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Abstract

Summary: We present GWASpro, a high-performance web server for the analyses of large-scale

genome-wide association studies (GWAS). GWASpro was developed to provide data analyses for

large-scale molecular genetic data, coupled with complex replicated experimental designs such as

found in plant science investigations and to overcome the steep learning curves of existing GWAS

software tools. GWASpro supports building complex design matrices, by which complex experi-

mental designs that may include replications, treatments, locations and times, can be accounted

for in the linear mixed model. GWASpro is optimized to handle GWAS data that may consist of up

to 10 million markers and 10 000 samples from replicable lines or hybrids. GWASpro provides an

interface that significantly reduces the learning curve for new GWAS investigators.

Availability and implementation: GWASpro is freely available at https://bioinfo.noble.org/

GWASPRO.

Contact: shizhong.xu@ucr.edu or pzhao@noble.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWAS) for crop improvements

often confront significant challenges related to complex experimental

designs and large datasets; there is a need for new GWAS analysis

software that can address replicated phenotypic data related to com-

plex experimental designs involving multiple environments along with

a large-scale molecular marker data. Popular GWAS software tools

(Bradbury et al., 2007; Lipka et al., 2012) are confined to a single

population and using linear mixed models (LMMs), in particular the

QK model, which incorporates both a population stratification struc-

ture (Q) matrix and a kinship (K) matrix (Yu et al., 2006). Recently,

several modified models, such as the compressed mixed linear model

(Zhang et al., 2010), multi-locus mixed model (Segura et al., 2012),

FarmCPU (Liu et al., 2016) and the integration of Kruskal–Wallis test

with empirical Bayes (pkWemEB) (Ren et al., 2018), were proposed

to achieve fast computation and high statistical power. However, all

of the above models or software tools lack the capacity to account for

the phenotypic variance across environments (Korte and Farlow,

2013). To solve this problem, we present GWASpro, a web-based

platform that provides online GWAS data analysis services.

GWASpro supports building complex design matrices to account for

replicated phenotypic observations (years, treatments, locations and/

or replications), which advances the QK model toward better quanti-

tative trait loci (QTL) mapping resolutions. GWASpro is capable of

handling a large-scale dataset consisting of up to 10 million markers

and 10 000 samples representing the replicable genotypes.
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2 Methods and implementation

2.1 Design matrices
GWASpro supports flexible building design matrices for the LMM.

Figure 1A shows how the design matrices for genotypic data consist-

ing of m markers and n individuals with k replications are arranged.

2.2 Efficient computing for large-scale GWAS
In GWASpro, working procedures include building a kinship ma-

trix, fitting the LMM and performing Wald test for calculating P-

values (Supplementary Material A). GWASpro implements a distrib-

uted parallel-computing engine that can effectively utilize �1000

CPU cores and �10 TB RAM (Supplementary Fig. S1). We also

implemented a multi-threading and resumable data-uploading mod-

ule, utilizing HTML5 protocol for robust and fast data transfer.

2.3 Genomic control for adjusting inflated P-values
We observed genomic (P-value) inflations given a replication factor

in our simulation study (Section 3.1) and the Case Study 3. To ad-

dress this, GWASpro introduces a genomic correction function, by

which the inflated P-values are adjusted using the genomic inflation

factor (kGC) as demonstrated by (Devlin and Roeder, 1999; Devlin

et al., 2001; van Iterson et al., 2017; Voorman et al., 2011).

2.4 Input
GWASpro automatically establishes the LMM with required inputs

including a genotypic file, a phenotypic file and variable names with

properties (categorical/numerical). Users are responsible for imputa-

tions of markers. The upload of kinship matrix is optional as it can

be calculated using the genotypic matrix. Missing phenotypic

records are automatically excluded. Users can either directly upload

data files from a local computer or specify the URLs of user input

data, including data sharing URLs of Google Drive and Dropbox

for remote downloading using http/https/ftp protocols.

2.5 Output
The job queue management system in GWASpro assigns each sub-

mission a unique session ID, which can be used to track the job pro-

gress and download final results. The GWASpro returns original P-

values, adjusted P-values based on genomic control, QQ plot and

Manhattan plot.

3 Results and discussion

3.1 Simulation study: assessing QTL mapping

resolution
Our simulated dataset mimics a situation in which two identical

plant populations (A and B) are grown in two environments

(Supplementary Material C). We prepared four phenotypic datasets:

phenotype 1 (Fig. 1B), phenotype 2 (Fig. 1C), average phenotype

(Fig. 1D) and merged phenotype (Fig. 1E). Heritability for each

population was adjusted to 0.5. The principle of this simulation was

introduced in (Kim, 2017). The resulting Manhattan plots reveal

that Figure 1E produces the best QTL resolution with the highest

QTL peaks and trivial background inflation, followed by Figure 1D.

