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Abstract 

Metabolic diseases, including obesity, diabetes, and nonalcoholic fatty liver disease (NAFLD), are rising in both 
incidence and prevalence and remain a major global health and socioeconomic burden in the twenty-first century. 
Despite an increasing understanding of these diseases, the lack of effective treatments remains an ongoing chal-
lenge. Mitochondria are key players in intracellular energy production, calcium homeostasis, signaling, and apoptosis. 
Emerging evidence shows that mitochondrial dysfunction participates in the pathogeneses of metabolic diseases. 
Exogenous supplementation with healthy mitochondria is emerging as a promising therapeutic approach to treating 
these diseases. This article reviews recent advances in the use of mitochondrial transplantation therapy (MRT) in such 
treatment.

Keywords:  Diabetes, Extracellular vesicles, Mitochondrial transfer, Nonalcoholic fatty liver disease, Obesity

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Metabolic diseases, including obesity, diabetes, and 
nonalcoholic fatty liver disease (NAFLD), occur 
worldwide, with increasing incidence and prevalence. In 
2015, an estimated 604 million adults had obesity and 414 
million people had diabetes [1]. The incidence of diabetes 
is expected to rise to 629 million by 2045. Approximately 
85% of all patients with type 2 diabetes (T2D) are either 
overweight or obese [2]. NAFLD is tightly linked to 
obesity. Furthermore, 25% of the world’s population 
might have NAFLD [3]. Mitochondrial-dysfunction–
related oxidative stress (OS), insulin resistance (IR), and 

metabolic disorders are important contributing factors 
in the development of obesity, diabetes, and NAFLD [4, 
5]. Therefore, the repair of mitochondrial homeostasis 
is expected to produce a potential therapeutic effect on 
metabolic diseases and their complications. Existing 
studies indicate that mitochondrial transfer restores the 
bioenergetics of damaged mammalian cells via actin-
based tunneling nanotubes (TNTs), extracellular vesicles 
(EVs), cell fusion, and extrusion [6–8]. In 2017, a human 
clinical study first reported using isolated mitochondria 
to treat cardiomyopathy as an innovative strategy 
for improving mitochondrial dysfunction [9]. In this 
review, we summarize the advances of mitochondrial 
transplantation therapy (MRT) in metabolic-disease 
treatment to provide valuable insight into this scope.

Notably, the clinical application of MRT is still limited. 
More research is needed to accelerate the development of 
and access to mitochondrial drugs to optimize them for 
the benefit of patients. We found that MRT is challenged 
by the immune response. In addition, we discuss methods 
of maintaining mitochondrial stability in mitochondrial 
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drug products. Finally, we summarize delivery strategies 
for healthy mitochondria and predict the future clinical 
application of MRT.

Function of mitochondrial transfer in intercellular 
communication
Mitochondrial bioenergy is necessary for cell survival 
[10]. Mitochondrial dysfunction has been observed in a 
variety of diseases, including T2D, NAFLD, aging, cancer, 
cardiovascular diseases, and degenerative brain diseases 
[11]. Regulation of mitochondrial biology and function 
could potentially be used to treat various diseases caused 
by mitochondrial damage. Treatment strategies for 
mitochondrial dysfunction are generally divided into 
the following categories: (i) increasing mitochondrial 
biogenesis; (ii) reducing dysfunctional mitochondria 
and replacing them with active ones; (iii)  delivering or 
replacing dysfunctional components; (iv) intervening 
in the consequences of mitochondrial dysfunction; and 
(v) reprogramming the mitochondrial genome [12, 13]. 
However, to date, almost none of these strategies have 
yielded satisfactory results. The main problems include 
methods to identify suitable targets and a lack of a reliable 
method to target damaged mitochondria. Recently, the 
field of MRT has received increasing attention as an 
innovative strategy for treating mitochondrial diseases by 
replacing disabled mitochondria.

Mitochondria are considered to be retained in cells for 
their lifetimes. The transfer of mitochondria between 
cells has not yet been confirmed. In 1982, Clark and 
Shay first demonstrated that isolated mitochondria 
with mutant genes for chloramphenicol could naturally 
transfer antibiotic resistance to susceptible cells [14]. In 
2006, Spees et  al. reported evidence of mitochondrial 
transfer between mammalian cells [15]. So far, 
mitochondrial transfer has been found between different 
types of cells, such as mesenchymal stem cells (MSCs) 
and alveolar cells, astrocytes and neurons, and different 
bone marrow mesenchymal stem cells (BM-MSCs) [16, 
17].

Mode of mitochondrial transfer
Mitochondrial transfer relies on communication between 
a donor cell and a recipient cell and can be regulated by 
several structures, such as TNTs or EVs [18–21] (Fig. 1). 
TNTs conduct transcellular mitochondrial transfer from 
adjacent healthy cells to rescue recipient cells from a bio-
energetic deficit [22], and this process might be bidirec-
tional [23]. EVs have also been shown to transfer integral 
mitochondria [24]. The sharing of EV-derived mitochon-
dria has been observed in different cell types [25–27]. In 
addition, cell-to-cell transfer of mitochondria can also 
be conducted via gap junctions (GJs), cell fusion, and 

direct uptake of isolated naked mitochondria [28, 29]. 
The occurrence of mitochondrial transfer is considered 
a new category of intercellular signaling and is involved 
in multiple pathophysiological conditions [30]. This phe-
nomenon of cell-to-cell mitochondrial transfer could be a 
new approach to the treatment of mitochondrial diseases 
by replacing non-functional mitochondria in damaged 
tissues or cells with functional ones.

