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Abstract: Bridging studies are designed to fill the gap between two populations in terms of clinical
trial data, such as toxicity, efficacy, comorbidities and doses. According to ICH-E5 guidelines,
clinical data can be extrapolated from one region to another if dose–reponse curves are similar
between two populations. For instance, in Japan, Phase I clinical trials are often repeated due to
this physiological/metabolic paradigm: the maximum tolerated dose (MTD) for Japanese patients is
assumed to be lower than that for Caucasian patients, but not necessarily for all molecules. Therefore,
proposing a statistical tool evaluating the similarity between two populations dose–response curves
is of most interest. The aim of our work is to propose several indicators to evaluate the distance
and the similarity of dose–toxicity curves and MTD distributions at the end of some of the Phase
I trials, conducted on two populations or regions. For this purpose, we extended and adapted the
commensurability criterion, initially proposed by Ollier et al. (2019), in the setting of completed
phase I clinical trials. We evaluated their performance using three synthetic sets, built as examples,
and six case studies found in the literature. Visualization plots and guidelines on the way to interpret
the results are proposed.

Keywords: bridging studies; distribution distance; oncology; phase I; dose-finding; dose–response;
bayesian inference

1. Introduction

Bridging studies are designed to fill the gap between two populations in terms of
clinical trial data, such as toxicity, efficacy, comorbidities and doses. A bridging data
package consists of selected data from the Clinical Data Package of the population in the
new region, including pharmacokinetic, any pharmacodynamic, dose–toxicity or dose–
efficacy data, and if appropriate, a bridging study to extrapolate the foreign dose–response
data to the new region [1].

According to the International Council for Harmonisation of Technical Requirements
for Pharmaceuticals for Human Use E5 (ICH-E5) guidelines, data can be extrapolated from
one region to another if “a bridging study [...] indicates that a different dose in the new
region results in a safety and efficacy profile that is not substantially different from the one
derived from the original region; it will often be possible to extrapolate the foreign data to
the new region, with an appropriate dose adjustment, if this can be adequately justified
(e.g., by pharmacokinetic and/or pharmacodynamic data)” [1]. This is the reason why
proposing a statistical tool evaluating the similarity between two foreign dose–response
curves is of great interest. If this is proven, then, other clinical trials data can be used and
extrapolated for the new region.
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In Japan, the Pharmaceuticals and Medical Devices Agency (PMDA) recommends the
re-evaluation of a drug if there are insufficient data from Japanese patients [2]. Indeed,
Phase I clinical trials in oncology, which aim to estimate the maximum tolerated dose
(MTD), are often repeated. Ogura et al. [3] pointed out that MTD differences between pop-
ulations could be due to the different distribution of genetic polymorphisms in enzymes
involved in drug metabolism or of biomarker incidences in different populations. In partic-
ular, in Japan, Phase I trials are repeated based on a physiological/metabolic paradigm:
MTDs for Japanese patients are often lower than the ones of for Caucasian patients [4].
Based on this assumption, Maeda and Kurokawa [5] have performed an intensive study
comparing the MTD of 21 molecularly targeted cancer drugs in Japanese versus Caucasian
populations. They found out that this assumption does not hold well: in their study, the
MTD was lower for Japanese patients in only two cases, there were no differences between
the two populations with 10 drugs and MTD was incommensurable as the evaluated dose
range acted different with nine drugs. Moreover, Mizugaki et al. [6] have analyzed data of
single-agent Phase I trials at the National Cancer Center Hospital between 1995 and 2012,
comparing the dose-limiting toxicity (DLT) profiles and MTDs of Japanese trials with the
trials from Caucasian populations.

Recently, methods for bridging dose-finding design have been proposed where pre-
vious population data were used to either calibrate the prior distribution of the Bayesian
model parameter(s) or to choose the “working model” of the design for prospective tri-
als [7]. Liu et al. [8] proposed using a Bayesian model to average the dose-finding method
where the previous trial data were used to build three different skeletons which would
then be averaged during the study. Moreover, Takeda and Morita recently defined an
“historical-to-current” parameter that could describe the degree of borrowing from one
population to the other [9]. Ollier et al. [10] proposed a bridging method where a borrowing
parameter was estimated sequentially in a response adaptive design which quantifies the
amount of reasonable borrowing according to the similarity between the two populations’
estimates. Usually,the proposed methods focus on one parameter, strictly related to the
MTD and not on the full dose–toxicity response curve. All these methods were proposed
with the purpose of using the foreign data to plan and conduct the future Phase I trial
in the new region. Indeed, at this stage, the idea is to use the foreign data to calibrate
model-based priors to be used in the new region trial. However, in most cases, the trial
in the new region will not be planned this way, but rather by using the MTD information
from the foreign region only, if available. The sophisticated statistical approach will not
be used.

