
research papers

Acta Cryst. (2019). D75, 219–233 https://doi.org/10.1107/S205979831801238X 219

Received 20 April 2018

Accepted 31 August 2018

Keywords: CrystFEL; serial crystallography;

X-ray free-electron lasers; data processing.

Supporting information: this article has

supporting information at journals.iucr.org/d

Processing serial crystallography data with
CrystFEL: a step-by-step guide

Thomas A. White*

Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg, Germany.

*Correspondence e-mail: taw@physics.org

This article provides a step-by-step guide to the use of the CrystFEL software

for processing serial crystallography data from an X-ray free-electron laser or a

synchrotron light source. Whereas previous papers have described the theory

and algorithms and their rationale, this paper describes the steps to be

performed from a user perspective, including command-line examples.

1. Introduction

Serial crystallography (SX) techniques, in which a single

diffraction snapshot is recorded from each of a large number

of crystals, have recently become popular for use at X-ray

free-electron laser (XFEL) facilities (Chapman et al., 2011)

and synchrotron light sources (Stellato et al., 2014). They

represent part of a significant recent trend towards large data

sets in crystallography, requiring automated data-processing

pipelines and large-scale computing environments. CrystFEL

was created to meet the needs arising from this trend, as a

piece of software for processing serial crystallography data

sets consisting of large numbers of essentially unrelated

diffraction snapshots.

CrystFEL was first released in 2012 (White et al., 2012). It is

free and open-source software (Ince et al., 2012), which means

that the full source code is provided, with freedom to study the

code and make changes if necessary. Since the first version,

incremental improvements to CrystFEL have had a significant

impact on the scientific outcomes of experiments by improving

the quality of the information that it can extract from a given

set of raw data (Nass et al., 2016)

CrystFEL can be downloaded from the CrystFEL website

at https://www.desy.de/~twhite/crystfel. The website also

contains a large amount of other information, including a

tutorial, installation instructions, best-practice guidelines,

frequently asked questions, changes between versions,

presentation slides, a list of citations and programming-

interface information for developers.

Fig. 1 shows the layout of the most important folders in the

CrystFEL package. CrystFEL is a suite of software comprising

15 core programs: indexamajig, ambigator, process_hkl,

partialator, compare_hkl, check_hkl, cell_explorer, geopti-

miser, hdfsee, list_events, render_hkl, whirligig, get_hkl,

partial_sim and pattern_sim. CrystFEL is primarily a

command-line-driven piece of software, with some exceptions

which will be detailed later. Once installed, reference docu-

mentation for these programs can be obtained using the

standard Unix manual system by typing man indexamajig

(or any other program name) at the command line. A top-level

ISSN 2059-7983

http://crossmark.crossref.org/dialog/?doi=10.1107/S205979831801238X&domain=pdf&date_stamp=2019-01-31

manual page, accessed via man crystfel, gives an overall

introduction. The manual pages are also available on the

CrystFEL website.

The overall flow of data processing is shown in Figs. 2, 3, 4

and 5, including the programs which are needed at each stage.

The diagrams are not exhaustive, but show the main pathway

through processing a data set, starting with preparing the data

and ending with importing the data into external programs for

structure solution.

This article describes the processing pipeline using

CrystFEL v.0.7.0, which is the latest version at the time of

writing. Basic knowledge of the Unix command-line envir-

onment will be assumed. Lines beginning with $ indicate

examples of commands, in which line breaks should be

ignored, i.e. they should be entered on a single line.

In addition to the core programs, the CrystFEL package

contains a repository of scripts which are intended to be

copied to the working directory and customised to suit the

individual situation. To make these scripts readily accessible, it

is helpful to download a separate copy of CrystFEL even if it

has been installed centrally on a facility computer system.

After copying a script to the working directory, it will usually

be necessary to mark it as executable using chmod +x.

While this article attempts to describe alternative possibi-

lities at each processing step, the supporting information

contains a complete worked example for some freely available

data. In the worked example, the full sequence of commands

can be seen with only short comments, but including the

expected outputs from each program.

2. Preparing the data

As with almost any computational data-processing procedure,

the first task is to put the data into a file format that can be

read by the software. CrystFEL can read image data in

Crystallographic Binary Format (CBF) or Hierarchical Data

Format v.5 (HDF5). HDF5 is itself a ‘container format’,

meaning that the data inside it can be in variety of layouts. For

example, one file on disk might contain a single two-

dimensional image, or many two-dimensional images stacked

together to form a three-dimensional array. The range of

HDF5 layouts usable by CrystFEL has been described

previously (White, Mariani et al., 2016) and includes the

formats written by Cheetah (Barty et al., 2014), CASS (Foucar,

2016), OnDA (Mariani et al., 2016) and psocake (Shin et al.,

2018), which all use their own layouts. The NeXus standard

(Bernstein et al., 2014; Könnecke et al., 2015) is based on

HDF5 and can also be used by CrystFEL. Dectris EIGER

detectors write data in NeXus HDF5 format.

Duplication of the data in a new format should be avoided

wherever possible, particularly if the total size of the data is

very large. The support of CrystFEL for CBF and EIGER

formats means that no data-format conversion step will be

necessary for many synchrotron experiments. For other

research papers

220 White � Processing serial crystallography data with CrystFEL Acta Cryst. (2019). D75, 219–233

Figure 1
Layout of the CrystFEL download archive.

experiments, notably those performed using the Linac

Coherent Light Source (LCLS), the data will need to be

converted from the specialised format written by the data-

acquisition system. In the case of LCLS, this format is known

as eXtended Tagged Container (XTC; Thayer et al., 2016). At

the same time as converting the format, detector-calibration

steps such as subtracting background signals may need to be

performed. If a format conversion or detector-readout inten-

sity calibration step is necessary, it is best combined with a ‘hit-

finding’ step to reduce the amount of data duplicated. This

means that output files are written only for frames which

appear to contain Bragg spots and therefore have a good

chance of being useful.

The initial stages of file-format conversion, detector-

readout calibration and hit finding, are beyond the scope of

CrystFEL and therefore also beyond the scope of this article.

Unfortunately, owing to the many differences between facility

data formats and processing environments, this can be one of

the most challenging steps. Several programs are available,

including Cheetah, CASS, OnDA and psocake, which have all

been mentioned above. Tutorials are available on the web

for Cheetah (https://www.desy.de/~barty/cheetah/Cheetah/),

including the steps necessary to get started at various facilities,

and psocake (https://confluence.slac.stanford.edu/display/

PSDM/Psocake+SFX+tutorial). For SX experiments at the

SPring-8 Ångstrom Compact Laser (SACLA), a data-

processing pipeline is provided which writes the hits in HDF5

format using Cheetah (Nakane et al., 2016), and a tutorial is

also available (https://github.com/biochem-fan/cheetah/wiki).

CrystFEL requires a ‘detector geometry file’, the purpose of

which is twofold. Firstly, it tells CrystFEL how the data are laid

out in the input file, for instance whether there is just one

frame or many frames per file. Secondly, it tells CrystFEL how

the detector is laid out in physical space. Complicated multi-

panel detectors are common in XFEL experiments (Philipp et

al., 2010; Kameshima et al., 2014; Allahgoli et al., 2015), and

the geometry file describes the position and orientation of

each panel in three dimensions, as well as additional constants

such as the pixel size and the photon energy. The photon

energy can vary from frame to frame because of the operating

principle of an XFEL (Bonifacio et al., 1994), and so a location

within the data file containing the energy for each frame can

be given instead of a fixed number for all of the frames. The

geometry file hence contains all of the information that is

needed to interpret the contents of the data file as the physical

setup of a diffraction experiment. As with almost all files used

by CrystFEL, the geometry file is a plain-text file, and docu-

mention of the format can be accessed with the command man

crystfel_geometry.

research papers

Acta Cryst. (2019). D75, 219–233 White � Processing serial crystallography data with CrystFEL 221

Figure 2
Flow diagram for data import, indexing and integration with CrystFEL.
Blue and red boxes indicate programs internal and external to CrystFEL,
respectively, with program names in bold italic text. Grey boxes indicate
files or data.