Mitochondrial transfer via TNTs
Several structures mediate cell-to-cell mitochondrial 
transfer [31]; TNTs are the major ones. Rustom et  al. 
originally discovered TNTs as a new intercellular 
communication channel [19]. TNTs are thin, tubular, 
F-actin–based structures 50–700  nm in diameter that 
can connect cells over long distances. They can transport 
cellular organelles such as mitochondria, lipid droplets, 
proteins, and micro–ribonucleic acids (miRNAs) [32]; 
such transfer can be unidirectional [33] or bidirectional 
[23].

Some of the proteins involved in the formation of 
TNTs are small GTPase (Miro1), connexin 43 (C×43), 
M-Sec (also known as tumor necrosis factor alpha 
[TNF-α]–inducible protein 2), the exocyst complex, 
and leukocyte-specific transcript  1 (LST1). Miro1 is 
essential for mitochondrial transport. MSCs with Miro1 
overexpression promoted mitochondrial–alveolar 
epithelial-cell (EC) transfer in a co-culture system [34]. 
In mouse models of lung injury and asthma, intravenous 
(i.v.) injection of MSCs that overexpressed Miro1 partially 
reversed ischemic effects and improved neurological 
function compared with injection of unmodified 
MSCs [16]. C×43 is an important regulator of TNT 
formation through intercellular GJ channels (GJCs) for 
mitochondrial transfer [35]. In addition, the exocyst 
complex regulated by M-Sec is also required for TNT 
formation [36, 37]. LST1 is a transmembrane protein 
that can recruit RalA to the submembrane region and 
accelerate the interaction between RalA and the exocyst 
complex. Meanwhile, LST1 recruits the actin cross-
linked protein filamin. The combination of LST1, M-Sec, 
RalA, and the exocyst complex promotes remodeling and 
cross-linking of actin filaments, leading to cell membrane 
protrusion and fusion and ultimately to TNT formation 
[38]. However, the mechanism underlying the fusion of 
the protruded section of the membrane with target cells 
remains unclear.

Mitochondrial transfer via extracellular vesicles
EVs are membrane-shed vesicles 50–1000  nm in 
diameter [7]. They can carry a variety of bioactive 
cargos, including organelles, membrane proteins, and 
small molecules. Therefore, EVs play important roles 
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in mitochondrial or mitochondrial-DNA (mtDNA) 
transcellular transfer in certain types of cells [39]. In 
2012, Islam et  al. [17] first showed that BMSC-derived 
EVs could carry mitochondria to damaged alveolar ECs 
in a lipopolysaccharide (LPS)–induced acute lung injury 
(ALI) model. Similarly, MSCs facilitate the phagocytic 
activity of macrophages through mitochondria-
containing EVs in clinically relevant models of lung injury 
[40]. This hypothesis has gained significant support from 
recent studies on ECs, immune cells, astrocytes, and 
neurons [41, 42].

Compared with TNTs, the mechanism by which EVs 
mediate mitochondrial transfer remains unclear. The 
nicotinamide adenine dinucleotide–positive (NAD+)/
Cluster of Differentiation 38 (CD38)/cADPR/Ca2+ 
pathway might contribute to EV-mediated mitochondrial 
transcellular transfer. Intracellular NAD+ increases and 
transfers to the extracellular environment under stress 
conditions in glioma cells; this leads to an increase 
in intracellular Ca2+ concentration via the NAD+/
CD38/cyclic adenosine diphosphate ribose (cADPR)/

Ca2 pathway following remodeling of the actin 
cytoskeleton and invagination of the cell membrane, 
thereby completing endocytosis of EVs. Nevertheless, 
inhibition of endocytosis reduces the mitochondrial 
transfer of BMSCs to damaged lung ECs [43]. Similarly, 
mitochondrial transcellular transfer by EVs between 
astrocytes and neurons has also been shown to depend 
on the NAD+/CD38/cADPR/Ca2+ pathway [27, 44].

Mitochondrial extrusion and cell fusion
TNTs, EVs, and C×43 GJCs represent the main routes 
that mediate mitochondrial transcellular transfer. 
However, some other routes exist, such as cytoplasmic 
fusion and mitochondrial extrusion [45]. Cytoplasmic 
fusion is a common phenomenon in which the 
membranes of two or more cells fuse to share organelles 
[8]. Rearrangement of the actin cytoskeleton and fusion 
of glycoproteins on both cell membranes are required 
for cell fusion [46]. Cell fusion results in massive 
mitochondrial delivery into recipient cells. Elongation 

Fig. 1  Schematic representation of the various mitochondrial-transfer modes utilized between donor cells and damaged cells with dysfunctional 
mitochondria. A Extracellular vesicles (EVs) can convey mtDNA or fragments of mitochondria; though less well documented, microvesicles 
are suggested to contain entire mitochondria. B Cx43-mediated gap junctions serve at the cell–cell junction to enable mitochondrial transfer. 
Tunneling nanotubes (TNTs) are actin-dependent cytoskeletal protrusions that also serve as cytoplasmic bridges between cells. Miro1 regulates the 
transport of mitochondria across TNTs. C. Cell fusion enables sharing of cytoplasmic contents during either transient or permanent fusion of the 
plasma membranes of two cells
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of the distance between cells leads to the transfer of 
fewer mitochondria [47]. Evidence shows that cell fusion 
can modulate the potency of stem cells; mitochondrial 
transfer is crucial for stem cells in regeneration and 
tumorigenesis [31].

Naked mitochondria or mitochondrial components 
can also be extruded by exocytosis and internalized 
by endocytosis without a carrier. In a mouse model, 
Boudreau  et al. demonstrated that platelet-derived 
naked mitochondria are released into the extracellular 
environment [48]. In addition, cells sensitive to 
chloramphenicol (CAP) and efrapeptin (EF) were found 
to endocytose naked mitochondria isolated from CAP- 
and EF-resistant fibroblasts [14] to recover the viability 
and bioenergy of recipient cells [49].