Another option is to compare the two dose–response curves estimated from each
region and to evaluate how similar they are. In this case, the overall purpose is different
from before; if the curves prove to be similar (under the uncertainty estimation), the
new purpose will be to extrapolate other trial data—such as that of Phase II—to the new
region and to avoid further repetition of clinical investigations. For dose–response curves,
Bretz et al. [11] introduced an asymptotic test to evaluate the difference of the minimum
efficient dose among several groups of subjects, according to a threshold. However, this
method was built for later clinical phases and presents weaknesses when applied to a small
sample size. By contrast, Bayesian methods could mitigate the issue of estimation based on
a small sample size setting, since they do not rely on asymptotic approximations and prior
distributions can be used to ensure more stability in computation. Thereafter, the degree
of similarity could be considered directly at the posterior distributions level. Therefore,
methods proposing to estimate the similarity between dose–toxicity curves should be
proposed when there is the need to evaluate if the safety data can be extrapolated or not.

The aim of our work is to propose some Bayesian indicators that evaluate the distance
and the similarity of (1) dose–toxicity curves, taking into account the variability, (2) the
MTD posterior distributions, by extending and adapting the commensurability criterion
initially proposed by Ollier et al. [10]. These indicators were applied to several Phase I trials
presented in Maeda and Kurokawa [5] and Mizugaki et al. [6], evaluating the similarity
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between Western dose–toxicity data to Eastern ones. The proposed tools should be used
by trial stakeholders in order to decide if other trials data could be extrapolated from
the new region, and, if so, to avoid the repetition of multiple clinical trials. In the next
section, the original commensurability parameter is summarized along with the proposed
extensions and the dose–toxicity model used. The case studies are described in Section 3,
while Section 4 details the computational settings. The results are given in Section 5,
followed by a Discussion section.

2. Methods

In this section, we briefly recall the Bayesian commensurability measure used in
Ollier et al. [10], which was originally adopted into a power prior setting [12]; we then
propose extensions and modifications to this measure to be applied at the end of the study.
We also introduce the Bayesian dose–toxicity model, which will be used for retrospective
data analyses.

Let Dc denote the Caucasian data, Dc =
{(

yj, xj
)}

nc
, nc the sample size of Dc, and

yj the binary outcome of the j-th patient which received dose xj. In a similar way, we
can define Da, the Japanese data and associated parameters. Let us also set a model
for the probability of toxicity vs dose; pT(x) = f (x, β), where f (.) denotes a convenient
monotonous link function parametrized by β. The likelihood function for each population
can be written as L(β|Dm) = ∏nm

j=1 f (x, β)yj(1− f (x, β))1−yj , for m = c, a.

2.1. Commensurability Distances

Ollier et al. [10] suggested to consider the likelihood function as a distribution, divided
by a normalization constant. This type of normalized likelihood can also be seen as the
resulting Bayesian posterior distribution when constant (probably improper) priors are
used for the analysis. Then, the authors defined a measure of “commensurability” between
the two data-sets through a distance d(Dc, Da), the Hellinger one, in the parameters space
via the following relation

d2(Dc, Da) =
1
2

∫ 
√√√√ L(β|Dc)

min(1, na
nc )∫

L(β|Dc)
min(1, na

nc ) dβ
−

√√√√ L(β|Da)
min(1, nc

na )∫
L(β|Da)

min(1, nc
na ) dβ

2

dβ. (1)

The commensurability measure, denoted by γ, is then defined as γ = dq(Dc, Da), with
q ∈ R+. Values of q higher than 1 will reduce the computed distance, while values lower
than 1 will lead to a more conservative method, increasing the computed distance. In case
of sequential trials, the authors proved that, when coupled with the power prior approach,
a conservative value of γ leads to a better result in terms of operating characteristics, as a
percentage of the right MTD selection. However, at the end of the trial, we are interested in
comparing the achieved results, without any discount in the resulting distance. Therefore,
in this paper, we will focus on the original Hellinger distance, which is q = 1. This
computed distance is a positive number between 0 and 1, it tends towards the maximum
value when the two datasets are quite different, and towards zero when they are close to
each other. Each likelihood is divided by a normalization constant in order to ensure that it
can be viewed as a probability distribution. The variance of the likelihood density depends
on the sample size of the trial. To make the two likelihoods comparable in terms of precision
(variance), if nc > na, L(β|Dc) is raised to a power of less than 1, otherwise, L(β|Da) is
raised to a power of less than 1. Following this method, the variance of likelihood density
of the trial with more patients is increased to almost fit the one of the trial with fewer
patients. Practical examples are given in Ollier et al. [10].