Figure 3
Flow diagram for data merging with CrystFEL. See Fig. 2 for the key to
the colours.

Unfortunately, like hit finding and detector-readout inten-

sity calibration, creating and refining a geometry file for a

complicated multipanel detector is a daunting task, and is

itself the subject of entire papers (Yefanov et al., 2015; Ginn &

Stuart, 2017; Brewster et al., 2014). Some example geometry

files are distributed with CrystFEL, which can be used as

templates, including examples for the CSPAD detector at

LCLS in two different datafile layouts (see Fig. 1). The LCLS

publishes a repository of geometry files for its detectors on

its website (https://confluence.slac.stanford.edu/display/PSDM/

Geometry+History). Geometrical information about the

detector and its position relative to the beam should be

available from the X-ray facility as a rough starting point. As a

general guideline, to get started with processing a data set, the

panel positions need to be accurate to much less than the

smallest separation between Bragg peaks which will be seen in

any pattern. Once a few patterns can be processed, the

geometry can be refined as described in Section 3.4;. For the

final data analysis, the geometry should reach subpixel accu-

racy.

The final preparatory task is to create a list of the files to

process in text format. This can easily be performed using

standard Unix command-line tools, for example, to create

files.lst containing a list of all CBF files in the folder

data:

$ find data -name 0�:cbf0 > files:lst

If the data are stored in files which contain more than one

frame each, the procedure is the same. CrystFEL will recog-

nise that each file contains more than one frame and process

every frame individually. If all of the data are contained in a

single file, then there need only be one filename in the list.

The list of input files need not include every frame of data,

allowing selective processing of data. To perform this when

each file contains multiple frames, the program list_events can

expand the list of multiframe files to a full list of frame

identifiers, which can then be altered as required.

3. Indexing and integration

The flow of data preparation, indexing and integration is

shown in Fig. 2. The heart of CrystFEL is the indexing and

integration tool indexamajig. This program reads the list of

filenames or event descriptors prepared earlier, reads the

image data and executes the indexing and integration pipeline.

A flowchart for the pipeline has been given previously (White,

Mariani et al., 2016). The first step is to find the locations of the

obvious Bragg peaks in the image. These are then used to

index the pattern, which is followed by a series of refinement

and result-checking steps. If the indexing solution is accepted,

the unit-cell parameters and orientation, combined with the

detector geometry, wavelength and other information about

the X-ray beam, are used to calculate the positions of the

Bragg peaks in the frame. Their intensities are then measured

from the image data. In this way, the intensities are measured

not only for the strong reflections but also for the weak or

absent reflections, which are equally important for solving the

structure. The output from indexamajig is known as a stream

research papers

222 White � Processing serial crystallography data with CrystFEL Acta Cryst. (2019). D75, 219–233

Figure 4
Flow diagram for calculating figures of merit with CrystFEL. See Fig. 2
for the key to the colours.

Figure 5
Flow diagram of data export from CrystFEL. See Fig. 2 for the key to the
colours. The gradient-shaded blue/red box indicates an external program
(F2MTZ from CCP4) being driven by a CrystFEL script (create-mtz).

file. It is a long text file which contains the indexing and

integration results, as well as other information such as the

locations of peaks and the unit-cell parameters, for each frame

in succession.

To begin processing the data, the list of files, geometry file

and output stream filename need to be given to indexamajig.

For example, for a list of files called files.lst, a geometry

file called my.geom and an output filename my.stream, the

command line would be

$ indexamajig -i files:lst -g my:geom -o my:stream

The command-line option -i specifies the input file, -g the

geometry file and -o the output stream. In practice, additional

parameters will be needed to tune the algorithms, as described

below.

3.1. Setting up peak detection

Accurate peak detection is important for successful

indexing. If too many spots are missed there may not be

sufficient information for the indexing algorithm and subse-

quent refinement algorithms. If too many spurious spots are

included, the indexing may not be able to find the true lattice

repeats in the pattern. It therefore pays to take some time to

optimise the peak-detection parameters. CrystFEL offers a

choice of peak-detection algorithms. The simpler algorithms

have fewer parameters to tune but are more susceptible to

noise.

If the raw data have been processed using Cheetah, the data

files will usually contain lists of peak positions. Hit finding in

Cheetah is performed by finding peaks in each pattern and

accepting frames which contain at least a certain minimum

number of peaks. Since the peak detection needs to be tuned

in Cheetah anyway, it makes sense to reuse the peak-detection

results in CrystFEL rather than to perform new peak detec-

tion. This can be performed by adding the following option to

the indexamajig command line if Cheetah has been configured

to generate single-frame data files,

--peaks=hdf5

or the following if Cheetah has been configured to generate

multiframe data files in CXI format,

--peaks=cxi

For other types of input data, the peak-detection algorithms

built into CrystFEL should be used. The simplest of these is a

gradient-based search (Zaefferer, 2000),

--peaks=zaef

This algorithm has three tunable parameters: the threshold,

the minimum gradient and the minimum signal-to-noise ratio.

Peak detection is triggered when the pixel value is above the

threshold and the local gradient of the pixel values exceeds the

minimum gradient. For the candidate peak to be accepted, its

total intensity must be greater than the specified number of

times its estimated error. These three parameters are given

using the following three options for indexamajig; for example

for a threshold of 100 detector units (adu), a minimum

gradient of 100 adu per pixel and a minimum signal-to-noise

ratio of 5,

--threshold=100 --min-gradient=10000 --min-snr=5

Owing to a historical mistake, the parameter given to

--min-gradient is actually the square of the required

gradient measured in adu per pixel. This has not been changed

because of the importance of maintaining compatibility with

earlier versions and giving consistent results with the same

input parameters.

The appropriate values for the peak-detection parameters

depend strongly on the type of detector, the strength of the

Bragg peaks and the amount of background scattering. Initial

values can be determined by examining the image data. For

this, any image viewer can be used. CrystFEL offers a simple

viewer called hdfsee, which can be invoked as follows, in this

case for an image file called image.cbf and a geometry file

called my.geom,

$ hdfsee image:cbf -g my:geom

For simple data layouts, the geometry-file argument

(-g my.geom) can be omitted. However, using the geometry

file allows hdfsee to show the image data in the correct

physical layout. Once started, the pixel values can be exam-

ined by opening the ‘View Numbers’ window from the ‘Tools’

menu. Clicking anywhere on the image results in the pixel

values in that vicinity being shown in this window. Using this,

the background level and heights of typical peaks can be

estimated. The initial threshold should be a slightly larger

value than most of the background pixels, but much smaller

than the Bragg peaks. The initial (squared) gradient should be

the square of about half of the difference between the average

background and typical Bragg peak intensities. A value of 3 is

usually a suitable initial estimate for the signal-to-noise ratio,

provided that the geometry file contains the correct value for

the number of detector intensity units per photon.

Another peak-search algorithm in CrystFEL is called

peakfinder8. This algorithm originated in Cheetah (Barty et al.,

2014) and was incorporated in CrystFEL because it gives

better results when the background intensity varies radially

but has approximate circular symmetry. This algorithm

searches for peaks above a radius-dependent threshold

intensity, checks their signal-to-noise ratio and also requires

that peaks contain a certain minimum number of pixels above

the threshold. The command-line options for this peak-search

algorithm can be found on the indexamajig manual page,

which is accessed using the command man indexamajig.

To test the peak-detection parameters, indexamajig should

be run on the first few frames of the data set. Although not

necessary, it simplifies matters to also tell indexamajig not to

proceed with indexing and integrating each pattern at this

stage. This can easily be performed by adding --indexing=

none, an option which will be described in more detail in the

next section. The full command line, combining the elements

described above, might look like

research papers

Acta Cryst. (2019). D75, 219–233 White � Processing serial crystallography data with CrystFEL 223

$ indexamajig -i files:lst -g my:geom -o my:stream --peaks=zaef

--threshold=100 --min-gradient=10000 --min-snr=5

--indexing=none

indexamajig will periodically display progress updates,

including the number of frames processed. After sufficient

frames have been processed for inspection (about 100), it can

be interrupted by pressing Ctrl+C, the normal command-line

interrupt keystroke.

