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Background: Although blood pressure variability (BPV) has emerged as a novel

risk factor for Alzheimer’s disease, few studies have examined the e�ects

of night BPV on brain structure and function. This study investigated the

association of night BPV with brain atrophy and cognitive function changes.

Methods: The analysis included 1,398 participants with valid ambulatory blood

pressure (BP) monitoring at baseline and both baseline and 4-year follow-up

brain magnetic resonance images who were recruited from the Korean

Genome and Epidemiology Study. Participants underwent a comprehensive

neuropsychological test battery. BPV was derived from ambulatory BP

monitoring and calculated as a standard deviation (SD) of 24-h and daytime

and nighttime BP.

Results: During the median follow-up of 4.3 years, increased SD of night

systolic or diastolic BP was an indicator of total brain volume reduction, while

daytime BPV or night average BP was not associated with total brain volume

changes. High SD of night systolic BP was associated with reduced gray matter

(GM) volume, independent of average night BP, and use of antihypertensive

drugs. It also was associated with a reduction of temporal GM volume, mostly

driven by atrophy in the left entorhinal cortex and the right fusiform gyrus. In

cognitive performance, high variability of night systolic BP was associated with

a decrease in visual delayed recall memory and verbal fluency for the category.

Conclusion: Increased night BPV, rather than night mean BP, was associated

with reduced brain volume and cognitive decline. High night BPV could be an

independent predictor for rapid brain aging in a middle-aged population.
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Introduction

High blood pressure (BP) has been shown to be associated

with brain atrophy and cognitive dysfunctions (1–3). Nocturnal

hypertension showed significant associations with brain volume

and cognitive impairment (1, 4, 5). In addition to the effect of

BP level on brain function, the importance of dynamic changes

in BP level in cerebrovascular disease has been supported by

several observations. Past studies have focused on the effect of

circadian BP variation, such as nocturnal BP dipping or non-

dipping, and both patterns had adverse effects on brain health.

Non-dippers are defined as night BP decrease <10% of the day-

time level and showed more frequent silent cerebral infarction

than dippers, with a night BP decrease >10% (6). In contrast,

the very large nocturnal BP decrease of an extreme dipper

could induce cerebral vascular insufficiency (7). Since the advent

of 24-h non-invasive ambulatory BP monitoring, most studies

have evaluated the association between short-term BP variability

(BPV) and cerebral outcomes. High BPV was associated with an

increased risk of cerebral small vessel disease, stroke, dementia,

and cognitive decline (8–13). Evidence has shown that greater

BPV leads to diffuse atherosclerotic progression represented by

increased left ventricular mass index or carotid-intima media

thickness value (14, 15).

Despite these observations, the relationship between

increased nighttime BPV and brain volume atrophy or cognitive

function remains poorly understood. Previous studies are

limited by small sample sizes (16) or cross-sectional associations

with inconsistent results (17–19). Moreover, it is not clear which

regional area of the brain is most associated with high night

BPV and how it relates to changes in cognitive functions.

In this study, we investigated whether increased night BPV is

associated with brain volume atrophy and cognitive decline in a

middle-aged population. We analyzed longitudinal associations

between night BPV at baseline and changes in brain volume and

cognitive function across 4 years.

Materials and methods

Subjects

The study subjects were from the Ansan cohort of the

Korean Genome Epidemiology Study (KoGES), an ongoing

population-based cohort study that began in 2001. The

demographics, medical illness, and medications of KoGES

participants have been biennially evaluated. During the 6th

and 7th examinations (2011–2014), baseline brain magnetic

resonance imaging (MRI) scans and cognitive function tests

were acquired. Follow-up brain MRI scans and cognitive

function tests were conducted during the 8th and 9th

examinations (2015–2018). Further details are described

elsewhere (20).

This study included 1,967 subjects who examined 24-

h ABPM during the baseline period (2011–2014) (Figure 1).

We excluded 224 subjects with the following conditions: (1)

valid 24-h ABPM ≤ 70% of the readings of total 24-h BP

measurements (n = 202); (2) cerebrovascular disease (n =

10); and (3) any cancer (n = 12). Among the remaining

1,743 subjects, 1,438 individuals underwent both baseline and

follow-up brain MRI scans. None of them had a history

of dementia or any neuropsychiatric disorders. After the

exclusion of subjects with missing data (n = 40), 1,398

participants were finally included in this study. This study

was performed according to the principles of the Declaration

of Helsinki of the World Medical Association and was

approved by the Institutional Review Board of Korea University

Ansan Hospital.

