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ABSTRACT

Variations in gut microbiota can be explained by an-
imal host characteristics, including host phylogeny
and diet. However, there are currently no databases
that allow for easy exploration of the relationship
between gut microbiota and diverse animal hosts.
The Animal Microbiome Database (AMDB) is the first
database to provide taxonomic profiles of the gut mi-
crobiota in various animal species. AMDB contains
2530 amplicon data from 34 projects with manually
curated metadata. The total data represent 467 ani-
mal species and contain 10 478 bacterial taxa. This
novel database provides information regarding gut
microbiota structures and the distribution of gut bac-
teria in animals, with an easy-to-use interface. Inter-
active visualizations are also available, enabling ef-
fective investigation of the relationship between the
gut microbiota and animal hosts. AMDB will con-
tribute to a better understanding of the gut micro-
biota of animals. AMDB is publicly available without
login requirements at http://leb.snu.ac.kr/amdb.

INTRODUCTION

Animal gut microbiota is a diverse microbial community
that lives in the intestine of the host and consists of pre-
dominantly bacteria, as well as some archaea, fungi, pro-
tozoa and viruses (1). The gut microbiota has received
widespread attention due to its potential to influence host
physiology (2), immunity (3) and development (4). The gut
microbiota has also been hypothesized to contribute to host
evolution (5).

The gut microbiota and the host display a bidirectional
interaction. Various studies have shown that variations in
gut microbiota can be explained by differences in host
characteristics (6-8). In particular, host phylogeny and
diet largely account for the gut microbiota variations (7).

A recent analysis of samples from wild baboons found
widespread gut microbiome heritability (9). This vertical
transmission may be one of the drivers of phylosymbio-
sis (10). Phylosymbiosis is defined as ‘microbial community
relationships that recapitulate the phylogeny of their host’
(11). Patterns of phylosymbiosis have been reported in many
studies (12-14). Additionally, the host diet may also affect
the gut microbiota, with several studies reporting that host
diet can lead to the convergence of gut microbes in the host
species (10,15-18).

Despite the importance of the relationship between gut
microbiota and host characteristics, specifically host phy-
logeny and diet, there is currently no database available
that enables easy exploration of the gut microbiota of var-
ious animal hosts. Most curated databases focus only on
humans (GIMICA (19), GMrepo (20) and HPMCD (21))
and mice (MMDB (22)). There are several databases that
contain microbiota data from various animal hosts, includ-
ing IMNGS (23), MGnify (24), MG-RAST (25) and Qiita
(26). However, these databases contain data from various
sources other than solely from the animal hosts, making it
difficult to identify the relationship between the gut micro-
biota and animal hosts.

Here, we present Animal Microbiome Database
(AMDB) that overcomes these limitations. AMDB in-
cludes bacterial 16S ribosomal RNA (rRNA) gene profiles
from various animal species to enable the assessment
of the relationship between gut microbiota and animal
hosts. AMDB currently incorporates 10 478 bacterial
taxa and 2530 samples from 34 projects, representing 467
animal species with manually curated metadata. This novel
database (i) supports searches by the bacterial taxon of
interest, (ii) provides a taxonomic composition of each
sample, (iil) incorporates summary information for each
project and host and (iv) includes interactive visualiza-
tions. Therefore, AMDB will help scientists to quickly
access animal gut microbiota data through a user-friendly
interface.
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Figure 1. Schematic diagram of AMDB construction. The process name for each step is displayed next to the arrow. The contents contained in AMDB is

highlighted in yellow.

MATERIALS AND METHODS
Data collection and curation process

We manually selected candidate data for AMDB from the
NCBI Sequence Read Archive (SRA) based on the follow-
ing criteria: (i) samples included fecal or intestinal contents
from individual healthy animal hosts, (ii) the PCR primers
had to target the V4 hypervariable region of the 16S rRNA
gene, (iii) amplicons had to be sequenced on Illumina in-
struments, (iv) samples had to be linked to research articles.
For longitudinal data, only one sample was selected as fol-
lows; only one adult sample was included when the sam-
ples were from multiple life stages, and one sample from an
earlier time point was selected for a given life stage. Sam-
ples that were duplicates of those previously included in the

AMDB were not included. Amplicon data from different
hypervariable regions of the 16S rRNA gene cannot be di-
rectly compared due to differences in binding affinity and
resolution (27,28). We only used amplicon data from the
V4 hypervariable region to ensure comparability. Illumina
data was used because we used the Deblur for data process-
ing, which was designed for Illumina data (29). To ensure
that samples were of high-quality, we only selected sam-
ples linked to research articles. We checked the suitability of
samples by reading the publication materials and methods,
and we collected metadata, including the accession num-
bers and the host information. We extracted information on
host diets from the MammalDIET (30) and the EltonTraits
database (31). A total of 4633 samples were obtained from
51 projects (Figure 1).