Metabolic diseases and mitochondrial dysfunction
Metabolic diseases involve multiple cell types, tissues, 
organs, inflammatory signaling cascades, and humoral 
factors [50, 51]. Disruption of mitochondrial function 
is a common feature of inherited metabolic diseases, 
including diabetes, obesity, and NAFLD.

Mitochondrial dysfunction in diabetes and obesity
T2D is the fourth-leading cause of death worldwide. Its 
prevalence has greatly increased due to the adoption of 
sedentary lifestyles [52]; it is predicted that approximately 
642 million adults worldwide will suffer from diabetes by 
2040 [53].

T2D exhibits pancreatic β-cell dysfunction and 
enhanced pancreatic α-cell function, which causes 
chronic hyperglycemia induced by peripheral-tissue IR 
[54] (Fig.  2). First, pancreatic β-cell dysfunction results 
in absolute or relative insufficiency of insulin secretion 

Fig. 2  Comparison of healthy and type 2 diabetic phenotypes. In individuals with T2D, islet β-cells undergo apoptosis, and the function of the 
surviving cells is impaired, which results in markedly reduced insulin levels in circulation. Additionally, peripheral-tissue insulin resistance impairs the 
action of insulin, resulting in reduced uptake of glucose from circulation as a result of decreased GLUT4 translocation to the membrane. Reduced 
insulin levels result in hyperglycemia and hyperlipidemia, and subsequent T2D-associated symptoms manifest. Inappropriate glucagon secretion, 
diminished incretin hormone action, increased proinsulin secretion, impaired pancreatic-islet neural regulation, and islet amyloid deposition are 
also characteristics of T2D
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and poor peripheral glucose and fat uptake, which leads 
to hyperglycemia and dyslipidemia. Second, hypergly-
cemia and hyperlipidemia activate pancreatic α-cells via 
increased glucagon production. Recent studies point to 
peripheral-tissue IR, as a sensitive reaction in prediabetic 
individuals, as a prerequisite to the development of T2D 
[55, 56]. IR occurs due to an imbalance between the sup-
ply and demand of nutrients in multiple tissues, includ-
ing skeletal muscle, liver, and adipose tissue [57]. It is 
also associated with mitochondrial dysfunction [58]. In 
addition, mitochondrial dysfunction contributes greatly 
to age-dependent IR [59] and induces diabetic microvas-
cular (cardiomyopathy, nephropathy, retinopathy, and 
neuropathy) [60–63] and macrovascular (myocardial 
ischemia) [64] complications. Therefore, mitochondrial 
quality control is a promising intervention for managing 
T2D and obesity.

As a leading cause of disability and death, T2D 
represents a major cost to healthcare systems. Emerging 
evidence suggests that mitochondrial dysfunction 
precedes the development of T2D [65]. Although the 
role of mitochondria in regulating OS, IR, and insulin 
secretion has been widely recognized, the effect of 
mitochondrial dysfunction on T2D is still a mystery.

Mitochondria are a major source of reactive oxygen 
species (ROS), which are critical to redox homeostasis, 
metabolism, and multiple cellular functions through 
apoptosis and maintenance of Ca2+ levels in patients 
with diabetic cardiomyopathy [66–68]. Many studies 
suggest that IR is closely associated with ROS production 
[65]. Nicotinamide adenine dinucleotide phosphate 
(NADPH) and mitochondrial-oxidase–derived ROS 
(mROS) can block serine kinase signaling for insulin 
receptor substrate 1 (IRS-1) protein phosphorylation [69] 
and impair insulin signaling [70]. In addition, mROS can 
ameliorate the disorder of the electron transport chain 
(ETC) dominated by complex I [71] and significantly 
reduce adenosine triphosphate (ATP) synthesis in 
pancreatic-islet β-cells [72]. In contrast, another report 
demonstrates that mROS causes IR without affecting 
insulin signaling or components of the mitochondrial 
respiratory chain [73]. Interestingly, mROS can activate 
mitochondrial fission [74]. Mitochondrial fission 
is often associated with mitochondrial-membrane 
potential (Δψmt) depolarization [75], which damages 
the ability of mitochondrial Ca2+ signaling to control 
mitochondrial motility [76]. Additionally, the dynamic 
interplay between Ca2+ release, mitochondrial motility, 
and mitochondrial Ca2+ uptake forms the basis for a 
homeostatic mechanism for mitochondrial distribution 
and calcium signaling. However, the mechanism by 
which mitochondrial fission generates IR has not yet 
been elucidated and is worthy of attention.

Mitochondrial dysfunction and IR might have a 
bidirectional effect, which would affect the control 
of blood glucose levels in the body through different 
mechanisms such as glycogenolysis, glucose uptake, and 
gluconeogenesis [77]. In patients with IR, aerobic exercise 
enhances insulin action by stimulating mitochondrial 
biogenesis and function [78]. In addition to increased 
glucose uptake, insulin stimulates mitochondrial activity 
in adipocytes [79] and skeletal muscle [80], which can 
significantly reduce hepatic lipid accumulation and 
enhance insulin sensitivity and glucose homeostasis 
[81]. Conversely, poor mitochondrial function reduces 
insulin sensitivity [82]. Spontaneous mutations of 
mitochondrial deoxyribonucleic acid (DNA) caused by 
aging or environmental factors inhibit mitochondrial 
β-oxidation [83], which increases fatty acid accumulation 
and induces IR by inhibiting glucose transporter 4 
(GLUT4) translocation. Certain DNA mutations lead 
to alteration in oxidative phosphorylation (OXPHOS), 
resulting in less ATP production for glucose transport 
and thereby increasing IR [84]. However, whether a direct 
relationship exists between mitochondrial dysfunction 
and IR remains unclear. More importantly, whether 
mitochondrial capacity is a cause or consequence of 
IR remains unknown. Despite numerous studies on 
the subject, it is still uncertain whether mitochondrial 
dysfunction is connected to a common signal that 
promotes IR. Further studies and specific animal models 
are necessary for a better understanding of the process by 
which mitochondrial dysfunction produces IR.