The stream file written by indexamajig can then be used to

make an initial evaluation of the accuracy of the peak detec-

tion. A simple script has been provided for this purpose, called

check-peak-detection. This script opens hdfsee sequentially for

each frame, each time displaying the image with spot positions

circled. If many false peaks are seen, the values of the peak-

finding parameters should usually be increased to make the

detection more stringent. If many real peaks are missed, the

values should usually be decreased. After checking a frame,

closing the hdfsee window will cause the script to open it again

with the next frame. The script should be copied into the

working directory from the scripts folder in the CrystFEL

download package, marked as executable and then run, as

follows:

$ cp �=crystfel-0.7.0=scripts=check-peak-detection :

$ chmod þ x check-peak-detection

$:=check-peak-detection my:stream -g my:geom

As might be expected, the geometry file should be given to

allow the images to be displayed in a physically realistic

layout. Here, it is assumed that the CrystFEL download

package is located in the home directory (�).

Another option for checking the peak detection is to use the

cxiview program from the Cheetah package. At the cost of

installing a separate piece of software, this program offers a

more comfortable experience, such as the ability to move

backwards, skip frames or jump randomly among the frames in

the stream, instead of viewing them in sequence. It also allows

the peaks from the peak search and the calculated spot loca-

tions to be viewed together. Documentation for cxiview is

available on the WWW at https://www.desy.de/~barty/cheetah/

Cheetah/cxiview.html.

Once the peak finding is approximately satisfactory, it can

be further refined with reference to the fraction of indexed

patterns, as described in Section 3.3.

There are a few more parameters which will need to be

determined at this stage for the best final data quality, namely

the size of the integration regions used to measure the

intensities of the reflections and the background around them.

When integrating a reflection, CrystFEL will consider a

circular region centred on the calculated reflection position,

which should contain the peak itself, and an annulus further

out, from which it estimates the background underneath the

peak (White et al., 2013). Three parameters need to be

determined: the radius of the peak region and the inner and

outer radii of the background annulus. The default parameters

(four, five and seven pixels, respectively) are usually appro-

priate for data with sharp, widely separated Bragg peaks, but

for less sharp peaks or closer spot separation they may need to

be altered. This can be performed visually while inspecting

the peak-detection results using hdfsee via the check-peak-

detection script. Using the ‘View’ menu, the binning of the

image can be set to 1, so that it is displayed pixel-for-pixel on

the screen. The radii of the circles used to indicate the peak

positions can also be set via the ‘View’ menu, allowing them to

be visualised. The peak radius should be set such that the

entirety of each peak is within the circle, with a pixel or two of

buffer region to allow for residual inaccuracy in the detector

geometry. The inner and outer background radii should be set

such that the annulus falls entirely in the gaps between rows of

reflections as far as possible, but otherwise is as large as

possible. The three radii (peak, background inner and outer

respectively) should then be given to indexamajig using the

option --int-radius, as follows

$ indexamajig i files:lst -g my:geom -o my:stream --peaks=zaef

--threshold=100 --min-gradient=10000 --min-snr=5

--int-radius=3,4,5 --indexing=none

Finally, if the input data contain a large number of empty

patterns, it will make the processing faster if patterns with a

small number of peaks are skipped over. This can be

performed using the option --min-peaks; for example, to

ignore all patterns with fewer than 50 peaks this would be

--min-peaks=50.

3.2. Determining the unit cell

CrystFEL offers a choice of indexing methods. Most of the

methods involve calling external indexing programs such as

MOSFLM (Powell, 1999), DirAx (Duisenberg, 1992), FELIX

(Beyerlein et al., 2017) or XDS (Kabsch, 1988, 2010). Other

methods are built into CrystFEL, including an implementation

of the TakeTwo algorithm (Ginn et al., 2016). The indexing

methods can be selected using the --indexing option in

indexamajig. For example, the following option would select

MOSFLM, using DirAx as a fallback if indexing with

MOSFLM is not successful:

--indexing=mosflm,dirax

The sequence of fallback indexing methods can be any length,

or a single indexing method can be used. Indexing can also be

disabled completely by specifying ‘none’ as the indexing

method, as was used above to set up peak detection.

To make things easier, CrystFEL v.0.7.0 can automatically

determine which indexing methods are available. Methods will

be added to the list, in a preset order of priority, if the

corresponding programs are installed on the computer. Some

indexing methods require the unit-cell parameters to be

known in advance, and these methods will be automatically

added to the list when parameters are provided (see Section

3.3). Automatic selection of the indexing methods will occur

unless the --indexing parameter is given to indexamajig.

Therefore, the only change needed to enable indexing is to

remove the --indexing=none option from the previous

command line:

research papers

224 White � Processing serial crystallography data with CrystFEL Acta Cryst. (2019). D75, 219–233

$ indexamajig i files:lst -g my:geom -o my:stream --peaks=zaef

--threshold=100 --min-gradient=10000 --min-snr=5

--int-radius=3,4,5

Usually, the more indexing methods that can be used, the

higher the overall indexing fraction will be. However, enabling

more indexing methods will make the processing take longer.

When determining the unit cell, it is usually better to restrict

the indexing to one method because different programs may

produce different representations of the same unit cell. For

example, DirAx does not handle centred unit cells and will

always give a primitive representation of a centred cell.

MOSFLM is a good choice because it runs quickly but also

offers the ability to use prior lattice-type information if

available.

In CrystFEL v.0.7.0, the order of priority for automatic

determination places the fastest methods first. MOSFLM

comes first of all, because it runs quickly but also offers many

features such as the ability to use prior information. XDS is

placed last, since in our experience it is the least successful

at indexing snapshot patterns. TakeTwo and FELIX are

excluded from automatic determination because they can take

a long time to run. The order of indexing methods should not

normally need to be overridden.

Indexing frames takes significantly longer than just peak

detection. Therefore, at this stage it may be useful to instruct

indexamajig to process several frames in parallel. This can be

performed by simply adding the option -j n, where n is the

number of frames which should be processed at once. Usually,

n should equal the number of processors in the computer. This

type of multiprocessing only works within one computer,

whereas Section 6.3 describes how to multiprocess across

several computers in a cluster environment.

If no prior information about the unit-cell parameters is

given, indexamajig will index the patterns freely, meaning that

the indexing algorithms will be required to determine the six

unit-cell parameters (a, b, c, �, �, �) and the crystal orientation

(three further parameters). If everything goes well, the unit-

cell parameters should have similar values for all frames. In

practice, there will be some variation owing to experimental

error and also some outlying sets of parameters. Since the

output from indexamajig is a simple text file, albeit a large one,

it is quite easy to find the unit-cell parameters. They appear on

lines in the stream starting with the text ‘Cell parameters’. To

conveniently inspect the overall distributions of parameters,

the CrystFEL program cell_explorer can be used. It is invoked

very simply:

$ cell explorer my:stream

The graphical user interface of cell_explorer is shown in

Fig. 6. It reads the unit-cell parameter information for every

frame in the stream and plots histograms for the six unit-cell

parameters, using colour coding to represent the different

centring types. It allows the graphs to be panned (by click/

dragging the mouse), zoomed in or out (using the scroll wheel)

and the histogram binning to be altered (using the + and �

keys). By click/dragging the mouse with the shift key held

down, a range of values can be selected for one of the para-

meters. If this is performed, any set of unit-cell parameters

which has that parameter outside the selected range will be

excluded. This allows the true parameters to be extracted,

even if there is a complicated mixture of different cells

(whether this is owing to problems with the data processing or

because there is truly a mixture of different lattices among the

crystals).

The true unit-cell parameters should appear as strong, sharp

peaks in the histograms. Otherwise, a problem with the earlier

data processing should be suspected; the most common cause

is an inaccurate detector-geometry file, such as an incorrect

beam-centre location or an incorrect camera-length value.

research papers

Acta Cryst. (2019). D75, 219–233 White � Processing serial crystallography data with CrystFEL 225

Figure 6
Screenshot of cell_explorer, showing clear peaks for each of the six unit-cell parameters, each of which has been selected and fitted.