Data processing

Figure 1 summarizes all of the data processing steps. The en-
tire analysis was performed using QIIME 2 (Version 2021.2)
(32). Paired-end reads were merged using VSEARCH with
default parameters (33). The total number of sequencing
reads was 434 900 445. The sequencing reads were quality
filtered as follows; reads were truncated at any site contain-
ing >3 consecutive low-quality base (Phred score < 4), and
the minimum fraction of consecutive high-quality bases to
be retained was set to 75% of the length of the input se-
quence with no uncalled bases (Ns) (34). The total num-
ber of sequencing reads after the quality filtering was 432
039 098. The Deblur was used for denoising and chimera
removal to obtain amplicon sequence variants (ASVs) us-
ing a trim length of 250 bases (29,35). The resulting ASVs
from all samples were combined into a BIOM table (36).
After using the Deblur, a total of 81 701 877 reads were ob-
tained from 2601 samples (34 projects), with an average of
31 412 reads per sample (a minimum of 2 reads and maxi-
mum of 205 611 reads). Samples with a minimum of 1000
reads were included after denoising and chimera removal,
and a total of 2530 samples from 34 projects were available
(the total number of sequencing reads was 81 669 682).

For diversity analyses, we normalized sequencing reads
to 1000 reads by rarefying (37) and scaling with ranked sub-
sampling (SRS) (38). Alpha diversity indices, including the
observed ASVs and the Shannon index (39), were calculated
from samples before normalization, after rarefying and af-
ter SRS (40). All ASVs were aligned with MAFFT (41) and
were used to construct a phylogenetic tree with FastTree
2 (40,42). Using the phylogenetic tree, we calculated un-
weighted and weighted UniFrac distances to measure beta
diversity after rarefying samples to 1000 reads (37,43-47).
Principal coordinate analysis (PCoA) was performed based
on the unweighted and weighted UniFrac distances (48,49),
and PCoA plots were visualized with Emperor (50,51).

For taxonomic analysis, taxonomy was assigned to ASVs
using the q2-feature-classifier classify-consensus-vsearch
(33,40,52) against the EzBioCloud (53). All matches with
an identity percentage of 0.97 or higher were kept. We only
used bacterial 16S rRNA gene sequences from the EzBio-
Cloud. Multi-layered pie charts representing the taxonomic
composition were visualized with Krona (54), and net-
work graphs representing the associations between bacte-
ria and hosts were visualized with Flourish (https:/flourish.
studio/).

Web implementation

Data were stored in a MySQL database (https://www.mysql.
com/). The backend was implemented in Java using Spring
Boot (https://spring.io/projects/spring-boot). The user in-
terface was implemented using CSS, HTML and JavaScript
with Bootstrap (https://getbootstrap.com/), jQuery (https:
/ljquery.com/) and Thymeleaf (https://www.thymeleaf.org/).
DataTables (https://datatables.net/) and Plotly.js (https://
plotly.com/javascript/) were used for data visualization. The
“Visualization’ page was made by referring to the format of
Peryton (55). We tested AMDB on Google Chrome, Mi-
crosoft Edge and Mozilla Firefox to provide a robust ser-
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Table 1. Data summary of AMDB

Variable N
Samples 2530
Projects 34
Features (ASVs) 139 375
Sequencing reads 81 669 682
Bacterial taxa
Phylum 44
Class 115
Order 280
Family 687
Genus 2828
Species 6524
Total 10 478
Host taxonomy
Class 9
Order 63
Family 180
Genus 369
Species 467
Host diet types 4

ASV: amplicon sequence variant

vice. In addition, we made AMDB accessible and legible on
phone and tablet screens.

