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Abstract
Background: DNA-bound transcription factors recruit an array of coregulatory proteins that
influence gene expression. We previously demonstrated that DNA functions as an allosteric
modulator of estrogen receptor α (ERα) conformation, alters the recruitment of regulatory
proteins, and influences estrogen-responsive gene expression and reasoned that it would be useful
to develop a method of isolating proteins associated with the DNA-bound ERα using full-length
receptor and endogenously-expressed nuclear proteins.

Results: We have developed a novel approach to isolate large complexes of proteins associated
with the DNA-bound ERα. Purified ERα and HeLa nuclear extracts were combined with oligos
containing ERα binding sites and fractionated on agarose gels. The protein-DNA complexes were
isolated and mass spectrometry analysis was used to identify proteins associated with the DNA-
bound receptor. Rather than simply identifying individual proteins that interact with ERα, we
identified interconnected networks of proteins with a variety of enzymatic and catalytic activities
that interact not only with ERα, but also with each other. Characterization of a number of these
proteins has demonstrated that, in addition to their previously identified functions, they also
influence ERα activity and expression of estrogen-responsive genes.

Conclusion: The agarose gel fractionation method we have developed would be useful in
identifying proteins that interact with DNA-bound transcription factors and should be easily
adapted for use with a variety of cultured cell lines, DNA sequences, and transcription factors.

Background
Estrogen receptor α (ERα) is a ligand-inducible transcrip-
tion factor involved in regulating expression of estrogen-
responsive genes [1]. Upon binding hormone, ERα under-
goes a conformational change, binds to estrogen response

elements (EREs) residing in target genes, and initiates
changes in gene expression. We and others have demon-
strated that, in addition to the hormone-induced change
in ERα conformation, the receptor undergoes another
conformational change, which is induced by binding of
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the receptor to individual ERE sequences [2-7]. Thus, both
hormone and DNA induce conformational changes in
ERα structure.

ERα does not function in isolation, but serves as a nucle-
ating factor to recruit numerous coregulatory proteins
required to effectively modulate transcription. In fact,
much of what we know about regulation of estrogen-
responsive genes has come through the identification of
ERα-associated coregulatory proteins and elucidation of
mechanisms by which they influence ERα-mediated
transactivation. The majority of ERα-associated coregula-
tory proteins have been identified through their interac-
tion with a discrete functional domain of the receptor,
most commonly the ligand binding domain (Reviewed in
[8,9]. The p160 proteins steroid receptor coactivator 1
(SRC-1), transcription intermediary factor 2 (TIF-2), and
amplified in breast cancer 1 (AIB1) interact with ERα in a
hormone-dependent manner and enhance ERα-mediated
transcription [10-17]. Both SRC-1 and AIB1 as well as
CREB binding protein (CBP) and p300/CBP-associated
factor (pCAF) possess intrinsic histone acetyltransferase
activity that has been implicated in enhancing gene
expression by modifying chromatin structure [18-24]. A
large complex of proteins identified on the basis of its
interaction with the thyroid hormone and vitamin D
receptors has been designated as the thyroid hormone
receptor associated protein (TRAP) or vitamin D receptor
interacting protein (DRIP) complex [25-27]. DRIP205/
TRAP 220, which anchors the DRIP/TRAP complex to
nuclear receptors, interacts with ERα in a ligand-depend-
ent manner and enhances transcription [28,29]. In addi-
tion to the numerous coactivators that enhance ERα-
mediated transcription, the corepressors nuclear receptor
corepressor (NCoR) and silencing mediator for RXR and
TR (SMRT) bind to the antiestrogen-occupied receptor
and inhibit ERα-mediated transcription by recruiting pro-
tein complexes containing Sin3 and histone deacetylases
[30-34]. Thus, ERα-associated coregulatory proteins have
positive and negative effects on the ability of the receptor
to activate transcription.

To better understand how ERα regulates transcription of
estrogen-responsive genes, we developed a novel method
to isolate proteins associated with the DNA-bound recep-
tor, which utilizes full-length ERα and endogenously-
expressed nuclear proteins and takes into account DNA-
and ligand-induced changes in receptor conformation.
This method should be useful in isolating regulatory pro-
teins associated with other DNA-bound transcription fac-
tors and could yield important new information about
mechanisms regulating gene expression.