Mitochondria might be the master regulators of 
insulin secretion [85, 86]. Reduced nicotinamide adenine 
dinucleotide (NADH) cytoplasmic mitochondrial 
shuttling [87], mitochondrial Ca2 + signaling [88], 
mROS [89], and tricarboxylic acid (TCA) metabolic 
intermediates [90] can promote insulin secretion. A 
question that has intrigued us and other researchers 
in the field in which mitochondrial bioenergetic state 
is more beneficial for increased glucose sensitivity, 
including the ability of peripheral tissues to take up and 
use glucose, and subsequent insulin release in diabetic 
patients. Since both excessive mitochondrial fission 
and fusion can lead to changes in insulin secretion, 
maintenance of the ideal balance between mitochondrial 
fusion and fission appears to be a promising therapeutic 
target.

Mitochondrial dysfunction in NAFLD
NAFLD, defined as excessive accumulation of fat in the 
liver [91], has a global prevalence of 30% [92]. With the 
prevalence of obesity and metabolic syndrome, NAFLD 
is considered an important cause of chronic liver disease 
in developed countries and regions such as Europe, the 
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United States, and affluent areas of China. In addition, 
NAFLD is involved in the occurrence of T2D, which 
seriously affects patients’ quality of life (QoL). However, 
the underlying mechanism of NAFLD remains unknown 
and many therapies have no good effect on it [93].

NAFLD is driven by multiple parallel factors, such as 
OS, hepatic inflammation, free fatty acid (FFA), IR, and 
dysfunction of adipose tissue [94] (Fig.  3). In a high-fat 
diet (HFD) mouse model, abnormal ETC exhibited high 
levels of mROS, which increased OS [95] and promoted 
the development of NAFLD [96]. Excessive OS further 
aggravates stellate-cell activation via lipid peroxida-
tion (oxidation of FFA) and liver inflammation (cytokine 
release) [97]. Furthermore, lipid peroxidation indirectly 
accelerates inflammation, which inhibits insulin receptor 
signaling and the insulin sensitivity of the liver, thereby 
inducing steatosis and fibrosis [98, 99]. Lipid peroxida-
tion also leads to lipotoxicity and dysfunction of adipose 
tissue [99]. In a NAFLD mouse model, while mitochon-
drial dysfunction occurred concurrently with incom-
plete fatty acid β-oxidation [100], the decline in such 
β-oxidation resulted in accumulation of inflammation 
and IR, suggesting a link between mitochondrial dysfunc-
tion and fatty liver diseases. This finding indicates that 
mitochondria-targeting medicines could have important 
implications for NAFLD patients.

NAFLD is considered a mitochondrial disease [101]. In 
the liver, mitochondria participate in many vital physi-
ological processes, particularly in energy metabolism 
[102–104]. Sirtuins (SIRT) comprise a family of nicoti-
namide adenine dinucleotide (NAD +)-dependent lysine 
deacylases that regulate the life span, aging, and metab-
olism [105]. The mitochondrial sirtuins are involved in 
metabolic regulation and antioxidative defense. In con-
trast to other members of SIRT, the enzymatic activities 
of SIRT4 have remained unclear. Emerging evidence show 
that circulating levels of sirtuin 4, a potential marker of 
oxidative metabolism, related to coronary artery disease 
in obese patients suffering from NAFLD, with normal or 
slightly increased liver enzymes [106]. In patients with 
NAFLD, hepatic mitochondria exhibit ultrastructural 
lesions and decrease the activity of the respiratory-chain 
complexes; this decrease results in the accumulation of 
ROS to form lipid peroxidation products, which in turn 
causes hepatitis and necrosis [107]. Studies have shown 
that mROS can also induce activation of hepatic stellate 
cells into myofibroblasts to generate collagen via trans-
forming growth factor β (TGF-β) produced by Kupffer 
cells, thus further promoting the development of NAFLD 
into liver fibrosis and cirrhosis [108]. In addition, disor-
ders of mitochondrial function can lead to the accumula-
tion of FFA in hepatocytes, subsequently causing IR in an 
energy crisis [109, 110]. In the liver, IR typically results 

Fig. 3  Multiple-hit pathogenesis of nonalcoholic fatty liver disease (NAFLD). NAFLD begins with hepatic lipid accumulation and insulin resistance 
and progresses to nonalcoholic steatohepatitis (NASH) with the collaboration of various factors such as inflammation, endotoxin, organokines 
(adipokines and hepatokines), and oxidative stress
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in the upregulation of mitochondrial function in hepato-
cytes [111]. In contrast, in adipose and cardiac tissues, IR 
impairs mitochondrial respiratory function in adipocytes 
and cardiomyocytes [112], suggesting a complex tissue 
specificity between insulin sensitivity and energy metab-
olism. Interestingly, hypertrophy-induced IR sensitizes 
hepatocytes to mitochondrial dysfunction and oxidative 
damage, which subsequently exacerbates inflammation 
and hepatic stem cell (HSC) activation and aggravates 
liver damage [113]. Therefore, IR induced by different 
factors in NAFLD warrants further research.

The role of OS and hepatic IR in inducing NAFLD can 
be explained by the role of mitochondrial dysfunction in 
hepatic lipid metabolism [114]. Therefore, pharmacologi-
cal therapies that target mitochondria could be promising 
for NAFLD intervention. Ailing Fu et  al. injected naked 
mitochondria from human hepatocytes with hepatocellu-
lar carcinoma (Hep G2 cells) into the livers of mice with 
fatty livers and found that this treatment could improve 
energy production in the liver and reduce hepatic lipid 
accumulation and oxidative damage to restore hepato-
cytic activity; this provides new insights into preventing 
the progression of NAFLD [115]. We firmly believe that 

MRT is potentially an optimal therapeutic approach to a 
variety of mitochondrial diseases.