RESULTS
Database statistics

Table 1 summarizes the statistics of AMDB. AMDB con-
tains 2530 samples from 34 projects. A total of 139 375
ASVs were identified, corresponding to 81 669 682 reads.
In the taxonomic analysis, 84.94% (69 367 504) reads
were assigned to bacterial taxa, covering a total of 10
478 taxa. The total number of hosts in AMDB was
467 animal species, representing nine taxonomic classes
(namely, ‘Mammalia’, ‘Aves’, ‘Chromadorea’, ‘Reptilia’,
‘Actinopterygii’, ‘Amphibia’, ‘Hyperoartia’, ‘Insecta’ and
‘Leptocardii’) and four trophic groups (namely, ‘Omnivore’,
‘Herbivore’, ‘Carnivore’ and ‘Bacterivore’). The most abun-
dant host taxonomic class was ‘Mammalia,” which repre-
sented 69.33% (1754) of the samples, followed by ‘Aves’
and ‘Chromadorea’ which represented 14.39% (364) and
6.88% (174), respectively (Figure 2A). The most abundant
trophic group was ‘Omnivore,” which represented 46.60%
(1179) of the samples, followed by ‘Herbivore” and ‘Carni-
vore’” which represented 27.94% (707) and 18.58% (470) re-
spectively (Figure 2B).

Database content and usage

AMDB can be divided into four main parts, namely
‘Taxa’, ‘Samples’, ‘Projects/Hosts’ and ‘Visualization’.
‘Taxa’ shows samples enriched with the bacterial taxon of
interest. ‘Samples’ provides the gut microbiota composition
of the sample of interest. ‘Projects’ and ‘Hosts’ give users
summary information on the project and the host, respec-
tively. “Visualization’ visually presents valuable information
related to the relationship between the host and the gut mi-
crobiota.

‘Taxa’ allows users to search for the taxon of interest
(Supplementary Figure S1). ‘Taxa’ provides taxon informa-
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Figure 2. Bar plots showing the distribution of samples. (A) The number of samples is represented according to the host taxonomic classes. (B) The number
of samples is represented according to the host diet types. Values are shown on the head of each bar. The bars are sorted in descending order by the values.

tion, including taxonomy and taxonomic rank. It also sup-
ports linking with the EzBioCloud (53), allowing for di-
rect access to relevant information about the taxon. A list
of the samples is provided, sorted according to the relative
abundance of the taxon occurring within each sample. The
AMDB allows the user to determine the relative abundance
of the taxon based on host taxonomic ranks and host diet
types using box plots. Each group name in the plot is fol-
lowed by a frequency of occurrence, calculated as the num-
ber of samples containing the taxon divided by the total
number of samples in the group. The viewing area of the
plot can be adjusted by zooming in (dragging) or zooming
out (double-clicking on the plot). Users can also click the
camera icon to download the plot as a portable network
graphics (.png) file.

‘Samples’ allows users to determine the gut microbiota
composition of the sample of interest (Supplementary Fig-
ure S2). ‘Samples’ provides sample information, including
the sample name, sampling site, accessions in the NCBI and
information about the host and the respective analysis. Cal-
culated alpha diversity indices are also displayed. A list
of ASVs that make up the sample is provided. Taxonomic
composition is displayed in a table and a multi-layered pie
chart. The multi-layered pie chart has zooming capabilities,
providing a more detailed view (double clicking on the node
allows for zooming in, while zooming out is achieved by
clicking on the summary pie charts present on the right-
hand side of the chart). The ASV list and the taxonomic
composition can be downloaded as comma-separated val-
ues (.csv) files.

Users are able to get summary information about a
project and a host using ‘Projects’ (Supplementary Figure
S3A) and ‘Hosts’ (Supplementary Figure S3B), respectively.
‘Projects’ provides information about the related paper, and
‘Host’ displays the taxonomy and diet type of the host. A
complete list of samples related to both the project and the
host is provided. Additionally, the alpha diversity indices
from the samples are displayed as box plots. The average
taxonomic composition from the samples is displayed in
a table and a multi-layered pie chart. The sample list and

the average taxonomic composition can be downloaded as
comma-separated values (.csv) files.