Results
Characterization of protein-ERα-ERE complexes
To isolate novel proteins that associate with ERα and
might influence estrogen-responsive gene expression, we
developed a method that relied on the segregation of pro-
teins on agarose gels and was based on the capacity of
these proteins to associate with the ERE-bound receptor.
Using this method, we were able to take into considera-
tion DNA-induced modulation of ERα conformation,
which we have demonstrated alters recruitment of coreg-
ulatory proteins to the DNA-bound receptor [2-5]. E2 was
also included to ensure that ligand-induced changes in
receptor conformation were considered.

As seen in Fig. 1, when radiolabeled, ERE-containing oli-
gos were fractionated on an agarose gel, neither ERα (lane
2) nor HeLa nuclear extracts (lane 3) alone produced a
discrete protein-DNA complex, but when both ERα and
HeLa nuclear extracts were included, a distinct, higher
order protein-DNA complex was present (lane 4). The
ability of an ERα-specific antibody (lane 6), but not a
nonspecific antibody (lane 5), to supershift the protein-
DNA complex indicated that the receptor was present in
the complex and that interaction of the ERα antibody
with the complex was specific. Furthermore, the ability of
unlabeled ERE-containing oligos (lane 8), but not oligos
containing a nonspecific DNA sequence (lane 7) to com-
pete with the radiolabeled ERE-containing oligos con-
firmed the specificity of the receptor-DNA interaction. As
an additional control, we utilized radiolabeled oligos that
contained a nonspecific DNA sequence. While a protein-
DNA complex was formed with the ERE-containing oli-
gos, no complex was observed with the oligos containing
a nonspecific DNA sequence (data not shown). Thus, this
agarose-based gel fractionation method allowed us to iso-
late proteins that were ERα and ERE specific.

Large scale isolation of protein-ERα-ERE complexes
Once we defined the gel conditions required for forma-
tion of specific protein-ERα-ERE complexes, the next step
was to increase the sample size so that sufficient amounts
of protein would be available for isolation and identifica-
tion. For these large-scale reactions, ERα-specific antibody
was utilized to stabilize the protein-ERα-ERE complex and
unlabeled oligos were used to avoid unintentional expo-
sure of equipment to radioactive probe during the subse-
quent isolation and identification steps. However, small-
scale samples containing radiolabeled oligos, purified
ERα, HeLa nuclear extracts, and an ERα-specific antibody
were run in adjacent lanes so that the position of the pro-
tein-ERα-ERE complexes in the gel could be determined
(Fig. 2A, lanes 1 and 4).

Large-scale binding reactions containing unlabeled ERE-
containing oligos, HeLa nuclear extracts, ERα, and an
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ERα-specific antibody were fractionated on one prepara-
tive-sized lane of an agarose gel and the gel region comi-
grating with the radiolabeled complexes was excised (lane
3, boxed area). Although distinct complexes were detected
in our agarose gels when ERα, HeLa nuclear extracts, and
ERα-specific antibody were included in the binding reac-
tions (lanes 1 and 4), it seemed possible that some pro-
teins might comigrate with the protein-ERα-ERE complex,
but not actually be associated with it. Thus, a large-scale
binding reaction containing the unlabeled ERE-contain-
ing oligos, HeLa nuclear extracts, and ERα-specific anti-
body, but no ERα, was processed in parallel and served as

a negative control. The gel region comigrating with the
radiolabeled protein-ERα-ERE complexes was also excised
(lane 2, boxed area).

Initially, acetone or isopropanol precipitation was uti-
lized to concentrate the proteins eluted from the agarose
gel slices (data not shown). However, we found this
method was unacceptable since it did not efficiently pre-
cipitate some proteins including ERα. By using a nebulizer
column, which pulverizes the gel matrix and extracts the
liquid and proteins, the protein recovery was far more effi-
cient.

