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THE BIGGER PICTURE Knowledge graphs can effectively organize data and represent knowledge so that
they can be efficiently and extensively explored in traditional and advanced applications in many fields,
such as medicine and finance, with no exception of the food domain. The knowledge graph can transform
huge amounts of multidisciplinary and heterogeneous food data from various sources to a more reusable
globally digitally connected Internet of Food to benefit food science and industry. In this review, we summa-
rize various applications of knowledge graphs that span different aspects of food science and industry. We
also discuss future directions in this field, ranging from their construction, representation, reasoning, and ap-
plications. We argue that knowledge graphs will enable Internet of Food and food intelligence for their capa-
bility in representation and reasoning. Their great potentials will attract more research efforts to apply knowl-
edge graphs in the field of food science and industry.
SUMMARY

The deployment of various networks (e.g., Internet of Things [IoT] and mobile networks), databases (e.g.,
nutrition tables and food compositional databases), and social media (e.g., Instagram and Twitter) generates
huge amounts of food data, which present researchers with an unprecedented opportunity to study various
problems and applications in food science and industry via data-driven computational methods. However,
these multi-source heterogeneous food data appear as information silos, leading to difficulty in fully exploit-
ing these food data. The knowledge graph provides a unified and standardized conceptual terminology in a
structured form, and thus can effectively organize these food data to benefit various applications. In this re-
view, we provide a brief introduction to knowledge graphs and the evolution of food knowledge organization
mainly from food ontology to food knowledge graphs. We then summarize seven representative applications
of food knowledge graphs, such as new recipe development, diet-disease correlation discovery, and person-
alized dietary recommendation. We also discuss future directions in this field, such as multimodal food
knowledge graph construction and food knowledge graphs for human health.
INTRODUCTION

Food is critical to human life. It travels from the farm origin,

through the growing, harvesting, packing, processing, trans-

forming, production, transporting, distribution, to consuming

and disposing of food, forming the food system.1 The production

of huge volumes of multidisciplinary and heterogeneous food

data (e.g., nutrition composition table, health databases, food

images, food ordering data, and recipes) from the food system

provides a basis for the development of artificial intelligence

(AI), making digital technology an indispensable part of food sci-

ence and industry. Each stage from food processing to

consuming in this system can be replaced with data-driven

computational methods to prompt the development of food sci-
This is an open access article under the CC BY-N
ence and industry, such as the use of neural networks in

modeling the food process,2,3 food quality assessment,4 food

object recognition and analysis,5–7 food authentication and

traceability,8 and dietary assessment.9,10

However, these food data are still not sufficiently utilized, and it

is still hard to satisfy the demand for effective food data sharing,

organization, and traceability, which restricts the development of

food science and technology. For example, in the food supply

chains, the data from different food companies may be under

different naming conventions, which restricts the aligning of

food terms and the integration of different food data sources,

making it harder to optimize the food supply system.11 In

addition, more complex issues such as food contamination

traceability12 and exposure assessment involve data in multiple
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fields. They also require food systems to have abilities to inte-

grate food data and organize food knowledge extracted from

these multi-source heterogeneous data.

Therefore, there is one general agreement on the importance

of organizing and integrating food data in food science and in-

dustry. Only in this way can we easily access and interchange

food-relevant data all over the world, extract food-related infor-

mation, and organize food knowledge, which benefits different

stakeholders, such as researchers, food manufacturers, food

distributors, retailers, and consumers. For example, such a stan-

dardized knowledge organization system can facilitate gover-

nance via more efficient knowledge access and utilization,13

and food manufacturers and distributors can trace the process-

ing and circulation of food commodities. All of them can make

smarter decisions with the standardized knowledge organization

system mentioned earlier.

A key requirement for standardization is to make heteroge-

neous data from multiple sources interoperable. For that, the

Internet of Food is proposed to help tackle this problem via

defining one lingua franca.13 Along with the changes in the

form of data and the increasing volume of data, many types of

lingua franca emerge with different ways of organizing food

data. Considering the ontology describes more complex struc-

tures with arbitrary relations and restrictions between con-

cepts,14 different food ontologies have been developed, such

as FoodOn ontology15 and ISO-FOOD ontology.16 Some com-

munities, such as the Ontologies Community of Practice (CoP)

have been created to support high-quality ontology develop-

ment for agri-food research.17 The food knowledge graph gener-

ally adopts the ontology as its schema to further model more

real-world instances and their relationships in a graph.18,19 It pro-

vides a unified and standardized conceptual terminology and

their relations to link various information silos related to food,

and can thus have a considerable impact in food science and in-

dustry. A range of applications include food safety (e.g., the

traceback of food contamination), food allergy, chemical expo-

sure and nutritional assessment, cooking, and culinary use.

There have been some relevant reviews on knowledge graphs

from different perspectives.18,20–23 In contrast, this work seeks

to provide a comprehensive review on knowledge graphs in

the food domain, namely food knowledge graphs, including the

evolution from food ontology to knowledge graphs, their repre-

sentative applications, and prospects in food science and in-

dustry.

KNOWLEDGE GRAPH

In this section, the history of knowledge graphs is briefly intro-

duced, and how they are constructed, represented, and used

is also discussed. In order to better describe the development

of knowledge graphs, commonly used terms are summarized

in Table 1.

Brief history of the knowledge graph
The history of knowledge graphs and their related technologies

are demonstrated in Figure 1. The graph is a type of sparse

data structure that consists of nodes and edges, which is suit-

able to represent relations between objects. The idea of graph-

based knowledge representation can be traced back to the
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1960s when the semantic network was first proposed as a

form of knowledge representation.24 It uses the nodes to repre-

sent concepts and edges to represent relations between con-

cepts in one graph. In semantic networks, there are no standards

for the use of values of nodes and edges, which means the de-

velopers can freely define the nodes and their relations. There-

fore, it is hard to integrate different semantic networks, making

it difficult to apply semantic networks in practice.

Later, the Resource Description Framework (RDF) is proposed

to partially solve the problem of standards. RDF is developed by

the World Wide Web Consortium (W3C) as a standard for

describing Web resources. The main data model of RDF is the

subject-predicate-object triple expression, which indicates that

the two entities (subject and object) are connected through a

relation (predicate). These entities and relations generally use In-

ternational Resource Identifiers (IRIs) as indexes in the RDF

framework to address the difficulties in integrating data from

different sources. This is because the same entity and relation

have the same and unique IRI which has already been defined.

Based on RDF, Berners Lee proposes the concept of the Se-

manticWeb, which is also known asWeb 3.0. SemanticWeb is a

grand idea about the future Internet.25 Its final goal is to make all

the data on the Internet be published with semantics and linked

with semantics to enable efficient and intelligent data querying,

inference, and understanding. In order to build the Semantic

Web, W3C helps to build a technology stack called Semantic

Web technologies, which could be involved in the construction

of the Semantic Web (e.g., RDF). Although Semantic Web re-

mains largely unrealized, these technologies are widely used.

Linked data is one of its implementations proposed in 2006,26

which publishes and interlinks datasets on the Internet using Se-

mantic Web technologies. Compared with the semantic

network, linked data emphasizes links between Web data and

Web resources. For example, elements of RDF triples of linked

data are expected to be IRIs as much as possible, so that they

can be unique and addressable on the Internet.

RDF still lacks the abstraction ability and cannot describe or

distinguish relations between entities, which affects knowledge

understanding and inference. Thus, W3C successively pro-

poses Resource Description Framework Schema (RDFS) and

Web Ontology Language (OWL). RDFS and OWL extend RDF

by adding common predefined vocabularies in the schema

level so that they can represent abstract relations, like classes

(concepts), instances (objects), subsets, and properties. The

schema level is later separated to be the schema layer and is

introduced to graph-based knowledge representation as a vo-

cabulary and semantic specification. Many data models can be

used as one schema layer, and ontology is the most widely

used one. It is a knowledge specification, a formal explicit

description of concepts within a certain domain, properties of

each concept, and restrictions on facts. The aim of an ontology

is to provide shared understanding to conceptual knowledge

and give the definition to mutual relations between concepts,27

which makes semantic-based inference possible. Since RDFS

and OWL provide good presentation capabilities and semantics

supports, they are the main description language of the

ontologies.

In 2012, Google proposed the term knowledge graph,28 which

mainly describes real-world entities and their relations in a



Table 1. A glossary of commonly used terms in knowledge graphs

Term Description

Entity an entity can be a real-world object

(instance) or an abstract concept. Each

entity has a collection of attributes and

relations among it

Relation relation, also named entity description,

refers to the interlinked description of

entities. It should have formal semantics

and support entities to form a graph

RDF a uniform standard to describe entities and

relations in the form of subject-predicate-

object triplesa

RDFS Extends RDF by adding common

predefined vocabularies and supports

constructing lightweight ontology

OWL TheW3C standard for defining ontologies. It

provides the mechanisms for creating all

the necessary components of an ontology:

concepts, instances, and properties (or

relations)