A straightforward modification of the distance in Equation (1) was performed by
changing the underlying flat prior into a proper one. The posterior distribution obtained
with the weighted likelihood is then used in the Hellinger formula. Thus, denoted by
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πpost,c(β|Dc) ∝ L(β|Dc)
min(1, na

nc )πprior(β) and by πpost,a(β|Da) ∝ L(β|Da)
min(1, nc

na )πprior(β)
the posterior distribution of β given Dc and Da, respectively, we have

d2
mod(Dc, Da) =

1
2

∫ (√
πpost,c(β|Dc)−

√
πpost,a(β|Da)

)2
dβ. (2)

This modification will ensure more stability in computation when the likelihoods
involve more than one parameter. When flat/constant priors are used for πprior(β),
Equation (2) is equivalent to Equation (1). Even if, theoretically, two different priors
can be chosen for the two trials, we suggest using a single one for the sake of comparability.

Both previous distances work at the parameter level. They check if the whole dose–
toxicity curve is similar or not. Using a single parameter model for the dose–toxicity
relationship, as a one parameter logistic model used in the continual reassessment method
(CRM) [13], is also equivalent to check the MTD distance. However, in models with more
parameters, such as the Bayesian Logistic Regression Model (BLRM) [14] where we have
two parameters, intercept and slope, we check if the bivariate distribution of β is the same.
Since the distance is difficult to interpret in case of the multidimensional parameters space,
we propose a summary distance using the resulting posterior MTD distribution. In our
setting, the MTD, x∗, is estimated as the dose linked to a pre-specified toxicity target τ,
that is, x∗ = f−1(τ|β), where f−1(.) is the inverse function of f (.). The posterior MTD
distribution, πMTD,m(x∗|Dm), is obtained evaluating x∗ through the posterior distribution
of the parameter, πpost,m(β|Dm), for m = c, a. Therefore, we can define

d2
MTD(Dc, Da) =

1
2

∫ (√
πMTD,c(x∗|Dc)−

√
πMTD,a(x∗|Da)

)2
dx∗. (3)

Note that this distance always involves a one dimensional integral.
Previous distances focused on understanding the similarity of the whole dose–toxicity

curve between two populations. However, even with different slopes and intercepts, two
populations can still have the same MTD. Those differences should generally indicate a
difference in responsiveness to a drug and it is important to know when MTDs are similar
but not the underlying curves. Therefore, we propose to couple the distances, previously
described, with a measure denoting the difference in MTD point estimations. We can build
this measure as a percentage using the median of the posterior MTD distributions, such as

dp1(Dc, Da) =

(
medc

meda

)1−2I(medc<meda)

− 1, (4)

where I(.) is the indicator function, which assumes the value 1 if the statement in paren-
theses is true and zero otherwise, and medi with i = c, a, is the median of the posterior
MTD distribution of Caucasians and Japanese, respectively. This formulation was chosen
for its easy interpretation, indeed, we check how much the highest MTD differs in per-
centage in respect to the lowest one. For this reason, the formula implies the exponent
1− 2I(medc < meda), which allows us to always have the highest estimate at the numer-
ator, and the −1 term. Similarly to the three previous measures, Equation (4) tends to
zero when the two MTDs are very similar. However, this measure does not have an upper
bound. We propose the use of the median since it is less impacted by outliers than the
mean. The maximum a posteriori is another possible candidate, that is

dp2(Dc, Da) =

(
x̃∗c
x̃∗a

)1−2I(x̃∗c <x̃∗a )
− 1, (5)

where
x̃∗i = arg max

x∗
πMTD,i(x∗|Di).
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To summarize, the first three measures d, dmod, and dMTD are bounded between 0 and
1. Even if they are not built as percentages, their interpretation could be strictly linked to
the percentage. Otherwise, the last two measures dp1 and dp2 have a ratio-like measure,
lower bounded at 0. In practice, they give the information on the number of times the
maximum MTD is higher than the lowest one.