Mitochondrial transfer in metabolic diseases
The development of a reliable mitochondrial-delivery 
protocol is a major challenge that must be addressed 
before widespread clinical application of MRT is possible. 
Due to the immunogenicity of isolated mitochondria 
[116–118], the cell-mediated mitochondrial transfer 
is considered a more promising therapeutic strategy 
(Table 1).

MSCs have been widely investigated in regenera-
tive medicine and drug delivery due to their low immu-
nogenicity and targeting properties. In streptozotocin 
(STZ)–induced diabetic animals, mitochondrial dys-
function in hyperglycemia-induced proximal-tubule ECs 
(PTECs) is alleviated by BMSCs via transfer of mitochon-
dria. The direct administration of isolated mitochondria 
under the renal capsule of STZ rats generates a rapid 
improvement of PTEC morphology and in the structures 
of the tubular basement membrane and brush border. 
In  vitro, mitochondria isolated from BMSCs enhance 
the expression of mitochondrial superoxide dismutase 

Table 1  Researches of mitochondrial transplantation in obesity, diabetes and hepatic diseases

NAFLD Nonalcoholic fatty liver disease; T2DM type 2 diabetes mellitus; ROS reactive oxygen species

Mitochondrial source Recipient Therapeutic outcome Mechanism References

Bone marrow derived 
mesenchymal stem cell

Renal proximal tubular epithelial 
cells (streptozotocin- induced 
diabetic)

Suppressing ROS production 
and inhibited apoptosis of PTECs

Gap junctions [119]

Bone marrow derived 
mesenchymal stem cell

HFD-induced
T2DM-associated NAFLD

Combat NAFLD via rescuing 
dysfunction mitochondria

Cell fusion [120]

Mesenchymal stem cells (MSCs) Macrophages Alleviates kidney injury in 
diabetic nephropathy mice

Tunneling nanotube (TNT) [121]

Adipose MSCs Human islet β-cells Improves islet insulin secretory 
function

TNT [122]

Platelets Hippocampal neurons
(db/db mice with Diabetes-
associated cognitive 
impairment)

Attenuates oxidative stress and 
neuronal apoptosis

Mitochondrial transplantation [123]

Adipocytes White adipose tissue (WAT) 
macrophages of HFD-induced 
obese mice

Reduces energy expenditure 
and exacerbates diet-induced 
obesity

Undefined [124]

Adipocytes Cardiomyocytes with acute 
oxidative stress injured

Limits cardiac ischemia/
reperfusion injury

Small extracellular vesicles (sEVs) [125]

Macrophages Brown adipose tissue Ensure efficient thermogenesis 
in brown adipose tissue

Extracellular vesicles (EVs) [126]

Cardiomyocytes Cardiomyocytes (pregestational 
diabetes mellitus (PGDM)-
exposed, HFD-diet-exposed)

Reduce cardiomyocytes 
apoptosis and boost respiratory

Mitochondrial transplantation [127]

Tissue samples
(Zucker lean rats)

Hearts from zucker diabetic fatty 
(ZDF fa/fa) rats

Enhances myocardial 
postischaemic function and 
decreases myocellular injury

Mitochondrial transplantation [128]

Human hepatoma cells
(HepG2 cells)

High-fat diet (HFD)-induced 
mouse fatty liver

Rescue of hepatocyte 
mitochondrial function

Endocytosis (naked 
mitochondria)

[115]
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2 (SOD2) and B-cell lymphoma 2 (Bcl-2) and reduce the 
production of ROS. Furthermore, the administration of 
isolated mitochondria can decrease PTEC apoptosis by 
reducing the nuclear translocation of receptor-activated 
receptor γ-coactivator-1α (PGC-1α) and upregulating 
the expression of megalin and sodium-glucose cotrans-
porter-2 (SGLT2) [119]. These findings provide new 
insights into the mechanism by which BMSCs exert 
therapeutic effects on diabetic nephropathy (DN). Simi-
larly, in an HFD-induced NAFLD model, mitochondrial 
transfer from BMSCs to steatotic cells was observed to 
reduce fat accumulation. The recipient steatotic cells 
markedly enhanced liver function, OXPHOS activity, 
ATP production, and Δψmt while reducing ROS levels, 
weight gain, steatosis, and disturbances in glucose and 
lipid metabolism in obese mice [120]. In contrast, umbili-
cal cord MSCs have been shown to have clinical promise 
due to their accessibility, expandability, and multipoten-
tiality. In DN, umbilical-cord MSCs alleviate renal injury 
by promoting the polarization of macrophages to an anti-
inflammatory phenotype, which depends on PGC-1α–
mediated mitochondrial biogenesis and PGC-1α/
transcription factor EB (TFEB)–mediated lysosomal 
autophagy [121]. In addition, studies indicate that human 
adipose–derived MSCs mediate mitochondrial transfer 
to pancreatic islets, which improves the insulin secre-
tion function of the islets [122]. Nevertheless, MSCs are 
challenged by uncertainties in culture method, source 
cells, expansion level, storage and transportation condi-
tions, and ethical approval, which hinder their clinical 
application. Platelets are considered a more attractive 
source for autologous mitochondrial transplantation due 
to their abundance, accessibility, and low immunogenic-
ity. In a DB/DB diabetes-associated cognitive impair-
ment (DACI) mouse model, lateral ventricular injection 
of platelet-derived mitochondria (Mito-Plt) attenuated 
cognitive impairment and mitochondrial dysfunction. 
Mechanistically, Mito-Plt injected into the lateral ventri-
cle were internalized into hippocampal neurons, which 
contributed to the recovery of mitochondrial function, 
mitigation of OS, and neuronal apoptosis and reduced 
Aβ and Tau accumulation in the hippocampus [123].