IRI an Internet protocol standard used to

identify and locate every entity and relation

uniquely. Common identifiers like URL and

URI are subsets of IRI

Classification classification is one systematic

arrangement in groups or categories

according to established criteriab

Taxonomy taxonomy is a classification of things in a

hierarchical form. It is usually a tree or a

lattice that expresses subsumption

relations (i.e., A subsumes B, meaning that

everything that is in A is also in B.) The

fundamental difference between taxonomy

and classification is that taxonomies

describe relations between items, while

classification simply groups the itemsc

Semantic Web

technologies

Semantic Web technologies refer to all the

technologies needed in the construction of

the Semantic Web, including Hypertext

Web technologies like IRI and XML,

Standardized Semantic Web technologies

for querying (SPARQL), description (RDF),

and schema (RDFS/OWL), and those unre-

alized or unstandardized Semantic Web

technologies (like proof and trust layer for

inferring and validation, and user interface

for interaction). All of these technologies are

combined to support a complete knowl-

edge graph. These Web technologies are

hierarchical, and each type of Web tech-

nology exploits the capabilities of the

layers below

Ontology An ontology is a description of concepts

and relations (e.g., synonymy and

meronymy). The main difference between

ontology and taxonomy is that a taxonomy

is an ontology in the form of a hierarchy. In

many systems, ontologies and taxonomies

work together

Table 1. Continued

Term Description

Schema Schema usually means the technology that

provides the standard, rules, and principles

for entities and their usage: they define all

the classes and attributes that entity of each

class should have. Ontology is usually used

as the schema in the knowledge graph

Semantic network Semantic network consists of nodes and

edges, where nodes represent entities and

edges represent the relations. There is no

standard for the values of nodes and edges

Linked data Linked data is about using the Semantic

Web technologies to connect related data

that are not previously linked and

emphasizes the link creation between

different datasets. Since datasets of the

linked data are open access. It is also called

linked open datasets

URL, Uniform Resource Locator.
ahttps://www.w3.org/TR/PR-rdf-syntax/
bhttps://classroom.synonym.com/difference-between-classification-

taxonomy-10074596.html
chttps://www.obitko.com/tutorials/ontologies-semantic-web/

specification-of-conceptualization.html
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graphical representation, and defines possible classes and

relations of entities with the ontology as one schema.18 It is syn-

onymous with the knowledge base with a minor difference. A

knowledge graph can be viewed as a graph when considering

its graph structure. When we highlight formal semantics, it can

be taken as a knowledge base for interpretation and inference

over facts.22 Currently, there is no unifying definition of knowl-

edge graphs. Herein we adopt the following definition: a knowl-

edge graph is viewed as a multi-relational graph of data for

conveying real-world knowledge, where nodes represent entities

and edges represent different types of relations.22 The focus of

knowledge graphs is instances, while the ontology is often

used as the schema and plays a minor role in the knowledge

graph. In general, the number of instance-level statements

from knowledge graphs is far larger than that from the

ontology.18
Knowledge graph construction, representation,
reasoning, and applications
In order to explore knowledge graphs for applications, we first

construct the knowledge graph. Based on the constructed

knowledge graph, effective representation for knowledge graphs

should be necessary to support further reasoning and applica-

tions, such as search and recommendation. The basic pipeline

of knowledge graph construction, representation, reasoning,

and applications is summarized in Figure 2. More detailed and

comprehensive introductions to knowledge graphs, such as

knowledge graph creation tools and more application examples,

are available elsewhere.23

Construction

Completeness, accuracy, and data quality are three important

factors that determine the usefulness of knowledge graphs and

are influenced by the way knowledge graphs are constructed.
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Figure 1. The evolution of the knowledge graph
This figure shows the development of main semantic data organizations above the arrow, from the semantic network to the knowledge graph. Below the arrow, it
displays key Semantic Web technologies. These Web technologies are listed hierarchically, and each type of Web technology relies on the capabilities of the
layers below. With more technologies, more practical and powerful semantic data organization can be supported. The ultimate vision of semantic data orga-
nization is the Semantic Web, where all data are linked through relations.
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Knowledge graphs can be constructed either manually or

automatically.29 Manual construction methods include curated

ones (e.g., Cyc30) and collaborative ones (e.g., Wikidata31),

where the former creates triples by a closed group of experts,

while the latter resorts to an open group of volunteers. Manually

constructed knowledge graphs have few or no noisy facts. How-

ever, they require very great human effort. As a result, auto-con-

structed methods are explored and have become mainstream.

Auto-constructed methods can further be grouped into two

types. The first one utilizes hand-crafted rules and learned rules

to exploit semi-structured data, such as Wikipedia infoboxes,

leading to larger, more highly accurate knowledge graphs such

as DBpedia.32 This method can still guarantee high accuracy

of knowledge. However, semi-structured text still covers a small

fraction of the information stored on the Web, and these repos-

itories are still far from complete. Hence the second approach is

proposed to extract facts from unstructured text using machine

learning and natural language processing techniques. The

knowledge vault33 is one representative project in this category.

In order to reduce the level of ‘‘noise’’ in extracted facts, a large

body of research has been conducted, which mainly consists of

three components: knowledge extraction, knowledge fusion,

and knowledge refinement.18

Knowledge extraction aims to acquire relevant entities, attri-

butes, and relations from various data sources. Information is

collected and normalized, forming knowledge expression.

Considering there are multiple representations for one entity in

many cases and inconsistency of triples extracted bymultiple in-

formation extractors from multiple information sources, knowl-

edge fusion is one necessary step, and the main processes

include entity alignment and entity linking,34 where entity align-
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ment is the process to judge whether different entities refer to

the same real-world object or not, and entity linking links the en-

tities in text with the corresponding one in knowledge graphs. Af-

ter initial construction, different refinement methods, such as

entity classification, relation prediction, and anomaly

detection,18 are then utilized to improve the quality of the con-

structed knowledge graph.

Representation and reasoning

Effective representation learning for knowledge graphs (namely,

knowledge graph embedding) then should be explored based on

the constructed knowledge graph. It can encode both entities

and relations into a continuous low-dimensional vector space.

Different representation learning methods, such as linear

models, neural networks, and translation methods, are

proposed.35–37 Based on learned feature representation, we

can further conduct knowledge graph reasoning to identify er-

rors and infer new conclusions from existing data. New relations

among entities can also be derived through knowledge

reasoning and in turn can be used to enrich the knowledge

graphs. Different reasoning methods, such as rule-based

reasoning and neural network-based reasoning, are proposed.21

Note that neural networks have been widely used for knowledge

graph representation and reasoning for their powerful nonlinear

fitting capability.38

Applications

Knowledge graph representation and reasoning can support

various tasks, such as relation extraction and entity classifica-

tion,20 and real-world applications, such as question answering

(QA), information retrieval, and recommender systems. Here,

we briefly discuss four critical use cases: search, recommenda-

tion, QA, and decision making.



Figure 2. Pipeline of knowledge graph construction, representation, reasoning, and applications
To construct a knowledge graph, a huge volume of data should be processed, including unstructured, semi-structured, and structured data. Later, knowledge
graphs can be constructed either manually or automatically, and the latter method mainly includes three components: knowledge extraction, knowledge fusion,
and knowledge refinement. Constructed knowledge graphs can be further used for representation learning and reasoning to support various tasks, such as
search, recommendation, and question answering.

ll
OPEN ACCESSReview
For search, the knowledge graph can be used to understand

user’s query intents to support semantic search, which aims to

not only find keywords but to determine the intent and contextual

meaning of the query words a person is using. Semantic search

provides more meaningful search results by evaluating the

search phrase and finding more relevant results. The knowledge

graph enhances semantic search by providing more structured

search results and better summaries. With the knowledge graph,

the search engine can summarize relevant content around that

topic in the form of knowledge cards, including key facts for

that particular thing. For example, when users search ‘‘apple

cake,’’ the content presented by knowledge cards includes

various attribute information (e.g., cuisine, course, main ingredi-

ents) and other relevant information. In addition, it can expand

the user’s search results via the rich association of entities in

the knowledge graph. For example, when the user searches

for apple cake, besides its basic information, semantic search

can return its cooking recipes about them.

For QA, it has applications in a wide variety of fields such as

chatbots. Answering questions using knowledge graphs adds

a new dimension to these fields. As outlined by L. Hirschman

and R. Gaizauskas, a knowledge-graph-based QA system in-

volves answering a natural language question using the informa-

tion stored in a knowledge graph.39 The input question is first

translated into a formal query language and then this formal

query is executed over the knowledge graph to fetch the answer.

Such systems have been integrated into popular Web search en-

gines like Google and Bing as well as conversational assistants

like Siri.40

For recommendation, the recommendation systems based on

knowledge graph connect users and items, which can integrate

multiple data sources to enrich semantic information. Implicit in-

formation can be obtained through reasoning techniques over

knowledge graphs to improve recommendation accuracy. There

are several typical cases for knowledge-graph-based recom-

mendation, such as food recommendation,19 movie recommen-

dation, and music recommendation.41 Knowledge graphs can

benefit the recommendation from three aspects42: (1) the knowl-

edge graph can introduce the semantic relatedness among

items to help find their latent connections and improve the preci-

sion of recommended items; (2) various types of relations in the
knowledge graph are very helpful to extend a user’s interests and

increase the diversity of recommended results; (3) the knowl-

edge graph can bring explainability to recommender systems

via the connection between users’ historical records and the rec-

ommended ones.

For decisionmaking, it is the act of choosing between possible

solutions to a problem. Knowledge graphs store expert knowl-

edge from different domains to support highly complex decision

making. As one representative domain, knowledge graphs are

actively used in the medical domain. When applied to medical

knowledge graphs, reasoning on knowledge graphs can help

doctors to diagnose disease and control errors to build a deci-

sion support system.

SEARCH METHOD

We search for articles where food semantic data organization

(such as food linked data, food ontologies, and food knowledge

graphs) are proposed or utilized using the following electronic

databases: IEEE Electronic Library (ieeexplore.ieee.org), ACM

Digital Library (dl.acm.org), Science Direct (www.sciencedirect.

com), MEDLINE (PubMed, pubmed.ncbi.nlm.nih.gov), and Arxiv

(arxiv.org). The following descriptors are used as a strategy for

search in titles and abstracts: (food OR diet OR cook OR nutri-

tion) AND (‘‘linked data’’ OR ontology OR ‘‘knowledge graph’’

OR ‘‘semantic web’’ OR ‘‘semantic network’’).

Our search strategy is not restricted by publication year and

language. We apply the following criteria for the inclusion of

studies: (1) at least one food semantic data organization is pro-

posed or utilized in research; (2) the food semantic data organi-

zation should be designed for food purposes specifically (such

as cook, diet, recipe, health care, and food production); (3) the

construction or the usage of the food semantic data organization

should be described in detail. The following exclusion criteria are

applied: (1) the research is irrelevant to our topic (including not

developed for food domains specifically); (2) no food semantic

data organization is proposed or utilized in research.