Assessments

Demographic, anthropometric, and laboratory
measurements

All participants responded to an interviewer-administered

questionnaire and underwent physical examinations.

Lifestyle characteristics, such as smoking status and alcohol

consumption, were categorized as never, former, and current.

Regular exercise was defined as at least three times a week for

30min per session during the previous month. Education level

was categorized into primary, secondary, and college/university

levels. Height was measured to the nearest 0.1 cm using a

fixed wall-scale measuring device. Weight was measured to the

nearest 0.1 kg using an electronic scale that was calibrated before

each measurement. Body mass index (BMI) was calculated as

weight in kilograms divided by height in meters squared. Blood

was drawn for biochemical analysis after an overnight fast.

24h ABPM

A Mobil-O-Graph NGversion20, which is a non-invasive

oscillometric device, and its hypertension management software

(I.E.M. GmbH, Stolberg, Germany) were used for ABPM. A

trained researcher informed the participant during a clinic visit

how to use the home 24-h ABPMdevice. A BP cuffwas placed on

the upper region of the non-dominant arm, and BPwas recorded

automatically every 30min (0600–2,300 h) or every hour (2,300–

0600 h). The participant was asked to record the time of waking

and sleeping over a 24-h period. Daytime and nighttime for each

of the participants were ascertained based on the awake and

asleep times.
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FIGURE 1

A flowchart of the selection process. ABPM, ambulatory blood pressure measurement; MRI, magnetic resonance imaging.

Brain MRI

All 3D T1 MRI scans were acquired using a GE Signa

HDxt 1·5 T MRI scanner with an 8-channel head coil. The

detailed MRI protocols are described in a previous study (20).

Brain MRI images were processed through a well-established

fully automated procedure, the BRAINS AutoWorkup in the

BRAINSTOOLs package (21, 22). The MRI processing starts

with spatial normalization using landmark detection (23),

bias-field correction with tissue classification (22), and finally

segmentation using ANTs Joint Fusion (24). Two hundred
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TABLE 1 Baseline characteristics of the study subjects.

N = 1,398

Age, years 59.7± 6.7

Age group

<60 years 796 (56.9)

60–69 years 454 (32.5)

≥70 years 148 (10.6)

Sex, men 643 (46.0)

Current smoker 132 (9.4)

Current drinker 597 (42.7)

Regular exercise 527 (37.7)

Education, elementary or less 183 (13.1)

Primary 183 (13.1)

Secondary 912 (65.2)

College/university 303 (21.7)

BMI, kg/m2 24.6± 2.9

Day SBP, mmHg 122.6± 12.0

Day DBP, mmHg 80.7± 10.1

Night SBP, mmHg 112.3± 12.8

Night DBP, mmHg 72.1± 10.0

SD of day SBP 12.6± 4.0

SD of day DBP 9.6± 2.5

SD of night SBP 10.1± 4.5

SD of night DBP 8.6± 3.5

ICV, mL 1396.1± 137.1

DM 444 (31.8)

Hypertension 538 (38.5)

Antihypertensive medications 454 (32.5)

Heart disease 107 (7.7)

Obesity 605 (43.3)

Sleep duration, h 6.0± 1.2

Snoring 1,072 (77.2)

Data are presented as mean± SD or number (%).

BMI, body mass index; DBP, diastolic blood pressure; DM, diabetes mellitus; ICV,

intracranial volume; SBP, systolic blood pressure; SD, standard deviation.

fifteen independent brain subcompartments were automatically

delineated, and the volumes were measured. The high reliability

of the longitudinal measurement of two-time point MRI

using the BRAINS AutoWorkup has been previously described

(20). The sub-compartments were merged into three tissue

classes: GM, WM, and cerebrospinal fluid. All the volume

measurements were extracted from an individual’s original

anatomical space. GM andWMvolumes were summed to obtain

total brain volume.