Recent studies have highlighted that cell-to-cell 
mitochondrial transfer contributes to metabolic diseases. 
In adipocyte-specific mitochondrial-reporter mice, 
macrophages have been found to acquire endogenous 
mitochondria from neighboring adipocytes. Further 
genome-wide clustered regularly interspaced short 
palindromic repeats (CRISPR)–CRISPR-associated 
protein 9 (Cas9) knockdown revealed that heparan sulfate 
(HS) is critical for mitochondrial uptake in macrophages 
[124]. White adipose tissue (WAT) macrophages exhibit 
lower HS levels, resulting in reduced intercellular 

mitochondrial transfer from adipocytes to macrophages 
in mice with obesity or deletion of the myeloid-cell HS 
biosynthesis gene exostosin-1 (Ext1), which increases 
body weight and obesity and decreases glucose tolerance 
and insulin sensitivity [125]. Recent findings have 
demonstrated that thermochemically stressed brown 
adipocytes can release EVs containing oxidatively 
damaged mitochondrial parts to avoid failure of the 
thermogenic program. When reuptaken by parental 
brown adipocytes, mitochondrial-derived EVs reduce 
PGC signaling and levels of mitochondrial proteins, 
including uncoupling protein 1 (UCP1). Depletion of 
macrophages in  vivo causes abnormal accumulation of 
extracellular mitochondrial vesicles in brown adipose 
tissue (BAT), impairing the thermogenic response to cold 
exposure [126]. This current research contributes to a 
better understanding of how macrophages interact with 
adipocytes and could guide treating obesity. In addition, 
adipocytes can release EVs to protect cardiomyocytes 
from acute OS. EVs containing adipocyte-damaging 
mitochondrial granules enter the blood circulation and 
are taken up by cardiomyocytes, thereby triggering an 
increase in ROS and inhibiting ischemia/reperfusion 
(I/R) injury to mouse hearts via compensatory 
antioxidant signaling in the heart [127].

Several studies have used isolated mitochondria from 
various sources as an intervention in many diseases. 
In a diabetic cardiac I/R rat model, injection of naked 
mitochondria enhanced myocardial function by 
improving ATP content and myocardial viability after 
ischemic perfusion [128, 129]. Meanwhile, in NAFLD 
mice, serum transaminase activity was decreased after 
intravenous administration of exogenous mitochondria, 
which consequently reduced lipid accumulation and 
oxidative damage in mice with fatty livers. MRT offers 
unique therapeutic potential for the amelioration of 
NAFLD [115] and, in conclusion, has a bright future in 
metabolic-disease therapy.

Problems in mitochondrial transfer
Ethical issues
The debate over whether mitochondrial replacement 
therapy (MRT) should be allowed is based on scientific 
and ethical issues. How to classify MRT as a medical 
procedure is uncertain. Mitochondrial donation involves 
the transfer of genetic material but not of nuclear 
genetic material, which leads to the question of whether 
it should be conceptualized as ova or tissue donation 
[130]. Numerous studies have shown that personal 
characteristics are determined entirely by nuclear 
DNA121, suggesting that a child’s physical characteristics 
come from its parents, not from the mitochondrial donor. 
Therefore, MRT is more likely to be classified as similar 
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to tissue donation. Nonetheless, while MRT has great 
potential to meet standards of safety and therapeutic 
efficiency, it requires thorough ethical analysis before 
clinical implementation can be considered. One central 
issue is the origin of donor mitochondria, including 
autografts, allografts, and xenografts. Each donor source 
can have its unique ethical and biological implications. In 
autologous transplantation, mitochondria from tissues 
with a lower risk of mtDNA mutation can be used to treat 
a highly compromised organ of the same person. This 
donor source rarely raises ethical concerns, but it entails 
great biological challenges that require further complex 
experimentation and the use of animal models to verify. 
All transfers would use mitochondrial donations from 
genetically close family members. Ideally, the human 
donor and recipient should share the same haplotype 
[131]. Alternatively, if no close relatives are available, 
haplotype matching could be considered [132]. Another 
ethically tricky option for all transfers is the potential use 
of still-viable mitochondria from a dead human relative 
in treatment [133, 134].

While MRT raises many ethical and safety concerns, 
it may also offer new therapeutic options. The United 
Kingdom (UK) has recently taken an important step 
toward allowing and regulating the use of MRT therapy 
by developing relevant guidelines [135]. This was passed 
in October 2015 under the license and regulations of 
the UK Human Fertilization and Embryology Authority 
(HFEA) [136]. This medical and legal advance opens 
up a range of possibilities for families with severe 
mitochondrial diseases to have their own genetically 
healthy children.

Immunological reaction of transplanted mitochondria
A few reports to date have discussed immune 
responses during MRT. Understanding the responsible 
mechanism would be valuable in reducing the risks 
associated with MRT. For acquired mitochondrial 
disease, transplantation of mitochondria-derived from 
autologous cells without inflammation and autoimmune 
responses appears feasible. McCully et  al. have shown 
that autologous mitochondrial transplantation induces 
no immune response in various animal models [137]. 
In a rabbit model of ischemic cardiomyopathy, a 
single injection of autologous mitochondria isolated 
from pectoralis major tissue failed to increase various 
inflammatory markers in serum or the production of 
anti-mitochondrial antibodies [138]. Likewise, in a 
porcine I/R model, serum cytokine levels did not increase 
significantly after a single autologous mitochondrial 
transplantation [139].

