis, we utilized population controls,
also of northern-European descent, from the Wisconsin Longitudinal Study on Aging. We selected the
control dataset due to its similarities to the WNV dataset, namely in location and subject population of
individuals of northern European descent. Including the control dataset of >9000 individuals resulted
in surprisingly limited improvement across SNP p-values. This may be due to occult infection within
the Wisconsin group, or differences across MAFs, even following the removal of SNPs with population
control MAFs greater than 5% different from the WNV control MAF. As shown in Table 2, the MAF in
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the population control dataset often fell between the MAF estimates for the WNV cases and controls,
indicating the population controls represent both potential severe cases as well as asymptomatic
or mild controls upon infection with WNV. The population controls are more likely to carry the
risk alleles for severe disease compared to the WNV controls, a population infected with WNV but
resistant to severe disease. The inclusion of an additional, external dataset could introduce potential
bias through misclassification of severe cases and batch effects and confounding through population
substructure [52].

Including population controls did not lead to more significant findings as anticipated, and the
greatest increase in statistical power will be gained through the inclusion of a larger sample of infected
cases. Total cases of WNV reported in the USA since 1999 are 50,830 [53], thus, only limited enrollment
is possible. Most of the WNV genetic studies conducted to date have been relatively small in sample
size, with 5 of the 13 published genetic studies including fewer than 50 severe cases [10]. We conducted
our analyses in the largest WNV genetic study conducted to date, by both number of genetic variants
tested and number of severe cases. However, adequate power (>80%) to identify gene-gene interactions
required odds ratios of 2.4 or higher, depending on the minor allele frequencies (Supplemental Table S3).
Furthermore, ongoing and future studies need to be conducted in the appropriate at-risk populations; a
mutation that plays an important role in disease progression in one population may not be universally
significant. WNV has been found on every continent excluding Antarctica, but published studies
exploring the role of genetic variation in WNV disease severity have focused largely on populations of
Northern European descent [54]. Only three of the 13 studies were conducted outside North America,
and focused on Greece, Macedonia, and Israel.

When we analyzed gene-gene interactions, many of the top pairs included an intergenic region,
highlighting the importance of ongoing efforts to understand the roles and effects of these areas.
The top interaction involved a SNP in the HS3ST4 gene, which encodes the enzyme heparan sulfate
D-glucosaminyl 3-O-sulfotransferase 4 and has been linked to herpes simplex virus type 1 pathogenesis
and tumor growth [55,56]. HS3ST4 has been shown to be regulated by TRF2, with abnormal expression
limiting natural killer cell recruitment and activation; notably, natural killer cells play an important
role in the immune system response to WNV infection [57–59]. While the top interactions approached
but did not pass the Bonferroni-corrected p-value threshold, future research may reveal the potential
role of HS3ST4 and other identified genes during WNV infection.

There are several potential limitations to our study design. LiftOver was used to update the
genetic data to human genome build 37, which was a necessary step for the software and reference
panels used in the subsequent analytical steps. While studies evaluating LiftOver and other similar
conversion tools have shown low rates of errors when converting between builds [60,61], this could
have potentially introduced error. To impute the genetic data for the WNV study participants, we used
the IMPUTE2 software in order to match the approach previously used on the Wisconsin Longitudinal
Study on Aging cohort; studies have shown similar accuracy across IMPUTE2 and other imputation
software [62,63]. As imputation estimates ungenotyped loci, we only included imputed variants
with an INFO quality score above 0.7 to limit potential error. In the univariate analyses, we used
the Bonferroni-corrected genome-wide threshold of 5 × 10−8 to assess p-value significance. The
Bonferroni-corrected threshold is widely acknowledged to be more conservative than alternative
approaches [64,65], but is less likely to provide false positive results [66,67]. Our top findings, while
not statistically significant using the Bonferroni-corrected threshold, are biologically plausible and may
reflect the underlying biology of WNND; however, further genetic studies are needed to replicate these
findings. Our analyses utilized data from the largest WNV GWAS conducted to date, but as noted
above, future studies incorporating more cases and diverse populations are needed to best understand
the genetic architecture of WNND. If our findings are replicated in additional cohorts, biological
experiments will be needed to elucidate the functional roles of the identified genetic variation in WNV
infection. The importance of understanding genetic architecture of complex traits to guide vaccine
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development has been well documented in other diseases [68–70], and our analyses show further
studies need to be conducted to adequately inform and guide vaccine development.