Neuropsychological tests

KoGES participants were administered the

neuropsychological assessment battery described below

during the regular examination cycle as part of the baseline

measurement of the aging study: (1) story recall test, immediate

and delayed recall, and recognition; (2) visual reproduction,

immediate and delayed recall, and recognition; (3) verbal

fluency; (4) trail making tests; (5) Digit Symbol-coding,

incidental learning, and free recall; and (6) Korean-Color

Word Stroop Test, word reading, and color reading. Standard

administration protocols were used for each testing session,

and the tests were conducted by well-trained and experienced

psychological examiners. Further details are described

elsewhere (25).

Definitions of diabetes mellitus (DM),
hypertension, heart disease, and obesity

DM was diagnosed as fasting plasma glucose ≥7.0

mmol/L, 2-h plasma glucose ≥11.1 mmol/L after a 75 g

oral glucose tolerance test or use of anti-diabetic medication

(26). Hypertension was diagnosed as systolic BP (SBP) or

diastolic BP (DBP) equal to or higher than 140 or 90 mmHg,

respectively, or use of antihypertensivemedications. Participants

with a documented history of myocardial infarction, angina, or

congestive heart failure were considered to have heart disease.

Obesity was defined as BMI≥25 kg/m2.

Sleep duration and snoring measurements

All participants were asked to answer sleep-related questions

based on the average sleep pattern during the past month. Sleep

duration was determined as the answer to, “Howmany hours did

you usually sleep per day during the last month?” Participants

were asked if they had ever been reported to snore. Snoring

status was confirmed by a bed partner or a family member who

lived with the participant for more than 1 year. Further details

are described elsewhere (27).

Statistical analysis

As measures of short-term reading-to-reading BPV, we used

the SD over daytime and nighttime. Baseline characteristics are

presented as number (%) or mean ± SD. The brain volume

change was calculated by subtracting the baseline brain volume

from the follow-up brain volume. Multivariate linear regression

analyses were conducted to evaluate the effects of BPV on brain

volume or cognitive function changes. The regression models

included brain volume changes as the dependent variable;

ICV, age, sex, smoking, alcohol, exercise, education, an average

of daytime and nighttime BP, antihypertensive medications,

DM, heart disease, baseline brain volume, and time intervals

between baseline and follow-up MRI scans were included as the

independent variables. For analysis of associations with night

systolic BPV, the average SBP during the day and that during
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TABLE 2 Associations between 24-h BP indicators and total brain volume changes.

SBP DBP

N = 1398 β Estimate SE p β Estimate SE p

Mean day 0.058 0.063 0.357 0.059 0.081 0.470

Mean night 0.0004 0.059 0.995 0.022 0.078 0.773

SD day −0.055 0.158 0.728 −0.054 0.220 0.807

SD night −0.278 0.119 0.020 −0.375 0.154 0.015

All models are adjusted for baseline intracranial volume, age, sex, smoking, alcohol, exercise, education, mean day BP, mean night BP, anti-hypertensive medications, DM, heart disease,

time between MRI scans, and baseline brain volume. Brain volume changes were calculated by subtracting baseline brain volumes from follow-up brain volumes.

BP, blood pressure; DBP, diastolic blood pressure; DM, diabetes mellitus; MRI, magnetic resonance imaging; SBP, systolic blood pressure; SD, standard deviation. Bold values indicate P

value < 0.05.

the night were included in the regression models; for analysis of

night diastolic BPV, the average DBP values during both days

and night were included. The association of night BPV with

brain regional volume changes was further analyzed in sub-

compartments ofWMand temporal GM. The cognitive function

change was calculated by subtracting the baseline cognitive

scores from the follow-up scores. The regression models

included cognitive function change as the dependent variable,

and baseline cognitive scores and time between cognitive tests

were entered as variables along with those mentioned above.

Sobel’s tests were performed to examine whether GM volume

atrophy mediated any associations between night systolic BPV

and decline in cognition. Statistical significance for non-

normally distributed cognitive variables was estimated after

logarithmic transformation. A P-value <0.05 was considered

statistically significant. Statistical analyses were performed

using SAS version 9.1 for Windows (SAS Institute Inc., Cary,

NC, USA).