Once a plausible set of parameters has been found,

cell_explorer can fit curves to the selected peaks. To perform

this, the peaks for all parameters should first be selected (using

shift+click/drag) and the fitting procedure then triggered using

‘Fit cell’ in the ‘Tools’ menu or by pressing Ctrl+F. The fitted

values will be displayed on each histogram, including an

estimated standard deviation, and can be exported (using

‘Create unit cell file’ under the ‘File’ menu) to a text file for the

next step.

3.3. Indexing and integrating using unit-cell constraints

Providing expected unit-cell parameters to indexamajig

enables it to reject indexing solutions which do not match. It is

obviously essential for merging the data that the unit-cell

parameters for all crystals are consistent. In addition,

providing unit-cell parameters allows the use of indexing

algorithms which determine only the orientation of the crystal,

which is in principle an easier task. The TakeTwo (Ginn et al.,

2016) and FELIX (Beyerlein et al., 2017) indexing algorithms

belong to this category. Some indexing programs, such as

MOSFLM, can make use of prior unit-cell information but

do not require it, and this is also taken into account by

indexamajig. Therefore, the only change that needs to be made

to perform this step is to provide the unit-cell parameter file

written by cell_explorer, which is performed using the

option -p,

�p unitcell:cell

An example of a full command line for indexamajig,

including the option for multiprocessing on a four-processor

machine, is therefore as follows:

$ indexamajig i files:lst -g my:geom -o my:stream --peaks=zaef

--threshold=100 --min-gradient=10000 --min-snr=5

--int-radius=3,4,5 -p unitcell:cell -j 4

The ‘indexing rate’, which is defined as the fraction of

frames in which at least one crystal lattice could be found, will

periodically be displayed. It is normal for the indexing rate in

this step to be lower than in the previous step, because all

spurious indexing solutions which do not match the expected

results are now being rejected. The overall indexing rate will

be reported just as the indexamajig program finishes. The

indexing rate is more sensitive than a visual analysis; there-

fore, it might be possible to increase the indexing rate by

altering the peak-detection parameters from the values

determined earlier or even trying a different peak-detection

method (see Section 3.1). Making the peak detection more

stringent may improve the results by avoiding spurious peaks,

but making it less stringent may also help by providing more

data points to the indexing algorithms. Slightly altering the

detector geometry, for example by testing 0.5 or 1 mm either

side of the current sample-to-detector distance in the

geometry file, may also improve the indexing rate. Therefore,

at least a few rounds of indexing should be performed before

accepting the result as final.

3.4. Checking the quality of indexing

The internal indexing logic of CrystFEL already performs

several tests to check that the indexing solution is correct.

Despite these checks, it is possible to obtain incorrect indexing

solutions, especially if the geometry is not accurate or the

peak-search parameters are not set appropriately. Therefore,

it is important to check the alignment of peaks visually, just as

before when setting up the peak detection. A script called

check-near-bragg is provided which behaves similarly to

check-peak-detection (described above) except that it shows

the calculated (‘predicted’) reflection locations instead of the

peak locations identified by the peak search,

$:=check-near-bragg my:stream -g my:geom

Alternatively, the cxiview program from Cheetah can also be

used. Some experience is needed to be able to judge whether

or not the spot positions are correct. The most important thing

is that the patterns of reflections agree; for example, a line or

arc of reflections should correspond to a line or arc of true

spots, even if there might be an excessive number of reflec-

tions predicted either side of the true spots. If there are a large

number of patterns where the calculated reflection patterns do

not agree with the true spots, the earlier stages should be

revisited.

The prediction-refinement algorithm also refines the posi-

tion of the central beam on the detector for each frame. The

resulting shifts are stored in the stream, and these should also

be checked using a scatter plot. This can be performed using a

script called detector-shift provided with CrystFEL:

$:=detector-shift my:stream

The best outcome is for the shifts to be clustered tightly

around the origin of the graph. Successful indexing despite an

initially incorrect beam position will show as a cluster of points

away from the origin (for an example, see Fig. 4 in White,

Mariani et al., 2016). This script can also be used to correct the

offset by running it again, this time telling it the name of the

geometry file which should be updated:

$:=detector-shift my:stream my:geom

This command will result in my-predrefine.geom (the

filename for the input geometry suffixed with -predrefine)

being created, which should be used for a new run of indexing

to improve the overall results.

The detector-shift tool can only correct offsets of the entire

detector in two directions perpendicular to the beam direction

(note that the detector panels need not necessarily be in this

plane). A more advanced program in CrystFEL called

geoptimiser can be used to refine the detector geometry down

to the level of individual panels. The way that geoptimiser

works has been described in detail in a separate paper

(Yefanov et al., 2015). In particular, it allows the panels to be

handled in groups which are either treated rigidly or used to

calculate adjustments for panels for which there is not suffi-

cient information for an individual refinement (by using the

average of the adjustments for the other panels in the group).

A few thousand indexed patterns should be used for a good

research papers

226 White � Processing serial crystallography data with CrystFEL Acta Cryst. (2019). D75, 219–233

refinement, and a typical command line for geoptimser would

be as follows:

$ geoptimiser -i my:stream -g my:geom -o refined:geom

-c asics -q quadrants

Here, the stream my.stream will be used to refine geometry

file my.geom to produce refined.geom, treating panels

grouped in asics as strictly rigid with respect to one another

and using panels grouped in quadrants for the adjustment

of panels with a low number of measurements. The names

asics and quadrants are defined in the geometry file. For

detectors which can be treated as single panels, which includes

most detectors at synchrotron beamlines to a good approx-

imation, it will not be necessary to use these panel-grouping

options.

As before, the indexing step should be repeated with the

refined geometry file.

4. Resolving an indexing ambiguity

Certain symmetry classes are subject to indexing ambiguities.

These occur when the crystal can be rotated, usually by 180�,

in such a way that the spot positions stay exactly (or very

nearly exactly) the same but the structure is not identical to

before. The situations in which this can happen, and algo-

rithms to address the problem, have been amply discussed

previously (White et al., 2013; White, Mariani et al., 2016;

Brehm & Diederichs, 2014; Donatelli & Sethian, 2014; Liu &

Spence, 2014; Zhou et al., 2013). CrystFEL includes a simpli-

fied version of the Brehm–Diederichs algorithm, the details of

which have been given previously (White, Mariani et al., 2016),

in the program ambigator.

If the space group of the structure under investigation is

known in advance, it is easy to know whether an ambiguity is

possible or not. A table of symmetry classes (point groups and

space groups) is included with CrystFEL which highlights the

relevant groups. The mathematical basis of an indexing

ambiguity, and the manifestation of an indexing ambiguity in

the data from an SX experiment, is exactly the same as that of

perfect twinning by merohedry (or pseudomerohedry, in the

case of approximate overlap of spot positions). Therefore, an

indexing ambiguity should be suspected if a ‘twin warning’ is

given by the structure-solution software after completing the

merging steps described in the next section.

At a minimum, ambigator needs the stream file from the

previous step (which was called my.stream), the name which

should be used for the resulting ‘detwinned’ stream (specified

with -o), the true point symmetry of the structure (specified

with -y) and either the symmetry operator corresponding to

the ambiguity (specified with --operator) or the apparent

point symmetry when the ambiguity is in effect (specified with

-w):

$ ambigator my:stream -o detwinned:stream -y m-3

--operator=k,h,-l

or

$ ambigator my:stream -o detwinned:stream -y m-3 -w m-3m

respectively. Typical use will add the further options

--fg-graph, --lowres, --highres and -j, which are

described below:

$ ambigator my:stream -o detwinned:stream -y m-3 -w m-3m

--fg-graph=fg.dat -j 32 --lowres=30 --highres=3

The -j option tells ambigator to perform calculations in

parallel across multiple CPUs, as described earlier for index-

amajig. The --fg-graph option tells ambigator to write

some diagnostic information to a file called fg.dat, which

will be described later in this section. The notation used to

specify point-group symbols is described in detail in Section

5.2.