AMDB provides interactive visualizations, including
PCoA plots and network graphs, to effectively describe the
relationship between the samples and the respective gut mi-
crobiota on the ‘Visualization’ page. Via PCoA plots, users
can assess the variations in phylogenetic structure among
the samples based on unweighted UniFrac distances (Fig-
ure 3A) and weighted UniFrac distances (Figure 3B). Each
point in the plot represents one sample and can be colored-
coded depending on the users’ choice. The plot is a drag-
gable and zoomable 3D object, allowing users to view the
plot from different perspectives. The plots can be down-
loaded as portable network graphics (.png) files, scalable
vector graphics (.svg) files or QIIME 2 visualizations (.qzv)
files (32). Network graphs show associations between the
gut microbiota and host characteristics, including taxon-
omy (Figure 3C) and diet types (Figure 3D). Nodes in the
network graphs represent taxa and host characteristics. The
nodes can be moved and filtered out or in according to the
users’ choice. Clicking on each node brings up a pop-up box
with a link to ‘Taxa’ in a new tab. The line width of the net-
work graph is relative to the average relative abundance of
each taxon.

Other functionalities

To better guide users, the ‘Help’ page provides an overview
of AMDB with simple examples. Users can also propose
candidate data for AMDB using the submission form on
the ‘Contact’ page. Our team will manually check new user-
submitted information, and AMDB will be updated on an
ongoing basis.

DISCUSSION

AMDB is a database for exploring the gut microbiota of
various animal species. AMDB provides a search capability
for the various components related to gut microbiota. For
example, one may be interested in Bilophila wadsworthia,



A Axis 2 (8.541 %)

. Actinopterygii
. Amphibia
W

. Chromadorea
[
. Insecta
Leptocardii
D Mammalia
. Reptilia

T nemew
Axis 3 (5.854 % '

( : group @ Hyperoartia @ Leptocardii @ Reptilia @ Amphibia @ Mammalia @ Aves @ Insecta @ Chromadorea @ Actinopterygii @ Phylum

Nucleic Acids Research, 2022, Vol. 50, Database issue D733

B Axis 2 (19.81 %) .I Bacterivore
I coriv
I
@ [ omioe
@ &
/ e
Axi3(1.456.%) Axis 1 (72.94 %)
D group @ Herbivore @ Carnivore @ Omnivore e @ Bacterivore @ Phylum
. .
[ ]
Pureginbace

Figure 3. AMDB visualizations. (A) PCoA plot shows variation in phylogenetic structure among 2530 samples based on unweighted UniFrac distances.
Each point represents an individual sample, and samples are colored by the host taxonomic class. (B) PCoA plot shows variations in phylogenetic structure
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phylum level) or a host diet type. For network graphs, the line width is proportional to the average relative abundance of each taxon.

which is known to be related to animal-based diets in hu-
mans (56). The samples rich in this taxon can be identified
in the search result of AMDB. Additionally, AMDB allows
users to search for the sample based on metadata, includ-
ing host taxonomy and diet types. The work from Young-
blut et al. identified that hosts from the same species showed
similar relative abundances of microbial phyla (7). This can
be confirmed by comparing the microbial taxonomic com-
positions of samples taken from the same species. In addi-
tion, AMDB provides summary information about related
projects and hosts. Users can thus compare the mouse in-
formation held within AMDB to the core microbiota of the
mouse gut identified in multiple studies (57-59). Interactive
visualizations are also available in AMDB. Host phylogeny
and diet can explain variations in the gut microbiota (7),
which can be confirmed using a PCoA plot within AMDB.
The phylum Proteobacteria was identified as the dominant
phylum in the samples from Actinopterygii (60), which can
be identified using the network graph.

The number of available amplicon data in the NCBI SRA
is continually increasing. AMDB will also be continuously
updated to add additional data related to new and existing
animal species. We will include new data collected by our
team, as well as data based on the user-submitted informa-
tion after manual curation.

Investigations into the relationship between gut micro-
biota and the host is a rapidly growing area of research

(61). AMDRB is the first database enabling easier explo-
ration of this relationship. AMDB comprehensively ad-
dresses the taxonomic composition of animal gut micro-
biota with manually curated metadata, thus assisting in pro-
viding a better understanding of the gut microbiota of ani-
mals.
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