In the case of congenital mitochondrial disease, 
autologous mitochondrial transplantation might not be 

suitable, because mitochondria in other tissues might 
be dysfunctional. To tackle this issue, a discussion 
of autoimmune responses generated by allogeneic 
mitochondrial transplantation is critical. Ramirez 
Barbieri et  al. [140]. investigated immune response 
and damage-associated molecular patterns (DAMPs) 
in mice following single or multiple intraperitoneal 
injections of allogeneic mitochondria and found that 
serum cytokine and mtDNA levels did not increase after 
either autologous or allogeneic mitochondrial injection. 
In contrast, Brennan et  al. [141] showed that the heart 
develops a marked rejection response early in a single 
injection of allogeneic mitochondria. Activation of 
vascular ECs by extracellular mitochondria accelerates 
graft rejection. Elevated secretion of inflammatory 
cytokines and chemokines by activated vascular ECs 
increases T-cell adhesion and penetration into allograft 
tissues. Another study reports that the blood of 
organ transplant donors is enriched in mitochondria-
derived DAMPs, which leads to the elevation of pro-
inflammatory cytokines and chemokines during donor 
transplantation [142]. To expand the potential and 
stability of MRT, further research into and resolution of 
challenges such as post-transplant immune responses are 
required.

Mitochondrial source, purity, and storage
The mitochondrial-donor screening system, mature 
mitochondrial-function evaluation, and mitochondrial-
preservation methods determine the stability of 
mitochondria as a pharmaceutical product for clinical 
applications. Therefore, sufficient improvements in 
MRT strategy for better treatment of patients depend on 
sufficient mitochondrial reserves.

The source of mitochondria is critical for MRT and is 
influenced by metabolic profile, age, health of the source 
organ, ease of access to organelles, and histocompatibility. 
Mitochondrial bioenergetics express differently in 
different organs. The numbers of mitochondria in muscle, 
brain, and adipose tissue are the same, but mitochondria 
in muscle have higher Δψmt [143, 144]. Due to its high 
regenerative potential, easy access, organelle density, and 
relative OXPHOS coupling index, the liver is considered 
a good source of donor mitochondria [145]. A recent 
study has shown that donor tissue age correlates with 
mitochondrial mass [146]; mitochondria from young 
healthy mice with higher Δψmt and antioxidant capacity 
are better able to suppress tumor cell proliferation than 
mitochondria from older mice. However, the relevance of 
histocompatibility to MRT remains uncertain.

Another issue is the quality of the isolated 
mitochondria. Intact functional mitochondria are 
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essential for successful MRT, although possibly only 
certain mitochondrial components might play beneficial 
roles [147]. A high-quality mitochondrion should at least 
have outer- and inner-membrane integrity, the ability 
to phosphorylate ADP in  vitro, and high expression 
of oxidative coupling factors [145] so that it can be 
used in MRT. Furthermore, cytochrome C (cyt c) in 
respiration assays or activity assays of specific enzymes 
in the mitochondrial matrix is recommended to control 
organelle integrity. Recommended oxygen consumption 
in high-quality mitochondrial respiration induced by cyt 
c is no higher than 15%. In addition, no activity of matrix 
enzymes should be detectable in the supernatant of the 
organelles.

A storable preparation of mitochondria for clinical 
applications would be significantly beneficial for MRT, 
but it would require the establishment of a method 
that permits mitochondria to be stored for an extended 
period. The composition of the mitochondrial-storage 
solution is critical to maintaining mitochondrial activity 
in low-temperature storage. Both Eurocollins [148] 
and the University of Wisconsin (UW) [149] solutions 
have been developed for organ preservation. A study 
evaluating mitochondria isolated from rat livers found 
that UW solution can maintain cyt c content and 
complex II activity after storage for 24 h. However, when 
rat livers are stored in Eurocollins solution, glucose 
permeates the hepatocytes, which causes mitochondrial 
expansion and loss of complex III and IV activities due to 
the absence of antioxidants [150]. Geiger et al. report that 
mitochondrial-respiration capacity is maintained above 
80% after cold storage for 24  h in 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES)–sucrose-based 
buffer. A storage period exceeding 2  days leads to a 
substantial decrease in breathing ability. Compared with 
traditional mitochondrial-reservation solutions, Nukala 
et  al. [151] explored the possibility of storing isolated 
mitochondria in dimethyl sulfoxide (DMSO); they 
found that mitochondrial OXPHOS capacity remained 
unchanged when mitochondria were stored frozen in 
10% DMSO, but mitochondrial activity was reduced. 
These results indicated that storing mitochondria in a 
refrigerator in any preservation buffer has limited ability 
to protect them from damage. Therefore, preservation 
solutions used in mitochondrial cold storage must be 
optimized to maintain mitochondrial structure and 
function. The addition of antioxidants is effective in 
maintaining complex III and IV activity and the addition 
of colloids is effective in maintaining the mitochondrial 
structure, which could be useful for such optimization.

Strategies for mitochondrial‑transfer optimization
MRT has proven to be a potential therapy for improving 
mitochondrion-related diseases. To effectively treat dis-
eases in humans using MRT, various strategies such as 
peptide-mediated mitochondrial delivery (PMD), mag-
netic nanoparticles (NPs), centrifugation-based meth-
ods, iron oxide NP (IONP)–engineered human MSCs 
(hMSCs), mediated mitochondrial transfer, and medium-
to-large EVs (m/LEVs) have been developed and applied 
(Fig. 4).