As WNV and other mosquito-borne viruses become of increasing concern due to climate change,
there is a time-sensitive need for future work to explore the roles of identified genes in disease
pathogenesis and a continued need to conduct larger, more diverse studies for a more universal
understanding of genetic risk factors and viable therapeutic targets. As noted here, novel analyses
such as imputation, population controls, and gene-gene interactions in existing datasets may provide
additional leads for future investigation, but well-designed, fully-powered new studies with sufficient
asymptomatic, mild, and severe infection subgroups are needed to completely understand the genetic
architecture of severe WNND [71]. In addition to guidance for much-needed vaccines and treatment,
this knowledge could identify individuals at increased risk for severe disease, allowing for more
targeted precaution measures and earlier intervention.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-393X/8/4/744/s1.
Figure S1: Quality control and analysis flowchart. Overview of approach for quality control, phasing, imputation,
and association analysis of the genetic dataset of WNV sample, Figure S2: Manhattan plot of imputed dataset of
WNV severe cases and mild and asymptomatic infection controls. The chromosomes are along the x-axis and
the negative log p-value along the y-axis. The blue line indicates SNPs that approach statistical significance, and
the red line separate SNPs that reach the genome-wide corrected p-value threshold. The top association hits are
located in a region of chromosome 13, Figure S3: QQ plot of the expected and observed negative log of the p-values
from the association analysis of the imputed WNV dataset. The negative log of the observed p-values (x-axis) are
plotted against the negative-log of the expected p-values (y-axis). The majority of the SNPs fall along the red
line, indicating the results are not inflate, Figure S4: Manhattan plot of imputed datasets of WNV severe cases,
non-severe WNV-infected controls, and population controls from the Wisconsin Longitudinal Study on Aging.
The chromosomes are along the x-axis and the negative log p-value along the y-axis. The blue line indicates SNPs
that approach statistical significance, with none of the SNPs reaching statistical significance, Figure S5: QQ plot of
the expected and observed negative log of the p-values from the association analysis of the imputed datasets of
WNV severe cases, non-severe WNV-infected controls, and population controls from the Wisconsin Longitudinal
Study on Aging. The negative log of the observed p-values (x-axis) are plotted against the negative-log of the
expected p-values (y-axis), Table S1: Imputation of the West Nile virus dataset. The number of directly genotyped
SNPs and the total number of SNPs following imputation, by chromosome. The ‘before imputation’ numbers only
include directly genotyped SNPs; the ‘after imputation’ includes both directly genotyped and imputed SNPs,
Table S2: Comparison of p-values for the top three SNPs from the previously published GWAS within the current
subset, with no covariate adjustment to reflect the original analysis. The previously published GWAS, including
560 neuroinvasive case patients and 950 control patients analyzed for 13,371 SNPs, overlaps with the current
study containing 444 neuroinvasive cases and 829 control patients, Table S3: Power calculations for detection
of gene—gene interactions among the WNV dataset. Calculations were based on 444 severe disease cases and
829 non-severe infections, population prevalence of severe WNV of 0.01, and a range of minor allele frequencies
(MAF). Each loci has log-additive inheritance and marginal odds ratio (OR) of 1.5, which reflects the top SNPs from
the initial study. There is sufficient power (>0.80) to detect interaction ORs depicted in each cell or higher for the
two corresponding MAF. Bonferroni-corrected two-sided p-value = 4 × 10−6, assuming 110 pairwise interactions.
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McGill University, Nebraska Medical Center, University of Pennsylvania, and University of Texas at San
Antonio [11]; for the Wisconsin Longitudinal Study on Aging dataset, approval was obtained through University
of Wisconsin—Madison [27,29].
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