2.2. Dose–Toxicity Model

In this section, we describe the model selected for the link function f (.). Instead of
the CRM, originally used in Ollier et al. [10], which is better suited to prospective trials
than retrospective analyses (retrospective CRM requires special techniques), we opted for a
more flexible BLRM model, with two parameters, the intercept β0 and the (logarithm of
the) slope β1 [14]. The dose–toxicity relationship is represented by

logit{pT(x)} = β0 + exp(β1) log
(

x
xr

)
where β ∈ R2, xr denotes a reference dose and exp(β1) assures a positive final slope in
the model. In this case, f−1(.) is equal to the logit function and the BLRM formulation is
similar to the one of Zheng and Hampson [15]. To close the Bayesian model, we suggest a
bivariate normal distribution as prior for (β0, β1).

Following the described model, the final MTD is estimated as x∗ = xr exp logit(τ)−β0
exp(β1)

.
In order to minimize the overdispersion generated by this formula, we compared the
distribution of the log ratio of the MTD and the reference dose, x∗∗ = log(x∗/xr) (instead
of the real MTD). Therefore, we have also changed Equations (4) and (5), accordingly,
to the new formulation (x∗∗) in order to preserve the original distance meaning, that is
dp1(Dc, Da) = exp|medc −meda| − 1 and dp2(Dc, Da) = exp|x̃∗c − x̃∗a | − 1.

Finally, in a previous sensitivity analysis (not shown), even when comparing the
distribution of the log ratio of the MTD and the reference dose, we faced instability in
computation due to the issue of outliers. We have found that truncating the posterior
distribution of x∗∗ between the 10 and 90 percentiles gives a good compromise between
preserving trial information and computation stability.

3. Case Studies

To show the results and the interpretation of the proposed measures, we first introduce
four different synthetic datasets (1 for Caucasian and 3 for Japanese), to check the results
when two datasets are similar or not. We fixed the Caucasian dataset first: setting τ
equal to 0.3, the MTD at dose 600 mg/day. The same setting was used for the Japanese
synthetic-1 set. Moreover, the two datasets were generated to have the same dose–toxicity
shape. Japanese synthetic-2 set shares the same MTD with the Caucasian set, but has a
different dose–toxicity shape: the Japanese dose–toxicity is steeper at the MTD than the
Caucasian one. The Japanese synthetic-3 set has a different dose–toxicity curve and MTD
(200 mg/day). The data are summarized in Table 1.

Then, we applied our methods to eight examples found in the literature. Our research
started by looking at the drugs presented in Maeda and Kurokawa [5] and Mizugaki et al. [6].
We selected only drugs for which both Caucasian and Japanese trial data were available.
We then extracted the number of toxicities and the number of allocated patients to the
administered doses in each trial. All those data are shown in Table 2, each time with the
reference article. The MTD declared at the end of the trial is shown in a box. As we can see
from Table 2, Caucasians and Japanese trials were not usually used with the same set of doses.
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Table 1. Number of dose-limiting toxicity and total number of patients accrued at each dose for 1 Caucasian trial and
3 Japanese synthetic trials. In the first column, the trial population is specified. A dash (-) means that the dose was not
tested in the specified population. A box denotes the dose that has been defined as maximum tolerated dose (MTD).

Doses

Example (mg/day) 100 200 400 500 600 800

Caucasian (DLTs/nb pt) 0/3 0/3 0/6 - 3/9 2/3

Japanese
Synthetic-1 (DLTs/nb pt) - - - 1/10 2/8 2/2

Synthetic-2 (DLTs/nb pt) - - 0/3 0/9 4/12 3/3

Synthetic-3 (DLTs/nb pt) 0/3 1/6 3/3 - - -

Table 2. Value of dose-limiting toxicity and total number of patients accrued at each dose for all trials analysed in this
manuscript. In the first column, the trial population is specified. A dash (-) means that the dose was not tested in the
specified population. A box denotes the dose that has been defined as MTD, if the MTD was reached in the trial. For
Sorafenib, the doses were given twice daily (bid).