Isolated functional mitochondria can selectively 
replace damaged mitochondria and have been used 
to treat mitochondrial diseases. In 2017, Boston 
Children’s Hospital (Boston, MA, USA) was the first 
institution to use autologous mitochondria transfer 
in the clinical treatment of myocardial I/R injury in 
children [9]. Mitochondria isolated from the patient’s 
non-ischemic skeletal muscle were injected directly into 
the damaged myocardium; improvements in ventricular 
function were observed without adverse complications 
such as arrhythmia, intramyocardial hematoma, or 
scarring [9]. In the second clinical trial, initiated at 
Sun Yat-sen University (Guangzhou, China) in 2018, 
mitochondria were autologously microinjected from 
BM-MSCs into human sex cells (oocytes and sperm; 
ClinicalTrials.gov No. NCT03639506) to improve oocyte 
quality. Nevertheless, the internalization of isolated 
mitochondria was decreased in target cells due to the 
negative surface charge. In response, PMD [152–154], 
magnetic NPs [155], and centrifugation-based methods 
[156] were applied to improve the efficiency of naked-
mitochondrial transplantation. Recently, biocompatible 
polymers have been proposed as a more efficient strategy 
for the delivery of isolated mitochondria to enhance 
target cell internalization [157].

MSC transplantation is considered an efficient means 
of mitochondrial delivery. Currently, trials for clinical cell 
therapies are ongoing for mitochondrial-related diseases 
that include Pearson syndrome (No. NCT03384420), 
ophthalmic pathology (including age-related macu-
lar degeneration and glaucoma; No. NCT03011541), 
and inherited metabolic disorders (including mito-
chondrial neurogastrointestinal encephalopathy; No. 
NCT02171104). However, the clinical application of 
MSCs is limited by oncogenicity, abnormal differentia-
tion, and vascular occlusion [158]. A recent study reports 
using IONPs to efficiently and safely transfer mitochon-
dria from hMSCs to damaged cells, which could restore 
mitochondrial bioenergetics of damaged cells. Ionized 
IONPs promote the formation of C×43-containing GJCs 
(C×43-GJCs), which selectively promote the transfer 
of hMSC mitochondria to damaged cells. In a mouse 
model of pulmonary fibrosis, IONP-engineered hMSCs 
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promoted intercellular mitochondrial transfer and signif-
icantly alleviated fibrosis progression without any safety 
concerns [159].

EVs are natural cell-derived drug carriers that can carry 
a variety of bioactive components of lipids, proteins, and 
nucleic acids for intercellular communication. EVs of 
particle size < 200  nm are called small EVs (SEVs), and 
those of particle size > 200  nm are called m/LEVs; the 
latter can naturally transport mitochondria during bio-
genesis. A few reports suggest that m/LEVs enhance the 
survival of damaged recipient tissues by participating in 
the transfer of healthy mitochondria, resulting in a func-
tional increase in cellular/tissue ATP levels and cellular 
bioenergetics [17, 24, 27]. The maintenance of naked 
mitochondrial structure in serum is difficult, but m/LEVs 
can effectively protect the integrity and functional activi-
ties of mitochondria and prolong their lifespan in blood, 
making them a promising carrier for MRT. A recent study 
reports that m/LEV can be engineered with an abundant 

mitochondrial load by activating PGC-1α [160], but such 
trials are often very expensive and time-consuming. 
Research on expanding EV production capacity and m/
LEV collection rate with rich mitochondrial load could 
help broaden clinical applications of mitochondrial 
therapy.

MRT strategies for systemic administration of isolated 
mitochondria, stem cells, or EVs have poor specificity, 
which affects blood cells and vessel-rich organs such as 
the lungs and liver. Therefore, the efficacy of MRT ben-
efits from the improvement of the targeted delivery and 
internalization efficiency of mitochondria to specific tis-
sues or organs. We believe that the main focus of future 
research should be to develop carriers for specific cell 
delivery or to overcome the challenges of mitochondrial-
internalization efficiency.

Fig. 4  Representation of mitochondrial-internalization mechanisms used in mesotherapy. A Schematic illustration showing the potential strategy 
of using IONPs to augment intercellular mitochondrial transfer from hMSCs. B Increased mitochondrial biogenesis in PGC-1a–activated human 
brain ECs might permit the engineering of EVs with a higher mitochondrial load-m/IEVs (mitochondrial/IONPs-EVs). C Techniques developed to 
improve exogenous-mitochondrion internalization
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Conclusions
This review provides a comprehensive description 
of the current progress of research in mitochondrial 
replacement transplantation for metabolic diseases 
and discusses the ethical, immunogenic, storage, and 
targeted-delivery issues that challenge MRT. To develop 
better mitochondrial-transplantation products for 
the clinical treatment of metabolic diseases, we must 
establish an ideal MRT system.

Because mitochondria are easily obtained from 
cultured cells and the technology of mitochondrial 
isolation and preservation is becoming more mature, 
large-scale mitochondrial-donation centers are 
expected to be established in the future; thus, when 
autologous transplantation cannot be performed, a 
suitable donor can be found in time. However, whether 
MRT is feasible in specific indications remains unclear. 
Therefore, a skin allograft rejection and tolerance 
test should be performed to ensure the safety of 
MRT, and the subsequent dosing regimen and route 
of administration should be based on the combined 
onset characteristics of the disease. In acute situations 
such as infarction, rapid administration of successfully 
matched healthy mitochondria can ameliorate 
mitochondrial dysfunction and subsequent cell death, 
while other chronic mitochondrial dysfunction diseases 
might require continuous intermittent injections of 
mitochondria. Nevertheless, doses of mitochondrial 
and ectopic implantation in healthy tissue could lead 
to side effects. Real-time monitoring of the therapeutic 
process is equally important. The addition of imaging 
tools such as biodegradable fluorescent probes or 
quantum dots in mitochondrial-delivery vehicles might 
be beneficial. The development of MRT technologies 
could offer new therapeutic options for mitochondrial 
transplantation. In conclusion, although MRT faces 
many problems and challenges, it still has great 
development prospects and a good clinical market.
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