A total of 167 studies were identified through the searches in

the databases. After the removal of nine duplicate studies, 158

unique records remained, from which 83 studies were excluded

based on their titles and abstracts because they were
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Figure 3. Flowchart of the study selection process
We totally identified 167 studies from the databases. We removed nine duplicate studies, excluded 83 irrelevant studies based on titles and abstracts. After
manually adding several relevant studies, 83 studies are reviewed and evaluated in full for eligibility, and 58 studies meet all the criteria for this review and are thus
included.
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considered irrelevant. Later, the authors manually added several

relevant studies that were not included in the above databases.

In total, 83 studies were reviewed and evaluated in full for

eligibility, and 58 met all the criteria adopted for this review

and are thus included as the flowchart shown in Figure 3. All

food ontologies and knowledge graphs selected in this article

are summarized in Tables 2 and 3, and these studies are orga-

nized chronologically by year of publication.

DEVELOPMENT OF THE FOOD KNOWLEDGE GRAPH

Knowledge graphs allow for potentially interrelating arbitrary en-

tities with each other from various domains. When focusing on

the field of food, they become food knowledge graphs. Before

delving into food knowledge graphs, we first introduce the devel-

opment of food ontology, since food ontology plays an important

role in the development of food knowledge graphs. In addition,

we also give some discussions on other forms of food knowl-

edge organization, such as food-oriented linked data.

Food ontology
Food ontology uses the shared terminology for types, properties,

and relations about food concepts, and thus can help tackle data

harmonization problems that span food-relevant domains. Ta-

ble 2 summarizes existing food ontologies from different as-

pects, where some food ontologies have been introduced by

previous work.73 Different food ontologies focus on different as-

pects of food and cover different sub-domains. Wemainly divide

them into the following four different types: (1) cooking and

recipe ontologies, (2) nutrition and health ontologies, (3) other

food sub-domain ontologies, and (4) more general and compre-

hensive food ontologies.

Cooking and recipe ontologies

Taaable,48 Cooking ontology,44 Edamam food ontology, and

BBC food ontology are about cooking and recipes. Cooking

ontology is one of the earliest cooking-oriented ontologies. It
6 Patterns 3, May 13, 2022
mainly contains actions, foods, recipes, and utensils. In the

cooking ontology, one recipe is organized by phases of the

cooking process, where each phase is a sequence of sorted

tasks, and each task is composed by action and incorporates in-

formation about needed and produced ingredients and their

duration time. Recipes also have their classification, ingredient

lists, and required utensils. Cooking ontology aims to enrich

cooking-oriented QA by being integrated into a dialogue system.

Edamam food ontology aims to support creating a comprehen-

sive and authoritative food knowledge base on cooking informa-

tion. To do this, Edamam extracts the recipes from websites and

maps these recipe terms to professional industry databases to

eliminate duplicates and ambiguity. It has already supported

search applications onmobile platforms andWeb pages for con-

sumers to provide various food knowledge information such as

ingredients, nutrition information, and allergies.51 In contrast,

BBC food ontology is a simple lightweight ontology for publish-

ing data about recipes, including the foods they are made from

and the foods they create as well as the diets, menus, seasons,

courses, and occasions they may be suitable for. These ontol-

ogies facilitate cooking recipe-based works, such as mining,

retrieval, and recommendation.74,75

Nutrition and health ontologies

Some food ontologies focus on health and nutrition concepts,

which allow them to help healthy advising and monitoring in

various food applications. For example, Personalized Informa-

tion Platform for Health and Life Services (PIPS) food ontology43

provides nutritional advice for diabetic patients. It presents an

abstract model of different types of foods with nutritional infor-

mation, including the type, amount, and recommended daily

intake of nutrients, with a total of 177 classes, 53 properties,

and 632 instances. Similarly, Food-Oriented Ontology-Driven

System (FOODS)45 is also designed to provide diet advice for

diabetic patients. In contrast, this ontology contains more as-

pects and concepts, like patients’ personal situations and char-

acteristics of foods (such as food specifics and flavors). Thus



Table 2. Summary of existing food ontologies

Name Year Domain Purpose

PIPS food ontology43 2005 food and nutrition providing food nutritional information

Cooking ontology44 2006 food and cooking ontology construction research

FOODS45 2008 (Thailand) food and nutrition food or menu planning for people with diabetes

AGROVOCa,46 2011 agriculture, fisheries, forestry

and food

agricultural field terminology reference

Edamam food ontologyb 2012 food, recipes, nutrition, and

healthy eating

enabling food-related various applications, like

healthy eating and cooking robots

FTTO47 2013 food supply chain supporting modeling of the food supply chain

Open food factsc 2013 packaged food product

information

food product comparison and search

BBC food ontologyd 2014 food, recipes and diets recipe data publishment

Taaable cooking ontology48 2014 food, cooking, and nutrition personalized cooking

Unified Traveler and Nutrition

ontology49
2015 food dishes and medicine healthy food recommendation

Food in open data ontology50 2015 general food creating linked open data datasets

Food ontology knowledge base

(from FoodWiki)51
2015 packaged food building ontology-driven mobile safe food

consumption system

Food product ontology52 2016 packaged food (Russia) food products and domain data

OFPEe 2016 food processing research on food processing

(P O 2)53 2016 food processing research on food production processes with data

from different disciplines

RICHIFIELDS ontology54 2017 general food food-related integration, retrieval and updating

AFEOf 2017 viticultural practices

and winemaking products

research about food traceability and quality

MESCO55 2017 food supply chain meat supply chain

FoodOn ontology15 2018 food sources, categories,

products, and other facets

increasing global food traceability, quality control,

and data integration

HeLiS56 2018 food and nutrition users’ actions and behaviors monitoring

ONS57 2019 food and nutrition nutritional studies

ISO-FOOD16 2019 food and isotopic describing isotopic data within food science

Food safety ontology58 2019 food safety QA on food safety

FOBI Ontology59 2020 food nutrition and metabolite food nutrition and metabolite research

SCT60 2020 food supply chain support agricultural food traceability

Seafood ontology61 2021 seafood seafood quality control

FEO62 2021 food knowledge about

recommendation and explanation

providing users explanations for food recommendation

OFFF63 2021 food and nutrition fast food nutritional data aggregation
aThe origin of AGROVOC can be traced back to the 1980s, and its linked data version is realized in 2011.
bhttps://www.edamam.com/
chttps://world.openfoodfacts.org/data
dhttps://www.bbc.co.uk/ontologies/fo
ehttp://agroportal.lirmm.fr/ontologies/OFPE
fhttp://data.agroportal.lirmm.fr/ontologies/AFEO
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FOODS can provide more personalized and suitable diet recom-

mendations for diabetic patients.

Different from the above food ontology serving special popu-

lations, the unified Traveler and Nutrition ontology49 can support

food recommendation to help general tourists make personal-

ized food-related choices and develop a healthy food plan.

This recommendation system is required to give recommenda-

tions by combining various factors from the food itself to the cul-

tural requirements of tourists and regions of interest. Therefore,
besides food nutrition, this food ontology also integrates various

types of concepts from dishes, people, and medical conditions

to support more comprehensive dietary recommendation.

HeLiS56 was created to monitor both users’ actions and their un-

healthy behaviors by providing the representation of both food

and physical activity domains. Besides covering concepts from

activities to nutrients in foods, HeLiS also introduces the user

concept, and it thus can associate the specific health-related

events with people for health monitoring or further nutrient
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Table 3. Summary on existing food knowledge graphs

Name Year Ontology Purpose

Knowledge Graph for the FEWa 2017 – data-driven research

Chinese Food Knowledge Graph64 2018 * healthy diet knowledge retrieval

Foodbar Knowledge Graph65 2018 – small miniature bites or dishes cognitive gastroevaluation

Healthy Diet Knowledge Graph66 2019 * healthy diet management and recommendation

AgriKG67 2019 * agricultural entity retrieval and QA

FoodKG68 2019 WhatToMake ontology food recommendation

Food Safety Knowledge Graph58 2019 food safety ontology QA system for the food safety domain

Food Knowledge Graph with Dietary

Factors and Associated Cardiovascular

Disease69

2020 – identifying dietary factors associated with cardiovascular disease

Food Spot-check Knowledge Graph70 2020 food safety ontology* food spot-check QA system

Food Knowledge Graph (from World

Food Atlas Project)71
2021 FoodOn ontology supporting healthier and more enjoyable diets

RcpKG72 2021 – personalized recipe recommendation

Dash (–) indicates unknown ontology, and asterisk (*) indicates that the food ontology is specially constructed for the corresponding food knowl-

edge graph.
ahttps://mospace.umsystem.edu/xmlui/handle/10355/62663
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applications. In contrast, the FoodWiki ontology was developed

for the packaged food products onmarket shelves. It collects the

nutrition content and provides packaged food recommendation

while avoiding the impact of unhealthy or allergic ingredients on

consumers.51 Later, FoodWiki was further developed to build an

ontology-driven mobile safe food consumption system for moni-

toring food intake.76 In addition, there are some ontologies, such

as ontology for nutritional studies (ONS)57 and ontology of fast

food facts (OFFF)63 for food nutritional science study. For

example, ONS is presented to facilitate the integration of

different terminologies from different sub-disciplines in dietary

and nutritional research and finally supports nutritional studies.

Food safety ontologies

Some ontologies are developed for the food safety domain,

where food traceability is mainly considered. For example,

Food Track&Trace Ontology (FTTO)47,77 was developed for

food traceability. It contains representative food concepts

involved in a supply chain and is able to integrate and connect

the main features of the food traceability domain. The Supply

Chain Traceability (SCT) ontology is for the agri-food supply

chain where the form of critical tracking events (CTEs) is unified

to support agriculture and food traceability from logistics to pro-

duction lines.60

Some ontologies are developed for specific food categories.

Considering that food processing industries employ different

quality control systems to check the quality of the seafood, de-

velopers create unique concepts and examples for seafood

ontology,61 such as various freezing in processing (blanched

frozen, cooked frozen, and uncooked frozen). The Meat Supply

Chain Ontology (MESCO) adapts the meat supply chain area.55

In MESCO, the concepts in the meat supply chain are specially

designed so the attributes of different meat products are

adjusted to adapt to their different processing procedures and

safety traceability methods, and thus support better meat supply

chain management. There are also some ontologies, such as the

food safety ontology,58 that focus on the public issue of food

safety and are built to support a food safety knowledge graph.
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It uses the unqualified food data from Web resources to build

the ontology. This ontology organizes concepts about food,

food hazards, and food inspection items together, and then

maps them to the Hazard Analysis and Critical Control Points

(HACCP) system for food production.