Small-scale agarose gel electrophoresisFigure 1
Small-scale agarose gel electrophoresis. 32P-labeled, ERE-containing oligos were incubated without (lane 1) or with ERα 
(lanes 2, 4–8) and/or HeLa nuclear extracts (NX, lanes 3–8). Nonspecific (NS) antibody (lane 5), ERα-specific antibody (lane 6), 
unlabeled oligos containing a nonspecific (NS) DNA sequence (lane 7), or unlabeled ERE-containing oligos (lane 8) were added 
to the binding reactions to confirm that the complexes formed were specific. 17β-estradiol (E2) was included in all binding 
reactions. Complexes were resolved on an agarose gel and visualized by autoradiography.
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Identification of known coregulatory proteins in the 
protein-DNA complexes
To determine whether previously identified coregulatory
proteins were associated with the ERα-ERE complex or
merely comigrated with it, Western analysis was carried
out. As expected, ERα was detected when the purified
receptor was included in the binding reaction with HeLa
nuclear extracts, but not when it was omitted (Fig. 2B).
AIB-1, a known p160 coactivator of ERα-mediated tran-
scription [12], was present in the complex when ERα had
been added to the binding reaction, but not when it was
omitted. Although p300 and RNA polymerase II (Pol II,
Refs. [35-37] were detected in the absence of the receptor,
significantly more p300 and Pol II were detected when
ERα had been included in the reaction. Thus, the com-
plexes we isolated were comprised of ERα and transcrip-
tion factors that are known to be involved in regulating
estrogen-responsive gene expression. Furthermore, the
effective association of the coregulatory proteins with the
complex was dependent upon the presence of ERα.

Identification of coregulatory proteins associated with the 
ERE-bound ERα
Although we had shown that previously identified coreg-
ulatory proteins were present in our protein-ERα-ERE
complexes, the objective in these experiments was to iden-
tify novel proteins associated with the ERE-bound ERα.
Mass spectrometry analysis was used to identify proteins
present in gel regions that comigrate with the radiolabeled
protein-ERα-ERE complexes (Fig. 2A, boxed areas).
Numerous proteins involved in DNA replication and
repair, chromatin remodeling, protein folding/stabiliza-
tion, protein degradation, translation initiation and elon-
gation, apoptosis, oxidative stress response, and signal
transduction were identified (Table 1 and Additional file
1). While some proteins were identified in the absence
and in the presence of ERα, significantly more peptides
were recovered in the presence of ERα, as was observed in
Fig. 2B with p300 and Pol II, reflecting a higher abun-
dance of these proteins. The fact that we identified the
same proteins in two or more experiments (see Additional
file 1) suggests that the methods we used were reproduci-
ble. However, the most important validation of this
method has come through functional characterization of
these proteins. At this point, we have characterized the

Large-scale agarose gel electrophoresis and complex analysisFigure 2
Large-scale agarose gel electrophoresis and complex analysis. A. Large-scale reactions containing unlabeled ERE-con-
taining oligos were incubated with HeLa nuclear extracts and an ERα-specific antibody in the absence (lane 2) or presence 
(lane 3) of purified ERα. Small-scale reactions containing 32P-labeled ERE-containing oligos, HeLa nuclear extracts, an ERα-spe-
cific antibody, and purified ERα were also prepared and run in parallel to indicate the location of the protein-DNA complexes 
(*, lanes 1 and 4). E2 was included in all binding reactions. Complexes were resolved on an agarose gel and were visualized in 
the wet gel by autoradiography. Gel regions comigrating with the 32P-labeled protein-ERα-ERE complexes were excised 
(boxed areas) and contained unlabeled DNA and associated proteins without (lane 2) or with (lane 3) ERα and ERα-specific 
antibody. B. Proteins were isolated from the excised agarose gel pieces and subjected to Western blot analysis with antibodies 
directed against ERα, AIB-1, p300, or Pol II.
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activity of 15 proteins associated with the DNA-bound
ERα (Table 1) and found that each of these proteins influ-
ences estrogen-responsive gene expression [38-47] and
unpublished data).

Isolation of protein-ERα-ERE complexes using other cell 
lines
The agarose gel fractionation method we developed is not
restricted in the type of cells utilized. We have used this
method to form large protein-DNA complexes with
nuclear extracts from MCF-7 breast cancer cells, which
express endogenous ERα (Fig. 3A). Inclusion of an ERα-
specific antibody supershifted the complex formed with
these extracts. Interestingly, although we were unable to
form a stable protein-ERα-ERE complex with purified ERα
and nuclear extracts from MDA-MB-231 human breast
cancer cells, which do not express ERα (Fig. 3B), inclusion
of an ERα-specific antibody helped to stabilize protein-
DNA complex formation. In fact, we routinely include
ERα-specific antibodies to help stabilize our protein-ERα-
ERE complexes.