Investigated Drug Doses

Erilubin (mg/m2) 0.25 0.5 0.7 1.0 1.4 2 2.8 4

Caucasian [16] (DLTs/nb pt) 0/1 0/4 - 0/3 - 1/7 2/3 3/3

Japanese [17] (DLTs/nb pt) - - 0/3 0/3 2/6 3/3 -

Lapatinib (mg/day) 500 650 900 1000 1200 1600 1800

Caucasian [18] (DLTs/nb pt) 0/13 1/15 0/11 1/3 1/12 1/13 -
Japanese [19] (DLTs/nb pt) - - 0/6 - 0/6 1/6 1/6

Sorafenib (mg bid) 100 200 400 600

Caucasian [20] (DLTs/nb pt) 0/3 1/6 0/8 3/7

Japanese [21] (DLTs/nb pt) 0/3 1/12 0/6 1/6

Ixabepilone (mg/m2) 7.4 15 30 40 50 57 65

Caucasian [22] (DLTs/nb pt) 0/3 0/3 0/3 - 3/22 3/3 2/3

Japanese [23] (DLTs/nb pt) - 0/3 0/3 1/6 2/2 - -

Edotecarin (mg/m2) 6 8 11 13 15

Caucasian [24] (DLTs/nb pt) 0/3 0/3 0/6 1/9 4/9
Japanese [25] (DLTs/nb pt) - 0/3 1/6 1/9 2/6

E7070 (mg/m2) 50 100 200 400 600 700 800 900 1000

Caucasian [26] (DLTs/nb pt) 0/4 0/3 0/3 0/3 0/4 2/7 2/4 - 3/3

Japanese [27] (DLTs/nb pt) - - - 0/3 0/3 0/6 1/6 2/3 -

4. Settings

We chose τ, the target toxicity probability, to be used to define the MTD, which equals
0.3 for the three synthetic set examples, while it equals 0.25 for the real case studies. Most of
real case studies followed an algorithm base allocation; therefore, it seemed more natural to
have a threshold lower than 0.3, which is more frequently used when model based designs
are adopted in oncology.
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A non-informative bivariate prior distribution, commonly used in this setting, was
chosen for the BLRM model as follows:(

β0
β1

)
∼ N

((
logit(0.1)

log 1

)
,
[

4 0
0 4

])
.

The hyperprior parameters of the bivariate prior were chosen after a preliminary sensitiv-
ity analysis (not shown) in order to ensure computational stability. In detail, this prior choice
suggests a mean prior probability of toxicity at the reference dose, xr, of 0.1 and that the slope
has the prior median centered at zero. Therefore, xr was chosen in the first half of the total
dose panel for each example. In detail, 400 mg/day was set for the three synthetic examples,
1 mg/m2 for Erilubin, 900 mg/day for Lapatinib, 200 mg/day for Sorafenib, 30 mg/m2 for
Ixabepilone, 8 mg/m2 for Edotecarin and 700 mg/m2 for E7070.

All distances were computed with q = 1, which is why we focus on the square root of
Equation (1)–(3) and on the original value for Equation (4) and (5). The reference doses
selected are reported along with the results in Table 3. All computations were performed
in R, version 3.5.2. Monte Carlo approximations were adopted for all integrals involved,
and uniform prior distribution on compact supports was set to approximate weighted
likelihoods (as posterior distributions) in Equation (4). Details can be found in R scripts in
the Supplementary Materials.

Table 3. Results in terms of d, dmod, dMTD, dp1 and dp2 for the synthetic examples and the real case
studies. xr denotes the reference dose selected for the Bayesian Logistic Regression Model (BLRM).

Drug d dmod dMTD dp1 dp2

Synthetic-1 0.23 0.18 0.19 0 0
Synthetic-2 0.53 0.37 0.41 0.02 0.02
Synthetic-3 0.91 0.83 1.00 1.50 1.27

Erilubin 0.92 0.83 0.91 0.47 0.43
Lapatinib 0.58 0.39 0.50 7.29 0.35
Sorafenib 0.45 0.43 0.57 10.07 0.75

Ixabepilone 0.77 0.56 0.62 0.34 0.26
Edotecarin 0.38 0.24 0.32 0.32 0.04

E7070 0.63 0.63 0.88 0.59 0.23

5. Results

The computed distances under all the proposed methods are shown in Table 3. When
the MTD and the dose–toxicity curves are similar, like in synthetic-1 data, d, dmod, dMTD
are lower than 0.23 and dp1 = dp2 = 0. When only the MTDs are similar (synthetic-2 data)
but not the dose–toxicity curves, dp1 = dp2 = 0.02 but d, dmod, dMTD are higher than 0.37.
Finally, when both curves and MTDs (synthetic-3 data) differ dp1 = 1.50, dp2 = 1.27 and d,
dmod, dMTD are higher than 0.83.