Other food sub-domain ontologies

There are also ontologies that focus on other food sub-fields to

better promote food science and industry. For example,

Ontology for Food Processing Experiment (OFPE) can describe

the transformation process from raw materials to products for

food processing experiments. It includes different classes

that represent products and operations during food transforma-

tion processes, which can be classified into four main con-

cepts: product, operation, attribute, and observation. ISO-

FOOD16 was developed for sharing and researching isotope

food data. In ISO-FOOD, the factors that are related to isotope

are recorded as attributes and different sources of food data

are unified and integrated under the standards from ISO-

FOOD, so that the research and application of isotope in

food chemistry can be promoted. Food-Biomarker (FOBI)

ontology59 was designed to integrate nutritional and metabolo-

mic data to support nutritional research because nutrition

research has a strong correlation with food intake evaluation

and diet habits. Thus FOBI defines concepts and relations be-

tween both foods and metabolites. Its development improves

the reusability of nutritional and nutrimetabolomic data. Similar

sub-domain-oriented ontologies also include Process and

Observation Ontology(P O 2)53 and Agri-Food Experiment

Ontology (AFEO) for food processing, Food Processing Chain

Ontology (Onto-FP) for wine-making,78 and Food Explanation

Ontology (FEO) for generating the explanation for food recom-

mendation.62

More general and comprehensive food ontologies

There are also some ontologies with broader concepts, like

FoodOn15 and RICHIFIELDS ontology.54 For example, FoodOn

is an open-source, comprehensive food ontology resource

composed of various term hierarchy facets from ingredients to

https://mospace.umsystem.edu/xmlui/handle/10355/62663


Figure 4. A simplified structure of FoodOn
In this example, the relations among food sources, products, and related food processes of apples are described. Different entities are shown in different colors
according to their classes. These entities are linked by different relations with different colors according to the type of relations. 15
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packaging and cooking. FoodOn allows defining food product

terms directly in the ontology and introduces relation descrip-

tions like ‘‘has ingredient,’’ ‘‘has part,’’ and ‘‘derives from,’’ which

provides convenience for describing unique containment rela-

tions in food products. FoodOn acts as an interface with more

food-specific domain ontologies, like food packaging, food

nutrition, and food processing. Its knowledge of both food and

food processing is comprehensive enough to drive various appli-

cations, such as food safety, farm-to-fork traceability, and risk

management. Figure 4 shows a simplified example about apple

food products in FoodOn. It describes the relations among food

sources like apple tree and pome fruit plants, different kinds of

food products like apple pie and caramel apple, and related

food processes like food baking processes and food coating

or covering processes. Moreover, considering that different

food ontologies are developed for different application sce-

narios, these existing food ontologies can be integrated and

reused to provide wider coverage of food concepts or serve

more general purposes. For example, FoodOntoMap was con-

structed to link these food ontologies,79 so that food concepts

of different ontologies can be normalized by mapping them to

a unified system. Thus, FoodOntoMap can be considered as a

general food ontology for further studies in different areas like

diseases, human health, or the environment.
In summary, food ontologies formally describe food types,

their properties, and interrelations between food entities. How-

ever, these food ontologies generally lack detailed information

about more food instances. For these reasons, food knowledge

graphs are developedwith both food ontology and specific food-

relevant instances, where food ontology is generally considered

as the schema.

Food knowledge graph
The proliferation of food-relevant instances, such as recipes and

nutrition from various sources, presents an opportunity for

discovering and organizing food-related knowledge into the

food knowledge graph. We divide food knowledge graphs into

four different types, including (1) knowledge graphs about rec-

ipes, (2) knowledge graphs about nutrients and health, (3) knowl-

edge graphs about food safety, and (4) general food knowledge

graphs. Table 3 lists constructed food knowledge graphs.

Knowledge graphs about recipes

Some food knowledge graphs are mainly built based on recipe

entities extracted from the crowdsourced consumer review

sites, recipe-sharing websites, and social media to support

recipe-related applications. Foodbar knowledge graph65 con-

tains more types of information, such as ratings and consumers’

opinions from different restaurants and bars. It extracts the
Patterns 3, May 13, 2022 9



Figure 5. The structure of FoodKG
There are different instances of the FoodKG in the bottom left of the figure. FoodKG adopts theWhatToMake ontology as its ontology from several sources, such
as FoodOn. Besides, instances in FoodKG are associated with nutrition data from the USDA ingredient nutrient database (the orange block at the top left) to
support food recommendations with rich nutritional parameters. 68
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above information from BEDCA and CookBook of Wikidata, and

links to users, points of interest, cultural facts, and so on. Based

on this, Foodbar knowledge graph can be used for recommend-

ing miniature food according to the given user preference or

providing food-relevant descriptive analytics services. Lei et al.

further introduce social relationships into the food knowledge

graph.72 They construct a multimodal and hierarchical recipe

knowledge graph (RcpKG). In RcpKG, the users’ demands are

converted to nodes and modeled with specific hierarchical

structures. Thus, it can link profiles of different users and give

reliable recipe recommendations based on both personal prefer-

ences and social relationships. Its recipe data are from popular

recipe websites (e.g., Yummly and AllRecipes) and datasets

(e.g., Recipe1M+).

Knowledge graphs about nutrient and health

FoodKG is a large-scale and unified food knowledge graph that

brings together food ontologies, recipes, ingredients, and nutri-

tional data.68 In particular, as shown in Figure 5, it integrates

FoodOn into its WhatToMake ontology, and contains recipe

and nutrient instances extracted from Recipe1M+80 and

nutrient records from the United States Department of Agricul-

ture (USDA). Such a food knowledge graph with more compre-

hensive recipe and nutrition information can support many

applications, such as recipe recommendation, ingredient sub-

stitutions,81 and QA.68

The Chinese food knowledge graph64 and healthy diet knowl-

edge graph66 focus on food and medicine, especially ingredient

and nutrient knowledge of Chinese food and Chinese medicine.

Machine learning algorithms are used to extract information
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fromChinese health foodwebsites andChinese foodcomposition

tables,82 and their ownontologycontaining food-related concepts

and relations are constructed, respectively. The Chinese food

knowledge graph basically supports semantic search, and the

healthy diet knowledge graph66 further enables support for more

healthy diet applications, like QA and food recommendation.

Recently, there has been some work on the relation between

diet and disease. For example, Milanlouei et al. develop a knowl-

edge graph of dietary factors associated with cardiovascular

disease.69 To create this knowledge graph, they collected and

filtered papers that studied the association between dietary

and cardiovascular complications from PubMed. They finally

used 292 associations from 91 papers to construct the knowl-

edge graph, and the environment-wide association study

(EWAS) approach was applied to discover relations between

multiple types of diet and cardiovascular disease.

Knowledge graphs about food safety

Food safety knowledge graph58 and food spot-check knowledge

graph70 mainly concern food safety issues. Food safety knowl-

edge graph58 contains the data of unqualified foods officially

released in recent years from the Internet. Based on this knowl-

edge graph, an intelligent food safety-oriented QA system was

built to help people get the information of unqualified foods.

Similarly, Qin et al. obtained food spot-check data from official

websites of China’s national food quality supervision and inspec-

tion center and China’s food and drug administration, extracted

food spot-check information, and constructed a food spot-

check knowledge graph.70 A QA system is also provided based

on the knowledge graph.
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General food knowledge graphs

Some food knowledge graphs cover more types of food-related

knowledge from broader fields.83 One of them is the knowledge

graph for food, energy, and water (FEW). It extracts a vast

amount of available data from USDA, the National Oceanic and

Atmospheric Administration (NOAA), the United States Geolog-

ical Survey (USGS), and the National Drought Mitigation Center

(NDMC) to support data-driven research for the FEW domain.

Another one is the agricultural knowledge graph (AgriKG),67 an

agriculture domain-specific knowledge graph covering raw

food materials and food products. Their agriculture data are ex-

tracted from sources like Wikidata, and the fragmented informa-

tion is integrated for agriculture-relevant applications. In

contrast, the World Food Atlas Project71 was built to include a

wider range of food concepts. It is a project that can aggregate

and unify food-related information from multiple offline and on-

line sources in the world. To achieve this, researchers developed

a food knowledge graph that uses FoodOn as its ontology to

collect foods, ingredients, and their relations from multiple sour-

ces. Later they develop the FoodLog Athl and the RecipeLog,

two mobile applications for collecting diet records as dietary

knowledge. Although still in the early stages, the combination

of these two works will help explore the relations among food,

culture, and personal health, and promote regional food culture

research.

Considering food knowledge graph construction needs a lot of

laborious work, there are not many constructed food knowledge

graphs in the academic field. In contrast, because of its vital

importance in the food business,84 many companies, such as

Uber, Meituan, and Yummly, have constructed their food knowl-

edge graphs to drive many products and make them more intel-

ligent from different specific domains. For example, Uber Eats85

builds a food knowledge graph to enable food-related retrieval

and recommendation. In this food knowledge graph, the nodes

consist of different entities, such as restaurants, cuisines, and

menu items, and different relations are constructed as edges,

such as the association between cuisines and location informa-

tion. Edamam developed an extensive knowledge graph on food

and cooking, including recipes, ingredients, nutrition informa-

tion, measures, and allergies. The goal of this food knowledge

graph is to offer usersmultiple ways of searching to enable better

food choices.

In order to effectively construct a food knowledge graph, one

common method is to combine extractions from Web content

with domain knowledge from existing knowledge repositories.

The semi-automatic way is usually adopted with both machine

learning methods and manual efforts. Generally, the first step

is to construct the food ontology. One effective method is to

reuse existing food ontologies.86 For example, FoodKG19 adopts

the ontology on food products from the FoodOn as its ontology.