The lower and upper resolution limits, given in ångströms

using --lowres and --highres, respectively, restrict the

range of resolutions used by ambigator to calculate correlation

coefficients. If the range is too wide, the correlations between

data sets can be high even if they are totally unrelated, simply

because low-resolution reflections are usually strong and high-

resolution reflections are usually weak. If the range is too

narrow, there will not be enough reflections for an accurate

calculation. The best resolution range depends on the data, so

it needs to be adjusted based on the results.

An example log output from ambigator is shown below:

Ambiguity operations :

m-3m -> m-3 : �k;�h;�l

Loaded 3725 crystals from 21395 chunks

Calculating CCs : j ¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼ j

Mean number of correlations per crystal : 3722:4

Mean f;g ¼ 0:018576;0:017307: Changed 1630 assignments this time:

Mean f;g ¼ 0:024682;0:011201: Changed 1116 assignments this time:

Mean f;g ¼ 0:032528;0:003355: Changed 68 assignments this time:

Mean f;g ¼ 0:032756;0:003127: Changed 2 assignments this time:

Mean f;g ¼ 0:032755;0:003128: Changed 0 assignments this time:

Mean f;g ¼ 0:032755;0:003128: Changed 0 assignments this time:

1872 assignments are different from their starting values

Firstly, the re-indexing operation, calculated from the true

and apparent point-group symmetries, is shown.1 The most

important numbers are the values of the mean correlation

coefficients across all crystals in the correct and reversed

orientations, called f and g, respectively. The two values will be

similar on the first iteration (here, they are 0.018576 and

0.017307, respectively). If the resolution of the ambiguity is

successful, the value of f should approximately double while

the value of g should decrease approximately to zero. Here,

the final values are 0.032755 and 0.003128, respectively, indi-

cating a good result. If the final value of g is significantly above

zero, the resolution range may be too large. If the final value of

f is not much larger than its starting value, a larger resolution

range may be necessary, or the earlier data-processing steps

should be revisited.

Ambigator will create a new stream (detwinned.stream

in the example above) identical to the input stream except that

the reflections have been re-indexed and the basis vectors of

research papers

Acta Cryst. (2019). D75, 219–233 White � Processing serial crystallography data with CrystFEL 227

1 As a convenience, the ‘twin law’ relating any two point groups can be
calculated by invoking ambigator with only the apparent and true symmetries;
for example, ambigator -y m-3 -w m-3m.

the reciprocal unit cell have been altered to match. If the

ambiguity resolution was successful, this can be merged

normally, as described in the next section.

The file fg.dat contains a list of the average correlation

coefficients against all other crystals for each crystal, looping

round to the first crystal again at the start of the next iteration.

This can be used to plot graphs as shown in White, Mariani et

al. (2016). For this purpose, a script called fg-graph is

provided. The script must first be edited to set the filename

(usually fg.dat), the number of crystals, the number of

iterations (default six) and the minimum and maximum

correlation coefficients for the graph axes. Then, it can be run

very simply,

$./fg-graph

This will produced an image file correlation.png which

can be viewed with any image viewer.

ambigator attempts to calculate the correlation of the

reflection intensities of every crystal with all of the others. In

practice, about 1000 correlation coefficients are normally

sufficient, depending on the quality and the resolution of the

data. If the number of crystals is large, as is the case in the

example above, with an average of 3722.4 correlations per

crystal, ambigator can be told to limit itself to a maximum

number of correlation coefficients using the --ncorr option.

This will make it finish sooner, usually without affecting the

results.

5. Merging the measurements

5.1. Checking for detector saturation

Before merging, it is wise to check for reflections that were

too strong to be recorded by the detector. The dynamic range

of several current detectors used at XFEL facilities can be as

small as a few thousand photons at 8 keV (Carini et al., 2013),

so there are likely to be many overloaded reflections. They can

be removed while merging, but the highest reliable pixel value

must be known. Unfortunately, the maximum recordable

value can vary as the calibration constants for the detector

change over a period of days. This is a particular problem for

detectors at XFEL facilities.

The peakogram-stream script is provided to help to find the

saturation value. It simply plots a point for every reflection in a

stream, with the horizontal position being the resolution and

the vertical position being the maximum intensity of all pixels

in the integration region for that reflection. The plot is colour-

coded according to the local density of spots. It is simply run

on the stream:

$./peakogram-stream -i my:stream

An example graph is shown in Fig. 7 for a previously

published data set from the human serotonin receptor 2B in

complex with ergotamine (Liu et al., 2013), for which the data

frames have been made available (White, Barty et al., 2016).

The maximum values for some reflections, particularly at low

resolution, have been clipped to lower values. Normally, this

would manifest itself as a sharp horizontal line in the graph.

However, the image data have been processed to subtract a

background value (see Section 2). The background value

varies between pixels, but the maximum raw value which can

be measured does not. The effective maximum value, which is

the maximum raw value minus the background value, there-

fore also varies between pixels, turning the sharp line into a

cloud of points. The maximum reliable value, which is required

for the merging step, is simply the highest value before the

start of this cloud. In this example, a value of 7000 adu would

be appropriate. Note that there are a few outlying values with

even higher values of around 14 000 adu in the middle reso-

lution ranges. These come from temporary glitches of the

detector and will also be excluded by the cutoff of 7000 adu.

The CSPAD detector (Philipp et al., 2010) allows pixels to

be individually switched between two gain modes, so pixels in

one gain mode must have their values multiplied by a certain

factor to be consistent with the others. The saturation value is

the same in either gain mode, but after performing this

multiplication the pixels in high-gain mode would have a much

lower saturation value than those in the low-gain mode, for

which the pixel values, and therefore the saturation values,

have been multiplied up. There are theoretically two possible

solutions to this problem. The first is for CrystFEL to perform

the multiplication, in which case the saturation value would be

the same everywhere on the detector, but a gain map would

need to be provided to CrystFEL. The second option is for the

multiplication to be performed by the hit-finding software (see

Section 2), in which case CrystFEL need not alter the intensity

values, but the saturation value will now be different for pixels

in one gain mode compared with the other. As a matter of

design philosophy, CrystFEL adopts the second strategy. To

handle the variation in saturation values, a separate HDF5 file

can be provided, which matches the layout of the image data

and contains the saturation value for each pixel. To assist with

creating this map, a script called gaincal-to-saturation-map has

research papers

228 White � Processing serial crystallography data with CrystFEL Acta Cryst. (2019). D75, 219–233

Figure 7
Intensity plot created by the peakogram-stream script, showing a cloud of
points owing to saturation at low resolution between 7000 and 10 000
intensity units.

been provided, but its detailed usage is beyond the scope of

this article.

5.2. Simple merging using the Monte Carlo method

The simplest way to merge the intensities is to calculate a

average intensity, across the entire data set, for each symme-

trically unique reflection. This can be performed using

process_hkl. For example, to merge my.stream to create

merged.hkl using a saturation value of 7000 (see above),

merging in point group 4/mmm:

$ process hkl -i my:stream -o merged:hkl -y 4=mmm --max-adu=7000

The fact that point group 4/mmm is centrosymmetric indi-

cates to process_hkl that Friedel pairs are to be merged. To

preserve Bijvoet differences in the merged data set, the

appropriate symmetry option would be -y 422. The resulting

reflection list will contain reflections within the asymmetric

unit of reciprocal space for the point group given here.

Although perhaps unfamiliar to some users, this way of

specifying symmetry is simpler because there are very few

point groups compared with space groups. It also avoids any

suggestion that the space group is known (or that it needs to

be known, or even that guessing it would affect the data

processing in any way) at this early stage in the data proces-

sing. When specifying the point group for merging, overlines

in the point-group symbols are represented by a minus sign,

for example point group 42m is selected using -y -42m. For

trigonal point groups, the type of axes, rhombohedral or

hexagonal, must be specified by suffixing with _R or _H,

respectively. Unconventional point-group settings can be

used, for example point group 6 with the hexagonal axis along

a can be selected using -y 6_uaa, where the suffix _uaa

indicates ‘unique axis a’. It should be noted that CrystFEL

assumes that the unique axis is c for all lattice types which

have a distinct axis (monoclinic, tetragonal and hexagonal),

whereas many other pieces of software prefer the ‘unique axis

b’ representation for monoclinic structures. To help to avoid

confusion, the CrystFEL programs will display a warning if a

monoclinic point group is used without specifying a unique

axis.