Taking these cases’ studies as reference, we then analyse the data from published
papers with Caucasian and Japanese datasets. Erilubin has the highest values of d, dmod and
dMTD, greater than 0.80, which suggests differences between the dose–toxicity curves. It is
also shown in Figure 1. Its values of dp1 and dp2 are around 0.45. Ixabepilone and E7070
have quite large d, dmod and dMTD, greater than 0.56 and they also have similar results in
term of dp2. The value of dp1 is different in these two examples and reflects the presence of
unbalanced heavy tails in the E7070 case. The heavy tail concern is observed, in at least
one population, in all examples except for Erilubin. The results obtained in Table 3 show
that dp1 is directly impacted by this phenomenon. For example, Lapatinbib and Sorafenb
have a very high value of dp1, greater than 7.29, whereas the maximum a posteriori, dp1,
has more stable and usual results. Edotecarin has close values of d, dmod and dMTD, around
0.3, representing similar dose–toxicity curves.

Figure 2 and Figure A1, in the Appendix A, show how the Caucasian posterior
distribution is different in the three synthetic examples even if it comes from the same
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Caucasian dataset. This behaviour is due to the variance adjustment given by min
(

1, na
nc

)
.

In general, the posterior peak is preserved and the variance increases when the exponent is
less than 1 (as in the synthetic-3 example).

Figure 1. MTD posterior distributions for Erilubin, Ixabepilone, Lapatinib, Sorafenib, Edotecarin and E7070 case studies.
Posterior medians are represented by a circle for Caucasian and a triangle for Japanese, while maximum a posteriori is
represented by a dashed line for Caucasian and a two-dash line for Japanese.
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Figure 2. MTD posterior distributions for the Synthetic-1, Synthetic-2 and Synthetic-3 examples. Posterior medians are
represented by a circle for Caucasian and a triangle for Japanese, while maximum a posteriori by a dashed line for Caucasian
and a two-dash line for Japanese.

Figure 3 represents the distance between dose–toxicity curves, dmod, and maximum
of the posterior MTD distribution, dp2. For the sake of interpretability, we have equally
divided the axes into three parts, each one denoting a small, moderate or high distance,
respectively. In this plot, Sorafenib has moderate distances between curves and high
difference between MTDs. This is the opposite for Erilubin, where there is a moderate
difference between MTD and a large distance between curves. When MTDs are similar
or close (first column of the gradient), Edotecarin has similar dose–toxicity curves, while
the distance between curves of Ixabepilone and E7070 is moderate. Lapatinib shows a
moderate distance of both dose–toxicity curve and estimated MTDs.
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Figure 3. Gradient plot representing the distance between dose–toxicity curves, dmod (y-axis), and maximum of the posterior
MTD distribution, dp2 (x-axis). The intensity of the color varies along with the increasing distance value and coherence.
Small dose–toxicity distance and high MTD distance is incoherent, as such it is plotted in a darker color.

6. Discussion

The aim of our work was to propose several Bayesian indicators to support further
decisions when using a bridging data package [1]. Bayesian methods permit the definition
of a similarity degree based on posterior distribution, which do not rely on asymptotic
approximations and can be used also in small sample size settings. Specifically, we proposed
Bayesian indicators which evaluate the distance and the similarity of dose–toxicity curves
and MTD. When evaluating a drug among different populations, assessing the dose–response
curves similarity is of most importance, since, if it is proved, other clinical trial data can be
used, as well as extrapolation from one population to the other. Maeda and Kurokawa [5]
pointed out the difficulty of defining a commensurability measure for different populations.

We presented and studied five criteria, where three of them, d, dmod and dMTD, mea-
sure the similarity between dose–toxicity curves, and two of them, dp1 and dp2, measure
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the distance between the median and the maximum a posteriori of the MTD posterior distri-
butions. The first three measures are bounded between 0 and 1 and their interpretation
could be linked to a proportion. The second ones, dp1 and dp2 have a ratio-like value with
a lower bound at 0. In practice, they represent a relative risk measure.