In some cases, existing ontologies do not cover what is intended

with the target project, and building one food ontology from

scratch is thus necessary. The most widely used ontology con-

struction method is to combine top-down and bottom-up

approaches,16 where the former starts with defining the classes

for the more general concepts in the domain and continues by

defining the subclasses, and the latter starts with a definition of

more specific concepts in the domain as subclasses and con-

tinues by grouping these classes into more general concepts,
such as wine ontology.87 As shown in Table 3, for food knowl-

edge graphs like the Chinese food knowledge graph, AgriKG

and food spot-check knowledge graph, their ontologies are

specially constructed from extracted data. After food ontology

construction, more information on instance items, such as food

entities and their relations,64,88–90 should be extracted from

various sources and are added into the food ontology for food

knowledge graph construction. There are also some food-ori-

ented relation extraction models, like SAFFRON91 for food-dis-

ease relation extraction and FoodChem37 for food-chemical

relation extraction.

Discussion
Besides food ontology and knowledge graphs, as mentioned in

the history of the knowledge graph, linked data are another

way of organizing food knowledge. Some representative food

linked data are also proposed, and they play roles in food sci-

ence and industry. Among all of these work, AGROVOC,46

FOODpedia,52 and Open Food Facts are three representative

linked data. For example, AGROVOC is considered the largest

food-linked data source about food and agriculture for the pub-

lic, which has been coordinated by the Food and Agriculture Or-

ganization of the United Nations (FAO) since the early 1980s.

AGROVOC introduces concepts to represent almost everything

in food and agriculture and consists of over 39,500 concepts and

924,000 terms in up to 41 languages (October 2021). Besides,

there are some thesauruses, which are not particularly designed

for food domains but involve terms of food and health classes,

like the food class in the DBpedia and food and drinks class in

SNOMED Clinical Terms.

Sometimes, it is difficult to define what food linked data actu-

ally belong to. Some food-linked data datasets define the con-

cepts and relations and use them to describe and represent

the food domain. From this aspect, they can play the role of

the food ontology. On the other hand, despite relatively limited

application scenarios, food-linked data may contain a large

number of entities and organize them like the knowledge graph.

For similar reasons, some food ontologies can be considered as

food knowledge graphs, because they contain not only classes

and their relations in a schema but also real-world instances,

their properties, and relations, according to the definition of

knowledge graphs.18 For example, FoodWiki and FOODS

contain not only the food ontology but also product instances,

their properties, and relations. This indicates that the boundary

between food-linked data, food knowledge graphs, and food

ontology is vague in some cases.

APPLICATIONS OF FOOD KNOWLEDGE GRAPHS

As illustrated in Figure 6, representative applications of food

knowledge graphs in food science and industry are identified

and summarized from the following seven aspects. Consid-

ering food ontology is one important part of food knowledge

graphs, we will discuss their applications in this section

together.

New recipe development
The research and development of new food products is one

important part of the food industry. Food knowledge graphs
Patterns 3, May 13, 2022 11
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can be utilized to develop new products via effective knowledge

organization and their powerful inference ability. Developing new

recipes is one representative application of food knowledge

graphs. For existing recipes, we can resort to food knowledge

graphs to find various alternative ingredients under requirements

or develop new flavors.81,92 Also we can develop novel culinary

recipes, including not only their ingredient combinations but also

their ingredient proportions and time durations of each step via

combining the constructed food knowledge graph and mathe-

matical models.93
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First, we can use the auto-infer abilities of food knowledge

graphs to discover alternative ingredients. Shirai et al. developed

a heuristic method to sort ingredient substitutions based on the

similarity of the properties of ingredients and the similarity of

latent semantics of ingredient names in FoodKG.19 In their

method, FoodKG is utilized as the latent semantics source in

the form of word embedding since it includes abundant linked in-

formation about nutrition, ingredients, and recipes, while

Word2Vec94 is utilized as the word-embedding model. Consid-

ering that suitable substitute ingredients will have similar word
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embeddings, cosine similarity is used to measure and sort the

best substitution ingredients. For the food industry, such a

method can help discover ingredient substitutions for existing

products and reduce food production costs. For consumers,

such food-knowledge-graph-based ingredient substitution

methods can give alternatives to specific recipes to meet their

personalized needs. When integrating more comprehensive

domain knowledge, the food knowledge graphs can give more

personalized alternative ingredients based on more factors,

including not only ingredients but also health indexes like glyce-

mic index and glycemic load.

The food knowledge graph can also facilitate the development

of new recipes. Generally, special flavors of foods come from the

mixing or the interaction of several food components during

cooking, while the specific mechanism inside may not be

explored clearly. However, correlations of food components

can be discovered statistically with co-occurrence information.

Considering that the food knowledge graph can organize recipes

and chemical components in a similar way, food manufacturers

can use food knowledge graphs to discover well-matched latent

ingredient combinations. Ahn et al. introduce a flavor network to

capture the shared flavor compounds in various ingredients.95

They constructed a bipartite network to link about 400 ingredi-

ents and over 1,000 flavor compounds and then project it to a

flavor network, where ingredients sharing the same flavor com-

pounds are connected, and the weight of each link depends

on the number of their shared flavor compounds. Then they

used recipes from American repositories to analyze ingredient

combinations in different regions, including popular and unpop-

ular ones. Some ingredient combinations may only be popular in

some regions, or combinations are feasible but not being tried

yet. Applying these ingredient combinations to existing recipes

is an effective way to develop new recipes, which may bring

new flavors and genres.

In addition, the knowledge graph can also be used directly to

develop new recipes. For example, Pinel et al. constructed a

food knowledge graph to organize data of recipes and ingredi-

ents, and generate recipes that fit the requirements of users

based on the constructed knowledge graph.93 Later, their algo-

rithm selects the best ingredient combination and proportions by

novelty and quality evaluators. Recipe steps are then generated

using a subgraph composition algorithm, and the time duration

of each step is estimated from known complete recipes.

Besides the above-mentioned applications, food knowledge

graphs also show considerable prospects in more aspects of

improving recipes. For example, considering that most foods

already exist when the knowledge graphs are developed, it

cannot be ignored that there are unhealthy (even hazardous) in-

gredients or pairings existing in these foods. Linked with toxi-

cology knowledge, a food knowledge graph can assess the

toxicity risk of the specific recipe from its components.96,97

When food processing knowledge is integrated, it can even

assess the potential risk of the specific recipe during the pro-

cessing by its reasoning and advise substitute ingredients or

substitute processing steps. All of these above-mentioned

works show that food knowledge graphs can make new recipe

development possible, and exploring food knowledge graphs

to develop new recipes provides a method of new recipe devel-

opment with higher efficiency and reliability in the food industry.
Food QA system
The QA system via food knowledge graphs can help people

analyze the information and potential problems, and answer

food-relevant questions about different food sub-domains,

such as nutrition and disease, and food safety. For example, di-

abetics often ask questions like, ‘‘How can I increase the fiber

content of this cake?’’ A person with lactose intolerance may

ask ‘‘What can I substitute for milk in chocolate cake?’’

Answering these questions is not possible from general knowl-

edge graphs because of the incompleteness of domain knowl-

edge. Food knowledge graphs can be developed to support

natural-language QA based on different categories of questions

about recipes and nutrition, such as simple queries for nutritional

information, comparisons of nutrients from different foods, and

constraint-based queries to find recipes matching certain

criteria.68 Food-knowledge-graph-based QA systems can also

describe recipes, nutrients in foods, and the interaction between

nutrients and prescribed drugs, disease, and general health to

satisfy users’ specific information needs. For example, cooking

QA98,99 is intended to satisfy the user’s information need in the

cooking domain, and is helpful to people such as housewives

and nutritionists. FoodKG19 organizes diets, nutrients, and

food types together, which can be leveraged by a QA system

in the food field. It takes natural language questions as the input,

and generates answers from the information stored in FoodKG.

The questions it can answer can be roughly divided into three

categories: simple questions, which directly ask about the ingre-

dients of a certain food; comparative questions, where, given

some conditions, the system selects more suitable food;

restricted questions, where, given restrictions on ingredients or

types of food, the system provides qualified food. When there

is a question, the system decides the question style, detects

the mentioned topic entity, and then use a knowledge base

question answering (KBQA) model to retrieve answers from

FoodKG. The system is also enriched by user preferences to

improve personalized QA.

In addition, some QA systems via food knowledge graphs

have been developed for the issue of food safety. For example,

Qin et al. constructed a foodQA systembased on the food safety

knowledge graph that collects officially published food data from

the Internet.58 In their QA system, users’ questions are first

parsed, and every food and attribute will be mapped to entities

and relations in the food safety knowledge graph. Later, ques-

tions in natural language will be converted to SPARQL query

statements by template matching so that questions related to

food safety can be understood and answered by the machine.

When food data and templates change, this workflow can also

be applied to answer different types of questions. For example,

a food spot-check knowledge graph70 is utilized in a similar way

to provide food spot-check data QA.

Diet-disease correlation discovery
The research on diet, disease, and their correlation modeling is

always an important aspect in food science and nutrition. It

has already been proved that there are inevitable connections

between chronic diseases and certain diet styles.100–102 Some

studies also show that diseases without effective treatments

(like neurodegenerative diseases) are associated with certain

foods, which provides potential opportunities to prevent
Patterns 3, May 13, 2022 13
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diseases or delay disease progression.103 This is because we

can build connections among diseases, diets, food, raw food

materials, and chemical components via constructing food

knowledge graphs and then conduct deeper analysis for their

correlations.69

Jensen et al. built a system called NutriChem, a resource

covering the broadmolecular content of food, collecting exhaus-

tive resources on the health benefits associated with specific di-

etary interventions.104 NutriChem contains 18,478 pairs of 1,772

plant-based foods and 7,898 phytochemicals, and 6,242 pairs of

1,066 plant-based foods and 751 diseases. In addition, it in-

cludes predicted associations for 548 phytochemicals and 252

diseases. All of these data are generated by mining 21 million

MEDLINE abstracts for information that links plant-based foods

with their small molecule components and human disease phe-

notypes. To organize these data, they introduced an ontology

that integrates the taxonomy from NCBI taxonomy, the Plant

for a Future (PFAF) and the Danish Food Composition Databank.