Results

Subject characteristics

The descriptive and clinical characteristics of the study

population at baseline are presented in Table 1. The mean age of

all participants was 59.7± 6.7 years (range, 49–79), and 46.0% of

the individuals were men. The mean BMI was 24.6± 2.9 kg/m2,

and 43.3% of the participants were obese. Approximately, 38.5%

of patients had hypertension and 31.8% had diabetes mellitus

at baseline. In addition, 13.1% of participants had an education

level of elementary school or lower.

Associations between BPV and total brain
volume changes

Table 2 presents the associations between the 24-h

ambulatory BP indicators and total brain volume changes. The

average period between baseline and follow-up brain MRI scans

was 4.3 ± 0.5 years. The mean BP during daytime or nighttime

was not associated with total brain volume changes. In relation

to BPV, only SD of night BP was significantly associated with

total brain volume changes. Higher SD of night SBP or DBP

was significantly associated with greater total brain volume

reduction after full adjustment (P = 0.020 for SD of night SBP,

P = 0.015 for SD of night DBP; Table 2). Further adjustment for

sleep duration, snoring, or BMI did not alter the significance of

these associations. The SD of night SBP or DBP was positively

associated with age, BMI, and an average of day and night BP in

the multivariable regression analysis (Supplementary Table 1).

Sleep parameters such as sleep duration or snoring were not

associated with night BPV.

E�ects of night BPV on regional brain
volume changes

We evaluated the effects of night BPV on regional brain

volume changes, and the results are shown in Table 3. Increased

SD of night SBP was associated with greater atrophy in GM

volume (P = 0.033), particularly with decreased temporal GM

(P = 0.021). The significance of this finding did not change

even after further adjustment for sleep duration, snoring, or

BMI. The relationship between night systolic BPV and temporal

GM was mostly driven by atrophy of the left entorhinal cortex

(P = 0.010) and right fusiform gyrus (P = 0.039) (Figure 2;

Supplementary Table 2). Atrophy of the right fusiform gyrus was

also associated with increased SD of night DBP (P = 0.018).

SD of night DBP showed a negative association with WM

volume changes (P = 0.049; Table 3). Higher night diastolic

BPV was associated with greater regional WM atrophy in the

right precentral (P = 0.045), left paracentral (P = 0.025),

right rostral middle frontal (P = 0.048), both superior frontal

(P = 0.024 for left, 0.049 for right), left precuneus (P =

0.033), left transverse temporal (P = 0.027), both lingual (P

= 0.016 for left, 0.034 for right), and right cuneus (P =

0.029) gyri (Supplementary Table 3). The volume changes of the
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FIGURE 2

Subregions of temporal GM with significant atrophy associated with night systolic BPV. The left entorhinal cortex (marked in pink, P = 0.010) and

the right fusiform gyrus (marked in red, P = 0.039) showed significantly greater atrophy associated with increased night systolic BPV.

hippocampus were not associated with night systolic or diastolic

BPV (data not shown).

E�ects of night BPV on cognitive
performance changes

Table 4 shows the associations between night systolic BPV

and cognitive performance changes. High SD of night SBP

was significantly associated with a greater decline in visual

delayed recall memory (P = 0.028) and verbal fluency for

category (P = 0.029) and with a slower decline in verbal

recognition memory (P = 0.010) during the follow-up period.

Further adjustment for sleep duration and snoring did not alter

the significance of these associations. In contrast, night mean

SBP or DBP was not associated with any cognitive functional

changes (Supplementary Table 4). Night diastolic BPV was also

not significantly associated with cognitive decline (data not

shown).

We examined whether the relation between night systolic

BPV and decline in cognitive function was mediated by GM

atrophy (Supplementary Table 5). There was no significant
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TABLE 3 Linear regression analyses between night BPV and regional brain volume changes.