Discussion
We have developed a method of isolating stable protein-
DNA complexes, the formation of which requires ERα, the
ERE, and nuclear proteins. A number of factors were con-
sidered in establishing this methodology. First, full-length
human ERα and endogenously-expressed nuclear pro-
teins were utilized. Second, allosteric modulation of
receptor conformation by DNA and hormone was taken
into account by isolating proteins associated with the
DNA-bound, E2-occupied ERα. It is, after all, the estrogen-
occupied, DNA-bound receptor that recruits coregulatory
proteins and initiates changes in transcription. By consid-
ering both E2- and DNA-induced changes in receptor con-
formation, we were able to identify proteins that are
involved in transcriptional control and gain new insight
to help define how changes in gene expression occur.
Third, because traditional polyacrylamide gel shift assays
do not allow large protein-DNA complexes to enter the gel
[38,39,41-43,48-50], agarose gels were employed to iso-
late large molecular weight complexes containing ERα,
ERE-containing oligos, and nuclear coregulatory proteins.
In addition, low ionic strength buffer and ERα-specific
antibody were used to stabilize protein-ERα-ERE com-

Table 1: Proteins associated with the DNA-bound ERα

Protein # of discrete peptides % a.a. sequence 
identified

Effect on ERα-mediated 
transcription

References Cited

3-methyladenine DNA 
glycosylase (MPG)

3 14 Decrease [40]

apurinic endonuclease-1 
(APE1)

3 18 Gene specific Curtis and Nardulli, 
Submitted

flap endonuclease-1 (FEN1) 3 13 Gene specific [42]
high mobility group protein-
2 (HMG-2)

2 13 Increase [49,50,67]

nonmetastatic protein 23 
homolog 1 (NM23-H1)

5 35 Decrease [45]

proliferating cell nuclear 
antigen (PCNA)

9 57 Increases basal [43]

protein disulfide isomerase 
(PDI)

7 19 Gene specific [41]

pp32 5 19 Decrease [39]
retinoblastoma associated 
protein 46 (RbAp46)

6 18 Gene specific [47]

retinoblastoma associated 
protein 48 (RbAp48)

6 18 Decrease [47]

rho-GDP dissociation 
inhibitor α (RhoGDIα)

7 57 Gene specific [44]

superoxide dismutase 1 
(SOD1)

9 86 Increase [46]

template activating factor 1β 
(TAF-Iβ)

16 38 Decrease [38]

thioredoxin (Trx) 4 46 Gene specific Rao and Nardulli, In 
Preparation

thioredoxin reductase 
(TrxR)

14 54 Gene specific Rao and Nardulli, In 
Preparation

Selected ERα-associated proteins were characterized. The effect of each protein on ERα-mediated transcription was analyzed by transient 
transfection and/or RNA interference assays.
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plexes during the extended period of electrophoresis
required. Finally, a nebulizer spin column utilized for iso-
lating proteins from the agarose gel significantly raised the
signal to noise ratio and was critical in recovering ERα and
its associated proteins.

The electrophoretic agarose gel fractionation method has
distinct advantages over other methods we previously
used to isolate ERα-associated proteins. ERα pull-down
assays were useful in identifying HeLa nuclear proteins
associated with the flag-tagged ERα, but the number of
proteins identified using this method was limited [38,39].
DNA affinity assays, which we used to identify a DNA gly-
cosylase that associates with the ERE-bound ERα [40],
were limited by the fact that numerous nuclear proteins
bound to the ERE-containing oligos and/or agarose beads
in the absence of ERα and produced a background that
made it difficult to distinguish specific from nonspecific
proteins. The agarose gel fractionation method allowed us
to isolate a suite of ERα-associated proteins and signifi-
cantly decreased the proportion of nonspecifically-bound
proteins.

Isolation of interconnected protein networks
At first glance, it might appear that much of what we have
done has been to identify a number of individual proteins
that interact with ERα and influence estrogen-responsive
gene expression. However, one of the most fascinating
findings from our agarose gel-based approach was that
rather than simply identifying individual proteins that
interact with ERα, we identified interconnected networks
of proteins with a variety of enzymatic and catalytic activ-
ities that interact not only with ERα, but also with each
other (Table 2).