The relations in the ontology are built using Fisher’s exact test.

NutriChem allows us to integrate established relations among

food, compounds, and diseases in a more comprehensive

way. Therefore, we can easily understand the role of certain

types of foods, and even infer which types of food are harmful

or beneficial. This provides a foundation for understanding

mechanistically the consequences of eating behaviors on health.

Nian et al. investigated relations between food and neurode-

generative diseases in a similar way.105 They collected biomed-

ical annotations from over 4,000 publications and created the

knowledge graph. Later, the node2vec algorithm was used to

train graph embeddings for clustering similar concepts and dis-

tinguishing different concepts. In the constructed knowledge

graph, disease nodes and diet nodes are connected if they

are relative, and their weights are determined according to

the strength of the relevance. Based on this, they found that

some food-related species and chemicals coming from the

diet have a strong impact on neurodegenerative diseases.

Similar work includes the biochemical knowledge graph, a

comprehensive source of knowledge for integrating biochem-

ical knowledge and accelerating discovery in biochemical sci-

ences, whose information is extracted and mined from

biochemical literature.106 Some online platforms, such as

DietRx (cosylab.iiitd.edu.in/dietrx/) can also collect the food-

disease associations from MEDLINE abstracts, which can be

used for exploring the interrelationships among food, chemi-

cals, diseases, and genetic mechanisms.

These leading-edge studies have proved the feasibility of the

food knowledge graphs discovering the food-disease interac-

tion. Thus, constructing a knowledge graph with diseases and

food composition can be expected to analyze more general

chemical component-disease relationships, generate novel in-

sights, and even explore potential disease prevention strategies

by further designing certain diets.

Visual food analysis
Rapidly and reliably detecting and analyzing food product quality

and safety (e.g., meat products, cereal products, fruits and veg-

etables) in one non-destructive way is significant for the food in-

dustry. Along with the development of AI, AI-augmented food

analysis has become a new trend of food analysis.107 They use
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machine learning algorithms to process data from sensors (like

spectral and chromatographic data). Vision-based food analysis

from the image sensor is usually considered for its non-destruc-

tive nature. Among all visual food analysis methods, visual food

recognition is a basic task. Automatic food recognition can

replace the manual grading process and quality detection,3

and can also work as one basic step for various applications,

like food log systems and suggester systems.5,108

Knowledge graphs can be vectorized by machine learning al-

gorithms to support visual food object recognition. Rich

knowledge from food knowledge graphs, such as ingredients

and their relations, have been explored to improve the perfor-

mance of visual food recognition.109–111 For example, Chen

et al. leveraged multiple relations among ingredients for ingre-

dient recognition.109 They constructed a multi-relational knowl-

edge graph to describe the ingredient relations and develop a

graph model called multi-relational graph convolutional network

(mRGCN) for zero-shot ingredient recognition from the dish,

namely, recognizing ingredients that the model has not seen.

In mRGCN, the food knowledge graph is introduced as prior

knowledge because it contains a large amount of recipe data,

which provides the probability of coexistence between ingredi-

ents and the probability of food containing a certain ingredient.

By ingredient recognition enhanced by food knowledge graphs,

mRGCN can predict the dish category. There is a performance

improvement of 9.7% when introducing the ingredient knowl-

edge graph, and mRGCN achieves a 24.2% top-1 hit for unseen

ingredients in the VIREO Food-172 dataset, where top hit mea-

sures the percentage of the most possible predictions that

match the ground-truth labels. Based on the recognized dish

type, we can also further resort to the food knowledge graph

to obtain more detailed information about the recognized dish

type (such as properties, macronutrients, and ingredients) to

realize automatic dietary assessment.112,113

So far there is no work that uses food knowledge graphs to

handle more complex food visual analysis tasks like food object

detection and segmentation, where, compared with food recog-

nition, food detection additionally provided the localization for

the recognized food item, and food segmentation is one process

of assigning food labels to every pixel in one food image. Howev-

er, it has been proved that the object detection framework can

integrate external knowledge from a knowledge graph to

improve its performance because some combinations of objects

are more common than others.114 Image segmentation

augmented by knowledge has also been implemented in medi-

cal scenarios.115,116 We believe similar methods can also be

applied in food settings to improve the performance of complex

food visual analysis tasks. For example, we can use the food

knowledge graph to enhance the performance of food segmen-

tation, which can further help the dietary assessment.117,118

Personalized dietary recommendation
Personalized food and nutrition is gaining more and more atten-

tion in food science and other relevant domains.119,120 They aim

to use comprehensive personal information about individuals

(e.g., dietary pattern and gut microbiota) for personalized dietary

advice or recommendation, which is more suitable than generic

advice. However, food recommendation can be a daunting task,

partly because of the problem of information silos across



ll
OPEN ACCESSReview
multiple sources with large amounts of food and nutrition data. In

addition, different from other types of recommendation, food

recommendation should take many nutritional parameters into

consideration, such as caloric and different macronutrient and

micronutrient intake.

A natural solution to this problem is to provide an intelligent

food recommender system based on the food knowledge graph.

Food knowledge graphs provide formal, uniform, and shareable

representations about food. They can benefit from different as-

pects, such as improving the precision of recommended items,

increasing the diversity of recommended items, and bringing

better explainability.42 When it is organized with the personal

health knowledge graph, it can further give a personalized die-

tary recommendation based on food knowledge graphs. This

can benefit different people, such as diabetics,121 weightlifting

athletes,122 and older adults.123

As one use case, personalized food recommendation is con-

ducted over the constructed food knowledge graph FoodKG19

with recipes, ingredients, and nutrients.124 When providing a

recommendation, given a user query (e.g., ‘‘What is a good lunch

that contains meat?’’) as the input, the system retrieves all

recipes from FoodKG for the recommendation. Specifically,

the system identifies the query type first. Then the mentioned

topic entity (e.g., meat) is detected from FoodKG. With the ex-

tracted entity, answers are retrieved from the knowledge graph

by a KBQA model. Next, personalized requirements are added

as additional constraints, such as the user’s unique health con-

ditions (e.g., allergies) and health guidelines (e.g., nutrition

needs) to the raw user query for personalized food recommenda-

tion. In addition, we can obtain more accurate estimations of cal-

ories and nutrient content of the recipe to develop nutritional

profiling systems via food-knowledge-graph-enhanced map-

ping between cooking recipes and structured data (food compo-

sition tables).125 Such a nutrition profiling system will further

guarantee more precise dietary recommendations.

In addition, the food knowledge graph can be combined with

personal knowledge graphs. A personal knowledge graph is

unique for every user, and it can include personal information

such as allergies, preferences, and health indexes.126 With this

knowledge, the reasoning of the combined food knowledge

graph can be more personalized and tailored. The personal

health knowledge graph (PHKG) is a typical application of Se-

mantic Web technology in a comprehensive diet recommenda-

tion system.127 This project builds a knowledgemodel to provide

personalized dietary advice. In the project, PHKG is used to cap-

ture personal dietary behaviors such as carbohydrate intake with

the extended time series summarization technique. It can also

use semantic reasoners to recommend clinically relevant dietary

recommendations.
Food supply chain management
The food supply chain comprises all the stages that food prod-

ucts go through, from production to consumption. Nowadays,

with the globalization process, food is transported over longer

distances before it reaches the consumers, and the food supply

chain thus becomes longer and more fragmented. This brings

two problems: hard-achieved food traceability and more overall

food waste. Therefore, it is necessary to effectively manage the
food supply chain to achieve reliable food traceability and con-

trol waste.

An intuitive idea is to construct a directed graph where nodes

represent the status and processes of food materials. Zhang

et al. first adopted the concept of CTEs, which was proposed

by the Institute of Food Technologists (IFT) to describe the key

parts of the life cycle of a food product, like transportation and

process.128 CTEs can associate with data related to the key

events (like operators and devices). These CTEs can be linked

and organized for tracing and tracking. However, the food supply

chain system is often cross-functional and cross-regional,

involving data-sharing problems between different company en-

tities. For example, different food processors can have different

types of data because they focus on different functions and pro-

cessing, and their terms are affected by context, so the same

name can indicate totally different foods, like the term buttermilk:

it can refer to the cultured milk drink or the milk after churning,

depending on where it is used.13 Besides, food manufacturers

and raw food materials suppliers may have different naming

agreements due to their geography, because of which the

same food and terms may have different names.11

The food knowledge graph is a solution to model, integrate,

and align food data in food supply chain management. By as-

signing a Uniform Resource Identifier (URI) for every unique

food material, the food knowledge graph can easily distinguish

what exactly a term refers to under certain conditions. Besides,

once attributes of operations in food processing (like former

step, time, status, equipment information, and safety standard)

are aligned, and every participant in the food supply chain will

be linked in a unified and standardized form. Based on this,

more reliable traceback and related querying can be supported.

Some traceability ontologies have become a part of trace-

ability management to support food track and trace in the food

supply chain. For example, in FTTO, food processing proced-

ures are mainly considered, and different attributes for different

foods, like beverages and additives, are designed.47 Their attri-

butes are standardized by FTTO, so different food product sta-

tuses can be linked through the processing flow and keep their

naming consistency through their life cycles. This also makes

intelligent querying possible, which means the users can access

all intermediate products of a certain product and their relevant

information, such as operating time and operator. This enables

the users to trace back all security risks, such as tracing the

contaminated foods, especially those that occur across borders.

FTTO has been used in the global supply chain system. MESCO

further extends the FTTO to adapt the meat supply chain area. In

particular, It continues to use the traceability method and food-

related concepts in FTTO, and the concept of the meat supply

chain is more considered, such as the unique identification

code of the animal, the place of production, and the date of

birth.55

Food machinery intelligent manufacturing
With the continuous evolution of technologies, the innovation of

IoT sensors also affects food-relevant scenarios like food pro-

cessing and central kitchens. Data fusion and exploration from

different sensors are necessary to support further intelligent de-

cision making, which is of great significance for building auto-

matic food industry production lines and consumer-oriented
Patterns 3, May 13, 2022 15
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smart terminal equipment.129 With the wide application of food

knowledge graphs in IoT, we can build the intelligent kitchen or

intelligent industry devices that can make intelligent decisions

based on data from IoT sensors.