SD of night SBP SD of night DBP

1 ml (n = 1,398) β Estimate SE p β Estimate SE p

1 GM −0.168 0.079 0.033 −0.159 0.102 0.121

1 Frontal GM −0.035 0.043 0.422 −0.039 0.056 0.485

1 Parietal GM −0.033 0.019 0.090 −0.021 0.025 0.411

1 Temporal GM −0.039 0.017 0.021 −0.018 0.022 0.407

1 Occipital GM −0.014 0.015 0.335 −0.015 0.019 0.442

1 WM −0.127 0.092 0.168 −0.234 0.119 0.049

1 Frontal WM −0.039 0.039 0.318 −0.096 0.050 0.055

1 Parietal WM −0.037 0.026 0.160 −0.060 0.034 0.073

1 Temporal WM −0.003 0.019 0.885 −0.013 0.025 0.592

1 Occipital WM −0.013 0.009 0.171 −0.015 0.012 0.225

All models were adjusted for baseline intracranial volume, age, sex, smoking, alcohol, exercise, education, mean day BP, mean night BP, anti-hypertensive medications, DM, heart disease,

time between MRI scans, and baseline brain volume.

Regional brain volume changes were calculated by subtracting baseline regional brain volumes from follow-up volumes.

BP, blood pressure; DBP, diastolic blood pressure; DM, diabetes mellitus; GM, gray matter; MRI, magnetic resonance imaging; SBP, systolic blood pressure; SD, standard deviation; WM,

white matter.

evidence ofmediation byGMvolume atrophy in the relationship

between night systolic BPV and cognitive decline in visual

delayed recall memory (Sobel’s test= 0.437, P= 0.662) or verbal

fluency for category (Sobel’s test= 0.432, P = 0.666).

Discussion

We found that higher systolic BPV during the night was

associated with the greater decline in brain volume and cognitive

function over a mean follow-up of 4.3 years in a Korean

population. Increased night BPV was associated with total

brain volume atrophy, independent of average BP and the use

of antihypertensive drugs. High variability of night SBP was

associated with GM volume atrophy, especially temporal GM

atrophy. Furthermore, the increase in night systolic BPV was

associated with a greater decline in visual delayed recall memory

and verbal fluency for category.

In our study, total brain volume atrophy and cognitive

decline were associated with increased night BPV, but not with

night mean BP. It is well-known that high BP contributes to

cognitive impairments and dementia (3, 28). However, despite

excellent BP control in a post-hoc analysis of the SPRINT

MIND trial, higher BPV was associated with an increased risk

of dementia (29), suggesting that increased BPV might be an

independent factor associated with brain damage. Recent meta-

analyses have demonstrated that increased BPV was associated

with cerebral small vessel disease progression (10, 30), which is

a major cause of cognitive decline (31–33). BPV also increased

with age and mean BP level in our study. Therefore, high

night BPV might be an epiphenomenon accompanied by the

coexistence of various comorbidities or frailty in older adults.

Increased BPV was associated with a greater risk of frailty

(34), showing a significant correlation with cognitive decline,

particularly in elderly hypertensive individuals (35–38).

Temporal GM was the area most affected by high night

systolic BPV in our study. The relationship between night

systolic BPV and temporal GM was driven most highly by

atrophy of the left entorhinal cortex and right fusiform gyrus.

To the best of our knowledge, this is the first study to identify

the regional area of the brain most affected by night systolic

and diastolic BPV. The entorhinal cortex is located in the

medial temporal lobe, which functions as a widespread network

hub for memory, navigation, and the perception of time (39).

The fusiform gyrus is the largest macro-anatomical structure

within the ventral temporal cortex and is considered a key

structure for functionally specialized computations of high-level

vision, such as face perception, object recognition, reading,

and visual processing of letters and words (40). However, GM

atrophy did not mediate the relationship between increased

night systolic BPV and impaired visual delayed recall memory

or verbal categorical fluency in our study. It remains to be seen

whether brain regional connectivity or microstructural changes

are involved in this relationship. More long-term follow-up

studies are warranted to clarify the relevant mechanisms. It is

unclear why the increased variation in night SBP was associated

with slower decline in verbal recognition memory.