Two examples of the ERα-associated protein networks we
isolated are illustrated in Fig. 4. We identified four pro-
teins involved in DNA repair, 3-methyladenine DNA gly-
cosylase (MPG), apurinic endonuclease 1 (APE1),
proliferating cell nuclear antigen (PCNA), and flap endo-
nuclease, (FEN1), each of which was associated with the
DNA-bound ERα and influences estrogen-responsive gene
expression (Refs. [40,42,43] and C. Curtis and A. Nar-
dulli, unpublished data) These proteins form an interac-
tive complex of proteins (Fig. 4A and Table 2) that
together are involved in base excision repair (BER).
Another complex of proteins we isolated were previously
identified as the SET or INHAT complex [51-53], which is

Small-scale agarose gel electrophoresis using MCF-7 and MDA-MB-231 nuclear extractsFigure 3
Small-scale agarose gel electrophoresis using MCF-7 and MDA-MB-231 nuclear extracts. 32P-labeled ERE-contain-
ing oligos were incubated with nuclear extracts from MCF-7 breast cancer cells, which endogenously express ERα (A), or 
nuclear extracts from MDA-MB-231 breast cancer cells and purified ERα (B). An ERα-specific antibody was included in the 
binding reaction as indicated. Complexes were resolved on agarose gels and visualized by autoradiography.
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comprised of template activating factor Iβ (TAF-Iβ), pp32,
high mobility group protein 2 (HMG-2), APE1, and non-
metastatic protein homolog 1 (NM23-H1). These pro-
teins form an interactive group involved in determining
cell fate by initiating DNA repair or caspase-independent
apoptosis (Fig. 4B and Table 2, Refs. [54,55]. Interestingly,
we have characterized the effects of each of these proteins
on ERα activity and found that each of these proteins

influences expression of estrogen-responsive genes [38-
40,42,43,45] and unpublished data).

The ERα-associated proteins we isolated are each
endowed with specific activities that collectively alter
basic cellular processes. As shown in Fig. 5, the DNA glyc-
osylase MPG catalyzes the removal of a damaged or mod-
ified base and the formation of an apurinic site [56,57].
APE1 recognizes this apurinic site and initiates strand inci-
sion. DNA repair is then completed by polymerase-
induced insertion of a single nucleotide and ligation. This
process of replacing a single base is referred to as short
patch BER. Alternatively, the DNA can be repaired
through long patch BER in which FEN1 removes a short
flap of nucleotides. PCNA serves as a platform for FEN1,
stabilizes the interaction of FEN1 with the DNA flap, and
enhances FEN1 cleavage efficiency [58]. The interaction of
these DNA repair proteins with ERa is both physical and
functional, but more importantly, their identification led
to the discovery of an integrated protein network associ-
ated with the DNA-bound receptor that is involved in
DNA repair (Figs. 4A and 5 and Table 2).

The SET complex is likewise comprised of an interactive
group of proteins involved in regulating cellular proc-
esses, which has been described in detail by Lieberman
and coworkers [52,54,59-61]. In normal cells, NM23-H1
assists in maintaining DNA integrity by nicking DNA and
initiating DNA repair. In these cells, NM23-H1's DNase I
activity is limited by its inhibitor, TAF-Iβ. However, a dif-
ferent scenario ensues when cytotoxic T lymphocytes
detect a virally infected or tumor cell. In this instance, the
cytotoxic T lymphocytes release Granzyme A, which enters
the target cell and cleaves the inhibitor of NM23-H1, TAF-
Iβ, as well as HMG-2 and APE1 (Fig. 6). With its inhibitor
destroyed, NM23H1-induced DNA nicking is increased
and caspase-independent apoptosis is initiated. The
destruction of APE1 in these cells further hobbles the
DNA repair machinery and helps to ensure that the cells
undergo apoptosis. We isolated all of the SET complex
proteins (pp32, TAF-Iβ, NM23-H1, HMG-2, and APE1) in
our protein-DNA complexes. We and others showed pre-
viously that HMG proteins interact with ERa and other
nuclear receptors, enhance receptor-DNA interaction, and
increase receptor-mediated transactivation [50,62-64].