Our approach allows for the identification and discussion of similarities and differ-
ences between dose–toxicity curves and MTDs. However, as small samples were used in
these studies, estimation of the entire dose–toxicity curve, when only part of the doses
in the panel were evaluated, is complex and leads to an estimation with high variability.
This is reflected in the values of d, dmod and dMTD, which in our real case studies were
above 0.2. When high differences between d and dmod are observed, this is probably due to
computational difficulties in Equation (1), especially in computing the weighted likelihood
without a stabilization term. In general, dmod is lower than dMTD. This could be expected
for two reasons: (i) dMTD introduces, via the transformation, more variability (increased in
the density estimation step); (ii) dMTD is computed after truncating the posterior induced
distribution of the MTD. Moreover, we showed that dp2, based on the maximum a posteri-
ori, is more stable than dp1, which is based on the median, in the presence of unbalanced
heavy tails. Therefore, dp2 could be suggested as a more reliable measure in this setting.
We have attempted the analysis while varying the variance matrix of the bivariate normal
prior distribution and dp1 was less stable (results not shown).

The MTD definition can vary according to the trial and to the population. Therefore,
even if the same MTD is claimed in both Caucasian and Japanese populations, our analysis
can identify differences. For instance, in the Japanese trial of Sorafenib, 400 mg/day is
defined in the clinical trial as the MTD, but at the closest higher dose level, 600 mg/day,
only one patient experienced toxicities (16.7%). Otherwise, in the Caucasian trial, three
patients out of seven experienced toxicity at 600 mg/day (42.6%). Even if the two trials
find the same MTD, the toxicity probability associated with each one differs. That is the
reason why our results showed otherwise. Indeed, in the published clinical trials, there is
a discrepancy between the method section defining the MTD and the real given MTD at
the end of the trial. Our methods are based on data only and allow for evaluation of the
actual similarity.

We decided to present the plot of the posterior densities (of the parameters and of the MTD)
as it shows the super-position (or not) of the information. Plotting directly one-dimensional
dose–response curves could, instead, be misleading and give hazardous interpretation.

A first limitation of our work is that we used published data, where the reporting
can be sometimes incomplete in terms of DLTs and doses. For instance, in the paper of
Burris et al. [18], we had to re-compose the DLT table and the dose-allocation sequence.
Therefore, some interpretation discrepancy can be found in our Table 2. The issue of poor
reporting in cancer trials was already raised by Zohar et al. [28] and Comets and Zohar [29].
As a second limitation, we did not provide fixed cut-offs for each criterion. In our opinion,
the choice of the cut-offs depends on the application and on the quantity of information in
the two trials. The more information we have, the more stringent cut-offs can be considered.
Figure 3 only represents a proposition on the way to display the results.

The criteria proposed in this manuscript may be extended to be used in other settings.
For example, when several trials are available, a meta-analysis of the dose–toxicity curves
or of the MTDs can be considered [30–32]. In this case, pairwise distances can be previously
estimated, in an empirical Bayes approach, and then be used to model the heterogene-
ity parameter(s) or to set prior distribution(s). Other extensions, which do not involve
necessarily Phase I studies, could be considered: (i) in adults–children extrapolation; (ii)
when we are interested to jointly evaluate efficacy and toxicity [33]; (iii) when comparing
outcomes (efficacy or toxicity) of the same drug in different indications; (iv) when dealing
with similarities in subgroups; (v) in comparing historical control data with respect to the
actual trial in randomized Phase III trials.

Being able to quantify distance and bridging between two populations at the end of
early Phase I trials can be useful to better characterize the dose–toxicity relationship and
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differences. In case of small or acceptable differences, the extrapolation process can be
considered, as suggested in the ICH-E5.
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Abbreviations

The following abbreviations are used in this manuscript:

bid bis in die: twice a day
BLRM Bayesian Logistic Regression Model
CRM Continual reassessment method
DLT dose-limiting toxicity

ICH
International Conference on Harmonisation of Technical Requirements for
Registration of Pharmaceuticals for Human Use

MTD maximum tolerated dose
PMDA Pharmaceuticals and Medical Devices Agency

Appendix A. Bivariate Posterior Plots

Figures A1 and A2 show the bivariate posterior distributions of β0 and β1 when
using dmod.

Figure A1. Bivariate posterior distributions of β0 and β1 when using dmod for the three synthetic examples.

https://www.mdpi.com/1660-4601/18/4/1639/s1
https://www.mdpi.com/1660-4601/18/4/1639/s1
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Figure A2. Bivariate posterior distributions of β0 and β1 when using dmod for the real case studies
shown in Table 2.
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