High night diastolic BPV was significantly related to

WM atrophy, while the increase in night systolic BPV was

associated with GM volume reduction in our study. It remains

a matter of debate whether the variability of SBP or DBP

contributes separately to GM and WM atrophy. Several studies

have reported that DBP was strongly associated with WM

hyperintensities (41, 42). It has been suggested that large artery

stiffness leads to elevated SBP and pulse pressure, whereas
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TABLE 4 Linear regression analyses between night systolic BPV and cognitive performance changes.

n Estimate SE p

Story Recall Test-Immediate Recall 1,376 0.015 0.023 0.507

Story recall test-delayed recall 1,367 0.016 0.023 0.490

Story recall test-recognitiona 1,379 0.003 0.001 0.010

Visual reproductions-immediate recall 1,384 −0.019 0.014 0.150

Visual reproductions-delayed recall 1,377 −0.032 0.015 0.028

Visual reproductions-recognition 1,380 −0.004 0.006 0.567

Verbal fluency-phonemic 1,347 0.013 0.045 0.768

Verbal fluency-category 1,347 −0.044 0.020 0.029

Digit symbol-coding 1,361 −0.022 0.042 0.598

Digit symbol-incidental learninga 1,343 0.002 0.004 0.660

Digit symbol-free recall 1,358 −0.003 0.008 0.727

Trails A-Timea 1,378 0.003 0.002 0.078

Stroop-color reading 1,333 0.127 0.137 0.352

Stroop-word reading 1,307 0.022 0.046 0.633

All models were adjusted for baseline intracranial volume, age, sex, smoking, alcohol, exercise, education, mean day BP, mean night BP, anti-hypertensive medications, DM, heart disease,

the time between cognitive tests, and baseline cognitive scores.

Cognitive performance changes were calculated by subtracting baseline cognitive scores from follow-up scores of cognitive tests.
aStatistical significance was estimated after logarithmic transformation.

BP, blood pressure; DM, diabetes mellitus; SBP, systolic blood pressure; SD, standard deviation. Bold values indicate P value < 0.05.

DBP is reflecting peripheral vascular resistance (43). Brain

pathology studies have demonstrated venous collagenosis in

periventricular WM lesions (44). Therefore, it can be inferred

thatWM atrophy or lesion loads might be susceptible to changes

in peripheral vascular resistance associated with DBP.

The exact mechanism by which increased night BPV,

rather than daytime BPV, showed a significant correlation

with cognitive decline and brain atrophy remains unknown.

Daytime BPV might be directly affected by physical activities or

emotional stress that occur during the day, whereas nocturnal

BP monitoring could be less influenced by external stimuli.

Increased night BPV might better reflect pathophysiological

conditions such as baroreflex dysfunction, arterial stiffness

neurohormonal activation, or sleep apnea than increased

daytime BPV (45). Sleep is another possible key mechanism

linked to fluctuations in nighttime BP. Sleep deprivation or

fragmentation has been shown to be associated with increased

night BPV through sympathetic neuronal activation (46, 47).

Poor sleep quality has been linked to reduced brain volume

and cognitive deficits (48, 49). However, in our study, there

was no association between night BPV and sleep duration or

snoring, and the significance of the results was not changed

after adjustment for sleep-related indicators. The comprehensive

association of several factors might account for the mechanisms

associated with negative effects of high night BPV on cerebral

vessels, brain structure, and function. Additional longitudinal

studies are needed to determine whether dementia occurs

more frequently in individuals with increased night BPV and

if selective reduction of night BPV in this population could

improve outcomes associated with brain health.

Our study has several strengths. First, our study is a 4-

year, longitudinal, population-based study with a large sample

size and brain MRI imaging data. Second, this study is the

first to follow changes in detailed cognitive function tests in

conjunction with brain imaging in relation to night BPV.

Third, we examined sleep-related indicators as factors that

could be associated with an increase in night BPV, although

they were based on surveys. However, some limitations of

this study should be noted. First, WM hyperintensities or

diffusion MRI-based estimates of white matter microstructure

were not measured in this study. These indicators of vascular

brain injuries might be more sensitive to night BPV than

brain volume loss, and further studies will be needed. Second,

we did not address any associated neurohormonal changes

during nighttime, which made it difficult to elucidate the

mechanisms associated with increased night BPV. Third, there is

a limit on the determination of the causal relationship between

brain structural changes associated with high night BPV and

cognitive decline.

To summarize, our study showed that increased nighttime

BPV, rather than night mean BP, was associated with total

brain volume atrophy and cognitive decline. High night systolic

BPV was associated with temporal GM atrophy and impaired

visual memory and verbal fluency. Increased nighttime BPV

could be an independent predictor for rapid brain aging in a

middle-aged population.
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