5.3. Advanced merging using scaling and partiality correction

In addition to process_hkl, the simple merging tool

described in the last section, CrystFEL includes the more

advanced merging program partialator. This program can

perform more advanced merging methods involving scaling

the intensities and correcting for their partialities.

Scaling means to determine scaling factors (linear and

Debye–Waller terms) for each crystal which, when the inten-

sities are multiplied by them, bring the individual measure-

ments into as close an agreement as possible. Partiality

modelling means accounting for differences in the relative

amounts of excitation of the reflections in each diffraction

pattern, usually using a geometrical model of the diffraction

process (White et al., 2013; Ginn, Messerschmidt et al., 2015).

Post-refinement means refining the parameters of the model

for each crystal such that when the intensities are corrected for

their partialities, the measurements agree as closely as possible

(Winker et al., 1979; Rossmann et al., 1979).

This type of procedure comes at the cost of having to hold

the reflection intensities from the entire stream in memory, so

that the program can compare them with the intermediate

merged results as it iteratively improves the parameters

affecting the correction factors. For large unit-cell structures

with high-resolution data, this can require large amounts of

memory. For 1000 crystals of tetragonal lysozyme (a = b = 79.2,

c = 37.9 Å) at a resolution of 3 Å (at the detector edge, not the

corner), about half a gigabyte of memory is required. The

memory requirements scale linearly with the number of

reflections, proportional to each of the unit-cell dimensions

and the cube of the maximum resolution (measured as reci-

procal distance). Even when modelling partialities and

performing post-refinement, partialator does not need access

to the original image data, only the contents of the stream file.

This is the origin of the name ‘post-refinement’: it takes place

after all of the other processing is complete (Kabsch, 2010).

The operation of partialator has been described elsewhere

(White, 2014; White, Mariani et al., 2016). It offers a choice of

partiality models, including ‘unity’, which means setting all

partialities to 1: in other words, not to model partialities at all

and just perform the scaling. Scaling in partialator by default

determines a linear and Debye–Waller scaling parameter for

each crystal to optimize the agreement between it and an

intermediate merged data set. The updated parameters are

then used to produce the next intermediate merged data set.

The command-line syntax is similar to process_hkl:

$ partialator -i my:stream -o merged:hkl -y 4=mmm --max-adu=7000

--model=unity --iterations=1

The only changes are the name of the program (process_hkl

changed to partialator) and the addition of --model=unity

to specify no partiality modelling and --iterations=1 to

specify only one iteration of scaling. The number of iterations

refers to the number of ‘macrocycles’ of scaling, post-

refinement and outlier rejection. The scaling algorithm itself

performs its own iteration cycle within the macrocycles, and

therefore only one iteration is sufficient if the ‘unity’ model is

used. A higher number of iterations is likely to lead to

divergence. If partiality modelling and post-refinement are

used, about three iterations should be used.

Although versions of CrystFEL going back several years

have incorporated partiality models, it is only recently that

models have become available that reliably improve experi-

mental data. CrystFEL v.0.7.0 includes an implementation of

partiality modelling and post-refinement that closely follows

that of Ginn, Brewster et al. (2015). This can be used simply by

specifying --model=xsphere, as follows:

$ partialator -i my:stream -o merged:hkl -y 4=mmm --max-adu=7000

--model=xsphere --iterations=1

Partiality modelling and post-refinement introduces a lot of

complexity into the merging process, and a full guide to the

process and discussion of its behaviour would be both beyond

research papers

Acta Cryst. (2019). D75, 219–233 White � Processing serial crystallography data with CrystFEL 229

the scope of this article and impossible to give at this stage,

since the implementation in CrystFEL is still considered to be

experimental and only works in favourable cases. More

detailed discussion will therefore be left for future articles.

The overall flow for merging data, including resolving an

indexing ambiguity, is shown in Fig. 3.

5.4. Calculating figures of merit

The workflow for calculating figures of merit in CrystFEL is

shown in Fig. 4. There are two programs for calculating figures

of merit: check_hkl and compare_hkl. The former calculates

figures of merit relating to just one reflection list, such as

completeness and mean I/�(I). The latter calculates figures of

merit which involve splitting the data set into two halves which

are merged separately and then compared, such as Rsplit and

CC1/2.

check_hkl is run as follows:

$ check hkl merged:hkl -p unitcell:cell --highres=3

where the --lowres and --highres options can be used to

restrict the resolution range which should be considered, since

normally the usable data do not extend to the corner of the

detector. The program will display several statistics on the

terminal, and also create a file shells.dat containing the

same statistics divided into resolution bins. The filename of

this file can be changed if required, by adding --shell-

file=filename, where filename is the desired filename.

compare_hkl is run similarly, except that it takes two

reflection lists and has an additional option to specify which

figure of merit should be calculated:

$ compare hkl merged:hkl1 merged:hkl2 -p unitcell:cell

--highres=3 --fom=cc

Possible figures of merit include Rsplit, CC, CC* and Rano; a full

list can be found in the manual page (man compare_hkl). It

also writes shells.dat, and the filename can be altered as

with check_hkl. In the example above, the correlation coeffi-

cient is being calculated between two half data sets; therefore

the resulting values are CC1/2. This, or the closely related CC*

(Karplus & Diederichs, 2012), are the preferred figures of

merit (over Rsplit) for estimating the resolution limit of useful

data (Karplus & Diederichs, 2015).

The two merged half data sets, here called merged.hkl1

and merged.hkl2, will automatically be created by

partialator. To create them using process_hkl is more difficult,

and requires that the program be run two more times in

addition to the main merge, once using the even-numbered

images and once using the odd-numbered images,

$ process hkl -i my:stream -o merged:hkl1 -y 4=mmm

--max-adu=7000 --even-only

$ process hkl -i my:stream -o merged:hkl2 -y 4=mmm

--max-adu=7000 --odd-only

The designations ‘odd’ and ‘even’ refer to the order that the

crystals appear in the stream, which is effectively random

owing to the variable amount of time taken to process each

frame in parallel by indexamajig.

The symmetry used for merging is written into the merged

reflection files, and therefore does not need to be given to

check_hkl and compare_hkl as was the case in earlier versions

of CrystFEL.

5.5. Exporting to structure-solution packages

The merged reflection files in CrystFEL are plain text and

can easily be imported into most structure-solution packages.

Nevertheless, template scripts are provided to help. The

scripts are create-mtz and create-xscale to create MTZ files and

XSCALE files, respectively. The workflow for using create-mtz

is shown in Fig. 5. create-mtz is a thin wrapper around the

CCP4 import program F2MTZ, and create-xscale is a simple

Perl script because XSCALE files are also plain text. Both

scripts must be carefully edited before use to set the unit-cell

parameters, data-set name and other values which will be

written into the headers of the resulting file.

6. Additional features

At this stage, the processing of the data is essentially complete.

However, there are many other features in CrystFEL which

become useful for certain usage cases. The next few sections

contain brief introductions to some of the most important

ones.

6.1. Custom data-set splitting

Several types of experiment, such as time-resolved experi-

ments or multi-data-set anomalous phasing experiments (SIR

or MAD), involve multiple data sets which have small differ-

ences between them. For these types of experiment, it is

important to ensure that all data sets are processed identically.

To support this, partialator offers the possibility of merging all

of the data together in one combined task and then separating

the data sets just before creating the final merged output. In

this way, the separate data sets are certain to be on the same

scale, and concerns about the uniqueness of the solution when

using post-refinement are greatly reduced.

To use this feature, a separate file must be provided to

partialator using the option --custom-split=filename.

The file consists of one line per frame, each line consisting of

the filename, frame identifier if applicable (see Section 2) and

an arbitrary data-set identifier. The identifier can be any text

string, for example ‘native’, ‘derivative’, ‘dark’, ‘light_1ns’ and

so on. For each unique data-set identifier, three extra files will

be written. In the example above, where the main merged

output was merged.hkl, for a data-set identifier ‘native’ the

extra files would be called merged-native.hkl, merged-

native.hkl1 and merged-native.hkl2. These files

contain the merged data for the data set (.hkl) and two half-

data-set merges (.hkl1 and .hkl2) which can be used to

calculate figures of merit for that data set alone.