We are intrigued by the fact that the proteins we isolated
interact with ERα and with each other (Fig. 4 and Table 2)
providing evidence that these proteins belong to interac-
tive networks of proteins with discrete cellular functions.
The interaction of the protein networks may be fostered
by the association of a protein with more than one net-
work. For example, APE1, which interacts with ERα, com-
ponents of long- and short-patch BER complexes, and SET
complex proteins, may help to coordinate the actions of

Table 2: ERα-associated protein interactions

Protein Interacting Protein Reference(s)

APE1 ERα Curtis and Nardulli, Submitted
FEN1 [68]

HMG-2 [61,69]
NM23-H1 [61]

PCNA [68,70]
pp32 [61]

TAF-Iβ [61]

FEN1 APE1 [68]
ERα [42]

PCNA [67,71-74]

HMG-2 APE1 [61,69]
ERα [49,75]

NM23-H1 [61]
pp32 [61]

TAF-Iβ [61,69]

MPG ERα [40]
PCNA [70]

NM23-H1 APE1 [61]
ERα [45]

HMG-2 [61]
pp32 [61]

TAF-Iβ [60]

pp32 APE1 [61]
ERα [39]

HMG-2 [61]
NM23-H1 [61]

PCNA [76]
TAF-Iβ [51-53,59,60]

PCNA APE1 [68,70]
ERα [43]
FEN1 [67,71-74]
MPG [70]
pp32 [76]

TAF-Iβ [76]

TAF-Iβ APE1 [61]
ERα [38]

HMG-2 [61,69]
NM23-H1 [60]

pp32 [51-53,59,61]
PCNA [76]
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these protein networks and link DNA repair and transcrip-
tion.

The interaction of ERα with its associated proteins may
not only be physical, but may have functional conse-
quences for both proteins. We know that MPG influences
ERα-mediated transactivation and that, in turn, ERα
enhances the association of MPG with modified DNA and
promotes base excision [65]. Thus, by recruiting protein

complexes involved in DNA repair, ERα may help to pref-
erentially maintain the integrity of transcriptionally-
active, estrogen-responsive genes.

Taken together, our findings suggest that the ERE-bound
ERα serves as a nucleating factor to recruit a cohort of pro-
teins with a variety of cellular functions that influence
estrogen-responsive gene expression and that ERα may in

ERα-associated proteins form interconnected networksFigure 4
ERα-associated proteins form interconnected networks. A. Interactions between ERα and the DNA repair proteins 
MPG, PCNA, FEN1, and APE1. B. Interactions between ERα and the SET complex proteins TAF-Iβ, pp32, NM23-H1, HMG-2, 
and APE1.
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ERα-associated proteins are involved in base excision repair. MPG, PCNA, FEN1, and APE1 form an interconnected 
network of proteins involved in short- and long-patch BER.
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turn enhance DNA repair and ultimately help to deter-
mine cell fate.

Conclusion
The electrophoretic agarose fractionation protocol that we
have developed provides a method to isolate interrelated
networks of ERα-associated proteins involved in regulat-
ing estrogen-responsive gene expression. These studies
have provided a fascinating glimpse of the complexity
involved in regulating estrogen-responsive genes. This
agarose gel fractionation method should be readily adapt-
able to a variety of cultured cell lines, DNA sequences, and
transcription factors and help to define how proteins asso-
ciated with DNA-bound transcription factors influence
gene expression and other critical cellular processes.

Methods
Small scale characterization of protein-DNA complex 
formation
HeLa nuclear extracts and baculovirus-expressed, purified
ERα were prepared as previously described [3,66]. Oligos
containing the Xenopus laevis vitellogenin A2 estrogen
response element flanked by the native DNA sequence
(ERE, (5'-GAT TAA CTG TCC AAA GTC AGG TCA CAG
TGA CCT GAT CAA AGT TAA TGT AA-3' and 5'-TTA CAT
TAA CTT TGA TCA GGT CAC TGT GAC CTG ACT TTG
GAC AGT TAA TC-3') were annealed and end labeled with
32γP-ATP. Radiolabeled oligos (10 pmol) were incubated
with 400 fmol purified ERα in binding buffer (15 mM
Tris, 0.2 mM EDTA, 80 mM KCl, 50 μM ZnCl, 5 mM
MgOAc, 10% glycerol, 4 mM DTT) with 1 μg of poly dI/
dC, 1 μg salmon sperm DNA, 1 μg BSA, and 10 μM 17 β-
estradiol (E2) for ten minutes at room temperature. HeLa
nuclear extracts (10 μg) were then added and incubated at
room temperature for an additional 20 minutes. Reac-