For example, in intelligent kitchens, smart refrigerators with

cameras can reasonwith recognized food and drink items, ingre-

dients, and portion sizes, and even estimate their shelf life for

timely use in recommended recipes via the embedded food

knowledge graph. Smart microwaves with cameras can recog-

nize the food type and then automatically choose important pa-

rameters, such as heating methods and heating time via the

embedded food knowledge graph. KitchenSense is an early

work about intelligent kitchens. It uses knowledge to coordinate

the work of various intelligent devices in the kitchen to enhance

the intelligent interaction between devices and people.130

In addition, industry robots and machinery can make more

intelligent decisions from food knowledge graphs. They can ac-

cess the processing status through sensors, obtain the physical

properties of food materials, and perform intelligent processing

control according to the knowledge from food knowledge

graphs. Such an intelligent approach can allow information in

different forms to be integrated for industrial machines. To our

best knowledge, there are few published works that utilize

food knowledge graphs for food processing control. However,

we notice that some food ontologies and food knowledge graphs

cover the concepts involved in food processing, such as OFPE

and AFEO. These established ontologies or knowledge graphs

can be further explored tomake different stages in food process-

ing better controlled and more effective, resulting in more auto-

matic and intelligent whole-food processing.

FUTURE DIRECTIONS OF FOOD KNOWLEDGE GRAPHS

Based on comprehensive discussions on existing efforts, we

now articulate key open challenges and future research direc-

tions for food knowledge graphs.

Multimodal food knowledge graph
Most of the existing food knowledge graphs focus on organizing

verbal knowledge extracted from text. However, the proliferation

of edge devices, such as mobile devices and IoT devices in the

food industries, generates large volumes of visual data, e.g., im-

ages and videos, which contain another important type of knowl-

edge, namely visual knowledge.131 From the narrow perspective

of computer vision, visual knowledge is any information that can

be useful for improving vision tasks like recognition. Such visual

knowledge includes different forms, such as labeled examples of

different categories (e.g., food categories and rich attributes) and

relationships like object-object relations (e.g., chicken is part of

Kung Pow chicken).132 Large-scale efforts, such as visual attri-

bute learning,133 visual relationship detection,134 and scene

graph generation,135 are underway to extract a body of visual

knowledge. Visual knowledge and verbal knowledge constitute

multimodal knowledge. There are some initial attempts to incor-

porate visual information into knowledge graphs by linking im-

ages to text via hyperlinks.136 In this case, visual information

(e.g., entity images) can only be used for visual demonstrations.

Most existing food knowledge graphs do not contain visual

knowledge and thus cannot support food-oriented visual search
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and visual illustration. It is the right time to start building a

multimodal food knowledge graph, where searching, indexing,

organizing, and hyperlinking multimodal knowledge are neces-

sary. Such a multimodal food knowledge graph can help food-

oriented multimodal learning technologies to support many

cross-modal tasks, such as cross-modal recipe-food image

retrieval and generation.80,137,138 The downstream applications

are various, such as automatically illustrating a given recipe us-

ing semantically corresponding images, and supporting food-

oriented multimodal dialogue systems. Effective multimodal

information integration can also be applied to a lot of food indus-

try scenarios, since abundant multimodal data exist in food in-

dustries, like image, video, and other attribute information

obtained from various types of sensors. Automatic fruit classifi-

cation and grading, baking and fermentation time control, and

automatic food packaging can all benefit from multimodal food

knowledge graphs because multimodal information can be bet-

ter organized and analyzed, and these procedures can be thus

optimized. However, due to different statistical properties be-

tween visual knowledge and verbal knowledge, how to reason-

ably and effectively build multimodal food knowledge graphs is

worth further study.

Representation and reasoning on the food
knowledge graph
The first step of using food knowledge graphs is to represent

them and conduct complex reasoning on them. Numerical

computing for knowledge representation and reasoning requires

a continuous vector space to capture the semantics of entities

and relations.20 While embedding-based methods have limita-

tions on complex logical reasoning, some recently proposed

methods, especially GraphNeural Networks (GNN),139 on knowl-

edge graph reasoning are very promising for handling complex

reasoning. The GNNs learn the representation of a target node

by propagating neighbor information in an iterative manner until

a stable fixed point is reached. With the help of GNNs, it is

possible to extract both entity characteristics and relations

from knowledge graphs, which is one essential factor for food-

knowledge-graph-based applications, such as compound-

food relation prediction140 and food recommendation.139

Food big data organization and mining
A huge amount of food-related information is generated globally

from different sources (e.g., IoTs, online databases, and social

media) with various types (e.g., food components, nutrition ta-

bles, recipe text, food images, and cooking videos), resulting in

food big data.141 These data are related to all the stages of the

food system, such as food production, processing, and con-

sumption, and thus enable applications in food science and in-

dustry, especially combined with AI. However, due to the large

scale of these data, how to organize and explore them well be-

comes a challenge. By uniforming their names and integrating

different information sources with knowledge graphs, we can

better organize and utilize rich data. For example, food compo-

sition databases and food regulations can be linkedwith food,142

and we can use them to discover connections among food and

diet-induced illnesses, pushing forward relevant research on

food, nutrition, health, and regulations. Furthermore, big data

in the food safety domain can also help review previous food
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safety accidents and help develop tools to deal with hard food

safety issues.143,144 If we can develop a knowledge graph to

organize them, we are more likely to find the key points that

lead to the accidents and resolve safety issues via reasoning

on knowledge graphs. Furthermore, the big-data-supported

food knowledge graphs can realize more precise personalized

nutrition recommendations.145 By detecting consumers’ health

indicators by a series of sensors, we can obtain a large amount

of health data, including personal features, diet, nutrition, and

behaviors. Food knowledge graphs can integrate these data,

which are related to the human body in an appropriate way,

and the combination of food knowledge graphs and AI algo-

rithms can realize accurate and personalized nutrition. Under

appropriate circumstances, we can check health indicators

again to obtain feedback, which forms a knowledge-graph-

enhanced health nutrition recommendation closed loop.

Internet of Food
Internet of Food (IoF) is designed to make the data from different

devices and sources interoperable and to be able to compute

across the whole dataset. However, a notable limitation is the

lack of integration caused by the mix of data from different sour-

ces and hardware standards. Food knowledge graphs can

provide standards (food ontologies) for all food information,

such as how we describe food attributes, and how it is cooked,

processed, or consumed, and make all food-relevant data and

information (instances) connected. Therefore, it can foster the

development of IoF. However, food knowledge graphs involve

complex technologies, such as knowledge aggregation, com-

plex storing, and index technologies, bringing great challenges.

In addition, using knowledge graphs to integrate food data from

diverse sources at a large scale is necessary,146 while devel-

oping scalable scientific and engineering methods to keep scale

with little cost increase is an obvious requirement for the suc-

cessful application of food knowledge graphs. Once IoF is con-

structed based on food knowledge graphs, it enables all known

food-relevant information to be accessible by machines, con-

sumers, and companies to further enable more applications in

food science and industry.13

Food knowledge graph for human health
To meet people’s pursuit of better health, the essential demand

is presented for better, safer, and more nutritious food. To

achieve this goal, building one human nutrition and health plat-

form is necessary. The food knowledge graphs provide one op-

portunity to build such a platform via large-scale structured food

knowledge organization. As the core of this platform, food

knowledge graphs can support the tracking and monitoring of

the dietary behaviors; health-relevant search and recommenda-

tions; and food-relevant studies on nutrition, diet, and disease.

To achieve these goals, the food knowledge graph should

satisfy certain characteristics. For example, a more complete

and accurate interdisciplinary food knowledge graph is one

basic requirement, and joint efforts from worldwide experts in

food science, nutrition, health, and other relevant domains are

thus needed. More challenges should also be solved. For

example, there exist different culinary cultures and health beliefs

in the world, which probably leads to contradiction when adding

this knowledge into the food knowledge graphs. Although exist-
ing machine learning and natural language processing methods

can achieve food knowledge graph construction automatically,

the multiple sources of food data inevitably introduce noise. In

addition, such big food knowledge graphs should support dy-

namic adaptation, which is more difficult to achieve from the

perspective of technology.
Food intelligence
Driven by the fast development of AI, there is a urgent need to

push the AI frontier to the food domain. Conforming to this trend,

food computing147 has received tremendous amounts of interest

for itsmultifarious applications in health, culture, andmedicine. It

acquires and analyzes multi-source multimodal food data for

food-oriented various tasks via computational approaches. The

nexus between food computing and AI gives birth to the novel

paradigm of food intelligence. Food knowledge graphs can

enhance already-popular techniques of computer vision and nat-

ural language processing, such as image recognition,5,148 object

detection,114 and QA,149 and thus can aid food computing tasks.

We can also make decisions and reasoning on food knowledge

graphs21 in combination with advanced AI technologies for

many intelligent services in various fields, such as smart

kitchens.150 Therefore, food knowledge graphs will play impor-

tant roles in realizing food intelligence, which will benefit various

studies and applications in food science and industry.
CONCLUSIONS

In this review, we summarize food knowledge graphs from their

development, applications, and future directions in food science

and industry. Our comprehensive review of current research on

food knowledge graphs shows that food knowledge graphs

have enabled various food-oriented applications for the capa-

bility of knowledge graphs in effective food data organization,

representation, and reasoning. Future directions for food knowl-

edge graphs show their great potential in solving food-relevant

key problems in food industries and daily diet scenarios.

Although there are still challenges from multimodal food data

and complex computational technologies, we have seen the

considerable application prospects shown by food knowledge

graphs in the food domain. This is also the purpose of this review,

which encourages researchers and engineers in this field to put

knowledge graphs into practice for the benefits of food science

and industry.
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83. Veron, M., Peñas, A., Echegoyen, G., Banerjee, S., Ghannay, S., and
Rosset, S. (2020). A cooking knowledge graph and benchmark for ques-
tion answering evaluation in lifelong learning scenarios. In Natural Lan-
guage Processing and Information Systems, pp. 94–101.