6.2. Searching for ‘mini rotation series’

Whereas an XFEL pulse will usually destroy the crystal, in

synchrotron serial crystallography experiments there is a

research papers

230 White � Processing serial crystallography data with CrystFEL Acta Cryst. (2019). D75, 219–233

chance that the same crystal might appear in two or more

successive frames. This knowledge can be useful, for example

to treat the accidental successive exposures as a rotation series

and process them with rotation-processing software, leading

to a hybrid approach similar to that described by Gati et al.

(2014). The information could also be used to avoid subse-

quent exposures in case they have suffered unacceptable

levels of radiation damage. To this end, the whirligig program

in CrystFEL can scan through a stream file and compare the

orientations of crystals in subsequent frames. The program

takes into account that there might be multiple crystals per

frame, that the frames might not appear in the stream in the

same order that they were mentioned in the input list (see

Section 2) and also that the indexing of the series of crystals

may not be consistent. It is very easy to run:

$ whirligig my:stream

The only parameter that may need to be adjusted is the

‘window size’, which determines how widely separated two

successive frames can be in the stream before the program

abandons hope that they will appear. The program will report

if this is necessary.

For each series of crystals, a short text file will be written

which contains the filenames, event descriptors and crystal

numbers which make up the series. The example output below

could arise from a series of three patterns, their filenames

being frame_00897.cbf, frame_00898.cbf and

frame_00899.cbf:

3 frames in series

Serial Filename EventID Crystal

0 614 frame 00897:cbf ðnoneÞ 0

1 615 frame 00898:cbf ðnoneÞ 0

2 616 frame 00899:cbf ðnoneÞ 1

Here, the last frame in fact contains two crystals, the second

of which was apparently close in orientation to the previous

crystal. The crystal indices start from zero, and the text

‘(none)’ would have been replaced by an event descriptor if

the input files contained more than one frame each.

6.3. Running CrystFEL on a cluster system

Many of the CrystFEL programs support the use of the

option -j to instruct them to perform multiple parts of their

work in parallel. However, this parallelism only uses multiple

CPUs within one computer. This is usually sufficient, except

for the indexing and integration step. This is usually the most

time-consuming part of processing an SX data set, firstly

because of the amount of work involved (potentially including

several attempts at indexing each pattern) and secondly

because it involves reading the image data for every frame,

creating a large input/output load. This step can be made much

faster by parallelizing not only within one computer, but

across many computers in a cluster, as are available at most

X-ray light-source facilities.

Splitting the indexing and integration task up across

computers can be performed by creating many small index-

amajig subtasks with separate input file lists (see Section 2),

each containing about 1000 frames from the full data set.

The tasks are submitted to a batch-queuing system which

takes care of scheduling and running them on the cluster.

Each subtask produces its own stream, and the streams can

be combined by simple concatenation. For example,

if the substreams have names block00.stream,

block01.stream, block02.stream and so on, this could

be performed with

$ cat block � :stream > all-frames:stream

There is no conceptual difference between the substreams, the

combined stream and the stream obtained by a single large run

of indexamajig. The combined stream can be used exactly as

described above for merging the data, or the substreams can

be used to examine the indexing results for a subset of the

complete data.

As is perhaps already apparent, speeding up the processing

in this way comes at the cost of convenience. To assist, two

scripts are provided with CrystFEL, which should be consid-

ered as templates and customised to the exact task. The two

scripts are called turbo-index-slurm and turbo-index-lsf, and

are for systems using the SLURM (https://slurm.schedmd.com/)

and Platform LSF batch-queue systems, respectively. A full

tutorial of how to modify and run these scripts is beyond the

scope of this article, but they must be modified to set para-

meters including the number of frames per subtask, the

indexamajig command-line parameters and any environment

setup needed to run CrystFEL on the worker nodes, as well

any parameters needed by the batch system such as an e-mail

address for notifications, job priority and expected running

time.

7. Conclusion

This step-by-step guide has covered the main processing

pipeline for serial crystallography data using CrystFEL. Most,

but not all, of the core programs in CrystFEL have been

described. Those not covered are those for simulating

diffraction data, which can be used for testing new types of

analysis or determining expected signal levels for experiments.

The programs for simulation are pattern_sim and partial_sim,

which have both been described previously (White et al.,

2013). There is also render_hkl, which can plot plane sections

through reciprocal space, showing the intensities of reflections

using a colour scale. The remaining program is get_hkl, which

can be used for manipulating reflection lists, for example

symmetry expansion, adding noise, applying a resolution

cutoff or re-indexing a reflection list. These functions are also

most commonly used when simulating data.

The library of scripts provided with CrystFEL is much

larger than those described here. A list is given below, with

brief descriptions of the most important of the scripts which

have not so far been mentioned. Although some of these refer

to features which have not been described above, they are

mentioned here to make the reader aware of their existence.

research papers

Acta Cryst. (2019). D75, 219–233 White � Processing serial crystallography data with CrystFEL 231

ave-resolution: plot a histogram of the estimated resolution

of the crystals in a stream and show the average and maximum

values.

eiger-badmap: create a bad pixel mask for a Dectris EIGER

detector by finding very bright pixels in a single data file.

move-entire-detector: apply an overall shift to all panels in a

detector geometry file at once.

mtz2hkl: create a CrystFEL reflection file from an MTZ file;

the opposite of create-mtz described above.

stream_grep: search a stream for chunks which match

certain criteria and write a new, filtered stream.

sum-peaks: create an image (in HDF5 format) where a

single pixel is plotted for each of the peaks in a stream. This

image can then be used to adjust the detector geometry.

truncate-stream: extract a subset of chunks or crystals from a

stream with a specified start point and length.

Also not mentioned is the CrystFEL shared library, called

libcrystfel, which can be used to write separate programs in C

or C++ which make use of the CrystFEL data structures.

libcrystfel is not intended as a replacement for more complete

crystallography libraries such as cctbx (Grosse-Kunstleve et

al., 2002) or the CCP4 libraries (Winn et al., 2011), but rather

as a way of supporting access to high-level functions such as

the indexing system, for example when interfacing with online

data-analysis frameworks at light-source facilities.

As with all software, things change quickly as new features

are added. The CrystFEL website features a tutorial which is

kept up to date with the latest changes. The website also

features a list of changes between versions, which can be

consulted to quickly see where differences should be expected.

Finally, ‘release notes’ are published for each new version,

which contains details of the larger changes and new features.

Note added in proof: A new version of CrystFEL (0.8.0) was

released shortly before this article went to press. See the

CrystFEL website (https://www.desy.de/~twhite/crystfel) for

more details.

Acknowledgements

I thank Nadia Zatsepin, Anton Barty and Jose Luis Olmos Jr

for valuable feedback on the manuscript.

Funding information

I acknowledge financial support from the Helmholtz Asso-

ciation via Program Oriented Funding.

References

Allahgoli, A., Becker, J., Bianco, L., Delfs, A., Dinapoli, R.,
Goettlicher, P., Graafsma, H., Greiffenberg, D., Hirsemann, H.,
Jack, S., Klanner, R., Klyuev, A., Krueger, H., Lange, S., Marras, A.,
Mezza, D., Mozzanica, A., Rah, S., Xia, Q., Schmitt, B., Schwandt,
J., Sheviakov, I., Shi, X., Smoljanin, S., Trunk, U., Zhang, J. &
Zimmer, M. (2015). J. Instrum. 10, C01023.

Barty, A., Kirian, R. A., Maia, F. R. N. C., Hantke, M., Yoon, C. H.,
White, T. A. & Chapman, H. (2014). J. Appl. Cryst. 47, 1118–1131.

Bernstein, H. J., Sloan, J. M., Winter, G., Richter, T. S., NeXus
International Advisory Committee & Committee on the Main-

tenance of the CIF Standard (2014). Comput. Crystallogr. Newsl. 5,
12–18.