To compare the analysis performance between Figure 1D and E, the

receiver operating characteristic curves were drawn (Supplementary

Fig. S5). The area under the curves for Figure 1D and E were 0.9178

and 0.9276, respectively. This supports that Figure 1E shows better

QTL resolution. This is a novel benefit of GWASpro, suggesting

that accounting for the phenotypic variations can improve QTL

mapping resolution by reducing the missing heritability (Korte and

Farlow, 2013).

3.2 Case study 1: comparing GWASpro, GAPIT and

PEPIS
We analyzed the thousand-grain weight (as phenotype) for the IMF2

rice population (Hua et al., 2002, 2003) using GAPIT (Lipka et al.,

2012), PEPIS (Zhang et al., 2016) and GWASpro (Supplementary

Fig. S2). All significant peaks were consistent. In particular, GAPIT

and GWASpro yielded similar plot outlines with different P-value

scales, which indicates that different P-value thresholds must be

applied to the GAPIT and GWASpro results. GAPIT, PEPIS and

GWASpro have different characteristics: GAPIT should be used for

a single population in the additive QK model; PEPIS for a single

population accounting for additive, epistasis and dominant effects in

the K model and GWASpro for either a single or replicated geno-

types in either the K or QK model.

3.3 Case study 2: Medicago truncatula data
Kang et al. (2015) published GWAS results for leaf size and shoot

biomass weight traits with a Medicago truncatula HapMap popula-

tion consisting of 220 accessions with 1 810 466 SNPs using

TASSEL (Supplementary Material B). We re-analyzed the same

dataset using GWASpro and TASSEL and compared their results.

The resulting Manhattan plots and QQ plots are very similar to

each other (Supplementary Fig. S3).

3.4 Case study 3: maize data
Sanchez et al. (2018) published GWAS results with three replicated

populations (302 maize accessions in each population) using
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Fig. 1. (A) Example data and related design matrices for y, X and Z, where y is

the vector for phenotype, X is the design matrix for the fixed effect and Z is

the design matrix for the random genetic effect. [See Equations (1) and (2) in

Supplementary Material A]. (B) Manhattan plots and QQ plots, obtained using

phenotype 1. (C) Manhattan plots and QQ plots, obtained using phenotype 2.

(D) Manhattan plots and QQ plots, obtained using the average phenotype. (D)

Manhattan plots and QQ plots, obtained using the merged phenotype
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GAPIT. We analyzed the same data using GWASpro. GAPIT and

GWASpro produced different results because the GWASpro results

were obtained directly using the replicated phenotypic data, whereas

the GAPIT results were obtained using the breeding values (BVs)

predicted from the replicated genotypes. The authors used the BVs

for GWAS analyses because GAPIT is not capable of handling the

replications. GAPIT required twice fitting the LMMs for BV predic-

tion and GWAS, which might cause LMM overfitting. With

GWASpro, this problem can be avoided. The genomic inflation was

observed in the GWASpro results, which is common given replicated

genotypes (Ehret, 2010; van Iterson et al., 2017; Voorman et al.,

2011). To address this issue, the population stratification resulting

from the principle component analysis was first accounted for then,

P-vaules were adjusted by the genomic control (Section 2.3) in our

analysis. Supplementary Figure S4 compares the results obtained by

GWASpro and GAPIT.

3.5 Performance test
We performed benchmark tests of GWASpro by measuring runtimes

(Supplementary Table S1) given the various sizes of data (1 million, 3 mil-

lion, 5 million, 10 million SNPs; 1k, 3k, 5k individuals). Supplementary

Figure S6 summarizes that the runtime generally increases following

Oðn2mÞ, where n is sample size and m is marker size.

4 Conclusion

GWASpro is an online platform for GWAS analysis that does not

require the hassles of software installation and maintenance. The

parallel computing engine allows GWASpro to quickly analyze a

large-scale dataset. In GWASpro, the QK model is implemented for

unbiased QTL mapping by accounting for the kinship matrix (K)

and population stratification (Q) (Yu et al., 2006). GWASpro can

address replicated phenotypic data, which are typically from self-

pollinating plant species. Our simulation datasets demonstrate that

GWASpro captures the amplified QTL signals when the gene-

environment interactions in multiple replications are in similar pat-

terns. Our Maize datasets demonstrate that GWASpro captures

QTLs by accounting for the phenotypic variations across different

environments. The environmental factors are crucial to identify ro-

bust environment-resistant QTL (Palomeque et al., 2010; Xavier

et al., 2018). In addition, GWASpro supports BV estimation, which

is introduced in Supplementary Material D.
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