tions lacking ERα were run in parallel with additional BSA
added to maintain constant protein concentrations. 200
ng of antibody directed against YY1 (control antibody) or
ERα (sc-7341 or sc-8005, Santa Cruz Biotechnology,
Santa Cruz, CA) or 10 pmol of unlabeled double-stranded
oligos containing an ERE or nonspecific DNA sequence
(NS, 5'-CTA GAT TAC TTC TCA TGT TAG ACA TAC TCA-
3', and 5'GAT CTG AGT ATG TCT AAC ATG AGA AGT AAT
CTA G-3') were included in the binding reactions as indi-
cated. The complexes and the free DNA were separated on
a horizontal 1.25% low melt agarose gel (BioRad, Her-
cules, CA) in a modified TBE buffer (0.45 mM Tris pH 7.9,
4.5 mM boric acid, 2 mM EDTA) containing 5 mM
MgOAc at 100 volts for two hours at 4°C. The gel was
dried on DE81 ion exchange cellulose acetate (Whatman,
Florham Park, NJ) at 65 C for 30 minutes under vacuum
and visualized by autoradiography.

Large scale complex formation
For large scale isolation of protein-ERα-ERE complexes,
DNA oligos containing the Xenopus laevis A2 ERE and sur-
rounding DNA sequence were annealed and the binding
reactions were incubated as described above except that
they were increased to include 50 pmol DNA, 260 μg of
HeLa nuclear extract with or without 18 pmol of ERα in a
total volume of 200 μl. 3.2 μg of an ERα-specific antibody
(sc-8002, Santa Cruz Biotechnology, Santa Cruz, CA) was
added to help stabilize the ERα-containing complexes. All
samples were loaded onto 10 cm × 15 cm horizontal
1.25% agarose gels prepared with molecular biology
grade agarose (BioRad, Hercules, CA) and modified TBE
buffer. Unlabeled ERE-containing oligos were utilized in
all samples submitted for mass spectrometry analysis.
Marker lanes, which contained radiolabeled oligos, 3
pmol ERα, 50 μg HeLa nuclear extract, and 0.6 μg of ERα-

ERα-associated proteins are in the SET complexFigure 6
ERα-associated proteins are in the SET complex. TAF-Iβ, pp32, HMG-2, NM23-H1, and APE1 form an interconnected 
network of proteins involved in DNA repair and/or apoptosis. (Adapted from Refs. [54,55].
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specific antibody in 40 μl total volumes were run in paral-
lel at 100 V for 2 h to indicate the position of the com-
plexes. After fractionation, the wet gel was subjected to
autoradiography overnight at room temperature and the
regions containing the unlabeled protein-ERα-ERE com-
plexes were excised. Proteins were isolated with the Mon-
tage gel extraction kit (Millipore, Billerica, MA) according
to manufacturer's directions. The extracted proteins were
concentrated using Microcon YM-10 size exclusion col-
umns (Millipore, Billerica, MA) with a molecular weight
cutoff of 10 kDa and then subjected to mass spectrometry
analysis as previously described [38]. Peptide fragments
found in multiple proteins were excluded from the data
analysis.

Western analysis of ERα-associated proteins
Proteins isolated from large-scale agarose gels were frac-
tionated on denaturing SDS-PAGE, transferred to nitrocel-
lulose, and subjected to Western analysis. Blots were
probed with antibodies specific to ERα, p300, RNA
polymerase II (sc-8005, sc-585, or sc-899, respectively,
Santa Cruz Biotechnologies, Santa Cruz, CA) or AIB-1
(A79920, BD Transduction Labs) and a horseradish per-
oxidase-conjugated secondary antibody. Proteins were
visualized using a chemiluminescent detection system as
previously described [4].

Abbreviations
ERα: estrogen receptor α; ERE: estrogen response element;
NCoR: nuclear receptor corepressor; SMRT: silencing
mediator for RXR and TR; TIF-2: transcription intermedi-
ary factor 2; AIB1: amplified in breast cancer 1; Pol II: RNA
polymerase II; MPG: 3-methyladenine DNA glycosylase;
APE1: apurinic endonuclease 1; PCNA: proliferating cell
nuclear antigen; FEN1: flap endonuclease 1; BER: base
excision repair; TAF-Iβ: template activating factor Iβ;
HMG-2: high mobility group protein 2; NM23-H1: non-
metastatic protein 23 homolog 1.
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