84. Noy, N., Gao, Y., Jain, A., Narayanan, A., Patterson, A., and Taylor, J.
(2019). Industry-scale knowledge graphs: lessons and challenges. Com-
mun. ACM 62, 36–43.

85. Hamad, F., Liu, I., and Zhang, X. (2018). Food Discovery with Uber Eats:
Building a Query Understanding Engine.

86. Helmy, T., Al-Nazer, A., Al-Bukhitan, S., and Iqbal, A. (2015). Health, food
and user’s profile ontologies for personalized information retrieval.
Proced. Comput. Sci. 52, 1071–1076.

87. Graça, J., Mourao, M.D.A., Anunciação, O., Monteiro, P., Pinto, H.S., and
Loureiro, V. (2005). Ontology building process: the wine domain. In Con-
ference of the European Federation for Information Technology in Agri-
culture, Food and Environment, pp. 1138–1145.

88. Popovski, G., Seljak, B.K., and Eftimov, T. (2019). FoodBase corpus: a
new resource of annotated food entities. Database 2019.

89. Popovski, G., Seljak, B.K., and Eftimov, T. (2020). A survey of named-en-
tity recognition methods for food information extraction. IEEE Access 8,
31586–31594.

90. Petkovi�c, M., Popovski, G., Seljak, B.K., Kocev, D., and Eftimov, T.
(2021). DietHub: dietary habits analysis through understanding the con-
tent of recipes. Trends Food Sci. Technol. 107, 183–194.

91. Cenikj, G., Eftimov, T., and Seljak, B.K. (2021). Saffron: transfer learning
for food-disease relation extraction. In Proceedings of the 20th Work-
shop on Biomedical Language Processing, pp. 30–40.

92. Shirai, S.S., Seneviratne, O., Gordon, M.E., Chen, C.H., and McGuin-
ness, D.L. (2021). Identifying ingredient substitutions using a knowledge
graph of food. Front. Artif. Intell. 3, 621766.

93. Pinel, F., Varshney, L.R., and Bhattacharjya, D. (2015). A Culinary
Computational Creativity System (Atlantis Press), pp. 327–346.

94. Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estima-
tion of word representations in vector space. Preprint at arXiv,
1301.3781.

95. Ahn, Y.Y., Ahnert, S.E., Bagrow, J.P., and Barabási, A.L. (2011). Flavor
network and the principles of food pairing. Sci. Rep. 1, 196.

96. Davis, A.P., Grondin, C.J., Johnson, R.J., Sciaky, D., King, B.L., McMor-
ran, R., Wiegers, J., Wiegers, T.C., and Mattingly, C.J. (2016). The
comparative toxicogenomics database: update 2017. Nucleic Acids
Res. 45, D972–D978.
20 Patterns 3, May 13, 2022
97. Wishart, D.S., Knox, C., Guo, A.C., Shrivastava, S., Hassanali, M., Sto-
thard, P., Chang, Z., andWoolsey, J. (2006). DrugBank: a comprehensive
resource for in silico drug discovery and exploration. Nucleic Acids Res.
34 (suppl_1), D668–D672.

98. Manna, R., Pakray, P., Banerjee, S., Das, D., and Gelbukh, A. (2017).
CookingQA: a question answering system based on cooking ontology.
In Advances in Computational Intelligence, pp. 67–78.

99. Yagcioglu, S., Erdem, A., Erdem, E., and Ikizler-Cinbis, N. (2018). Rec-
ipeQA: a challenge dataset for multimodal comprehension of cooking
recipes. In Proceedings of Conference on Empirical Methods in Natural
Language Processing, pp. 1358–1368.

100. Woodside, J.V., Young, I.S., and McKinley, M.C. (2013). Fruit and vege-
table intake and risk of cardiovascular disease. Proc. Nutr. Soc. 72,
399–406.

101. Afshin, A., Sur, P.J., Fay, K.A., Cornaby, L., Ferrara, G., Salama, J.S.,
Mullany, E.C., Abate, K.H., Abbafati, C., Abebe, Z., et al. (2019). Health
effects of dietary risks in 195 countries, 1990–2017: a systematic analysis
for the Global Burden of Disease Study 2017. Lancet 393, 1958–1972.

102. Zhao, Z., Li, M., Li, C., Wang, T., Xu, Y., Zhan, Z., Dong, W., Shen, Z., Xu,
M., Lu, J., et al. (2020). Dietary preferences and diabetic risk in China: a
large-scale nationwide Internet data-based study. J. Diabetes 12,
270–278.

103. Joseph, J., Cole, G., Head, E., and Ingram, D. (2009). Nutrition, brain ag-
ing, and neurodegeneration. J. Neurosci. 29, 12795–12801.

104. Jensen, K., Panagiotou, G., and Kouskoumvekaki, I. (2014). NutriChem: a
systems chemical biology resource to explore the medicinal value of
plant-based foods. Nucleic Acids Res. 43, D940–D945.

105. Nian, Y., Du, J., Bu, L., Li, F., Hu, X., Zhang, Y., and Tao, C. (2021). Knowl-
edge graph-based neurodegenerative diseases and diet relationship dis-
covery. Preprint at arXiv, 2109.06123.

106. Manica, M., Auer, C., Weber, V., Zipoli, F., Dolfi, M., Staar, P., Laino, T.,
Bekas, C., Fujita, A., Toda, H., et al. (2019). An information extraction and
knowledge graph platform for accelerating biochemical discoveries. Pre-
print at arXiv. https://doi.org/10.48550/arXiv.1907.08400.

107. Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019). Application of deep
learning in food: a review. Compr. Rev. Food Sci. Food Saf. 18,
1793–1811.

108. Aizawa, K. (2020). Image recognition-based tool for food recording and
analysis: Foodlog. In Connected Health in Smart Cities, pp. 1–9.

109. Chen, J., Pan, L.,Wei, Z.,Wang, X., Ngo, C.W., andChua, T. (2020). Zero-
shot ingredient recognition by multi-relational graph convolutional
network. In Proceedings of the AAAI Conference on Artificial Intelligence,
34, pp. 10542–10550.

110. Min, W., Liu, L., Luo, Z., and Jiang, S. (2019). Ingredient-guided
cascaded multi-attention network for food recognition. In Proceedings
of ACM International Conference on Multimedia, pp. 1331–1339.

111. Jiang, S., Min, W., Liu, L., and Luo, Z. (2019). Multi-scale multi-view deep
feature aggregation for food recognition. IEEE Trans. Image Process. 29,
265–276.

112. Mezgec, S., and Korou�si�c Seljak, B. (2017). NutriNet: a deep learning
food and drink image recognition system for dietary assessment. Nutri-
ents 9, 657.

113. Mezgec, S., Eftimov, T., Bucher, T., and Seljak, B.K. (2019). Mixed deep
learning and natural language processing method for fake-food image
recognition and standardization to help automated dietary assessment.
Publ. Health Nutr. 22, 1193–1202.

114. Fang, Y., Kuan, K., Lin, J., Tan, C., and Chandrasekhar, V. (2017). Object
detection meets knowledge graphs. In Proceedings of International Joint
Conference on Artificial Intelligence, pp. 1661–1667.

115. Chittajallu, D.R., Brunner, G., Kurkure, U., Yalamanchili, R.P., and Kaka-
diaris, I.A. (2009). Fuzzy-Cuts: a knowledge-driven graph-based method
for medical image segmentation. In IEEE Conference onComputer Vision
and Pattern Recognition, pp. 715–722.

http://refhub.elsevier.com/S2666-3899(22)00069-1/sref77
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref77
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref77
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref78
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref78
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref78
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref78
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref79
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref79
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref79
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref79
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref80
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref80
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref80
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref80
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref81
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref81
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref81
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref81
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref82
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref82
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref83
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref83
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref83
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref83
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref84
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref84
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref84
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref85
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref85
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref86
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref86
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref86
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref87
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref87
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref87
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref87
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref88
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref88
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref89
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref89
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref89
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref90
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref90
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref90
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref90
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref91
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref91
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref91
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref92
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref92
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref92
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref93
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref93
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref94
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref94
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref94
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref95
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref95
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref96
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref96
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref96
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref96
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref97
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref97
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref97
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref97
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref98
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref98
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref98
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref99
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref99
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref99
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref99
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref100
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref100
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref100
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref101
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref101
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref101
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref101
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref102
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref102
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref102
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref102
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref103
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref103
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref104
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref104
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref104
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref105
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref105
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref105
https://doi.org/10.48550/arXiv.1907.08400
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref107
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref107
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref107
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref108
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref108
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref109
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref109
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref109
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref109
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref110
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref110
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref110
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref111
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref111
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref111
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref112
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref112
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref112
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref112
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref112
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref113
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref113
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref113
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref113
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref114
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref114
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref114
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref115
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref115
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref115
http://refhub.elsevier.com/S2666-3899(22)00069-1/sref115


ll
OPEN ACCESSReview
116. Chen, Y., Wang, Z., Hu, J., Zhao, W., and Wu, Q. (2012). The domain
knowledge based graph-cut model for liver CT segmentation. Biomed.
Signal Process. Control 7, 591–598.

117. Lu, Y., Stathopoulou, T., Vasiloglou, M.F., Pinault, L.F., Kiley, C., Spana-
kis, E.K., and Mougiakakou, S. (2020). goFOODTM: an artificial intelli-
gence system for dietary assessment. Sensors 20, 4283.

118. Lu, Y., Stathopoulou, T., Vasiloglou, M.F., Christodoulidis, S., Stanga, Z.,
and Mougiakakou, S. (2021). An artificial intelligence-based system to
assess nutrient intake for hospitalised patients. IEEE Trans. Multimed.
23, 1136–1147.

119. Ueland, Ø., Altintzoglou, T., Kirkhus, B., Lindberg, D., Rognså, G.H.,
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