Beyerlein, K. R., White, T. A., Yefanov, O., Gati, C., Kazantsev, I. G.,
Nielsen, N. F.-G., Larsen, P. M., Chapman, H. N. & Schmidt, S.
(2017). J. Appl. Cryst. 50, 1075–1083.

Bonifacio, R., De Salvo, L., Pierini, P., Piovella, N. & Pellegrini, C.
(1994). Nucl. Instrum. Methods Phys. Res. A, 341, 181–185.

Brehm, W. & Diederichs, K. (2014). Acta Cryst. D70, 101–109.
Brewster, A. S., Hattne, J., Parkhurst, J. M., Waterman, D. G.,

Bernstein, H. J., Winter, G. & Sauter, N. K. (2014). Comput.
Crystallogr. Newsl. 5, 19–24.

Carini, G. A., Boutet, S., Chollet, M., Dragone, A., Haller, G., Hart,
P. A., Herrmann, S. C., Kenney, C. J., Koglin, J., Lemke, H. T.,
Messerschmidt, M., Nelson, S., Pines, J., Robert, A., Song, S.,
Thayer, J. B., Williams, G. J. & Zhu, D. (2013). 2013 IEEE Nuclear
Science Symposium and Medical Imaging Conference. Piscataway:
IEEE. https://doi.org/10.1109/NSSMIC.2013.6829694.

Chapman, H. N., Fromme, P., Barty, A., White, T. A., Kirian, R. A.,
Aquila, A., Hunter, M. S., Schulz, J., DePonte, D. P., Weierstall, U.,
Doak, R. B., Maia, F. R. N. C., Martin, A. V., Schlichting, I., Lomb,
L., Coppola, N., Shoeman, R. L., Epp, S. W., Hartmann, R., Rolles,
D., Rudenko, A., Foucar, L., Kimmel, N., Weidenspointner, G.,
Holl, P., Liang, M., Barthelmess, M., Caleman, C., Boutet, S.,
Bogan, M. J., Krzywinski, J., Bostedt, C., Bajt, S., Gumprecht, L.,
Rudek, B., Erk, B., Schmidt, C., Hömke, A., Reich, C., Pietschner,
D., Strüder, L., Hauser, G., Gorke, H., Ullrich, J., Herrmann, S.,
Schaller, G., Schopper, F., Soltau, H., Kühnel, K.-U., Messer-
schmidt, M., Bozek, J. D., Hau-Riege, S. P., Frank, M., Hampton,
C. Y., Sierra, R. G., Starodub, D., Williams, G. J., Hajdu, J.,
Timneanu, N., Seibert, M. M., Andreasson, J., Rocker, A., Jönsson,
O., Svenda, M., Stern, S., Nass, K., Andritschke, R., Schröter, C.-D.,
Krasniqi, F., Bott, M., Schmidt, K. E., Wang, X., Grotjohann, I.,
Holton, J. M., Barends, T. R. M., Neutze, R., Marchesini, S.,
Fromme, R., Schorb, S., Rupp, D., Adolph, M., Gorkhover, T.,
Andersson, I., Hirsemann, H., Potdevin, G., Graafsma, H., Nilsson,
B. & Spence, J. C. H. (2011). Nature (London), 470, 73–77.

Donatelli, J. & Sethian, J. A. (2014). Proc. Natl. Acad. Sci. USA, 111,
593–598.

Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.
Foucar, L. (2016). J. Appl. Cryst. 49, 1336–1346.
Gati, C., Bourenkov, G., Klinge, M., Rehders, D., Stellato, F.,

Oberthür, D., Yefanov, O., Sommer, B. P., Mogk, S., Duszenko,
M., Betzel, C., Schneider, T. R., Chapman, H. N. & Redecke, L.
(2014). IUCrJ, 1, 87–94.

Ginn, H. M., Brewster, A. S., Hattne, J., Evans, G., Wagner, A.,
Grimes, J. M., Sauter, N. K., Sutton, G. & Stuart, D. I. (2015). Acta
Cryst. D71, 1400–1410.

Ginn, H. M., Messerschmidt, M., Ji, X., Zhang, H., Axford, D., Gildea,
R. J., Winter, G., Brewster, A. S., Hattne, J., Wagner, A., Grimes,
J. M., Evans, G., Sauter, N. K., Sutton, G. & Stuart, D. I. (2015).
Nature Commun. 6, 6435.

Ginn, H. M., Roedig, P., Kuo, A., Evans, G., Sauter, N. K., Ernst, O. P.,
Meents, A., Mueller-Werkmeister, H., Miller, R. J. D. & Stuart, D. I.
(2016). Acta Cryst. D72, 956–965.

Ginn, H. M. & Stuart, D. I. (2017). J. Synchrotron Rad. 24, 1152–1162.
Grosse-Kunstleve, R. W., Sauter, N. K., Moriarty, N. W. & Adams,

P. D. (2002). J. Appl. Cryst. 35, 126–136.
Ince, D. C., Hatton, L. & Graham-Cumming, J. (2012). Nature

(London), 482, 485–488.
Kabsch, W. (1988). J. Appl. Cryst. 21, 916–924.
Kabsch, W. (2010). Acta Cryst. D66, 133–144.
Kameshima, T., Ono, S., Kudo, T., Ozaki, K., Kirihara, Y., Kobayashi,

K., Inubushi, Y., Yabashi, M., Horigome, T., Holland, A., Holland,
K., Burt, D., Murao, H. & Hatsui, T. (2014). Rev. Sci. Instrum. 85,
033110.

Karplus, P. A. & Diederichs, K. (2012). Science, 336, 1030–1033.
Karplus, P. A. & Diederichs, K. (2015). Curr. Opin. Struct. Biol. 34,

60–68.

research papers

232 White � Processing serial crystallography data with CrystFEL Acta Cryst. (2019). D75, 219–233

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB24

Könnecke, M., Akeroyd, F. A., Bernstein, H. J., Brewster, A. S.,
Campbell, S. I., Clausen, B., Cottrell, S., Hoffmann, J. U., Jemian,
P. R., Männicke, D., Osborn, R., Peterson, P. F., Richter, T., Suzuki,
J., Watts, B., Wintersberger, E. & Wuttke, J. (2015). J. Appl. Cryst.
48, 301–305.

Liu, H. & Spence, J. C. H. (2014). IUCrJ, 1, 393–401.
Liu, W., Wacker, D., Gati, C., Han, G. W., James, D., Wang, D., Nelson,

G., Weierstall, U., Katritch, V., Barty, A., Zatsepin, N. A., Li, D.,
Messerschmidt, M., Boutet, S., Williams, G. J., Koglin, J. E., Seibert,
M. M., Wang, C., Shah, S. T. A., Basu, S., Fromme, R., Kupitz, C.,
Rendek, K. N., Grotjohann, I., Fromme, P., Kirian, R. A., Beyerlein,
K. R., White, T. A., Chapman, H. N., Caffrey, M., Spence, J. C. H.,
Stevens, R. C. & Cherezov, V. (2013). Science, 342, 1521–
1524.

Mariani, V., Morgan, A., Yoon, C. H., Lane, T. J., White, T. A.,
O’Grady, C., Kuhn, M., Aplin, S., Koglin, J., Barty, A. & Chapman,
H. N. (2016). J. Appl. Cryst. 49, 1073–1080.

Nakane, T., Joti, Y., Tono, K., Yabashi, M., Nango, E., Iwata, S.,
Ishitani, R. & Nureki, O. (2016). J. Appl. Cryst. 49, 1035–1041.

Nass, K., Meinhart, A., Barends, T. R. M., Foucar, L., Gorel, A.,
Aquila, A., Botha, S., Doak, R. B., Koglin, J., Liang, M., Shoeman,
R. L., Williams, G., Boutet, S. & Schlichting, I. (2016). IUCrJ, 3,
180–191.

Philipp, H. T., Koerner, L. J., Hromalik, M. S., Tate, M. W. & Gruner,
S. M. (2010). IEEE Trans. Nucl. Sci. 57, 3795–3799.

Powell, H. R. (1999). Acta Cryst. D55, 1690–1695.
Rossmann, M. G., Leslie, A. G. W., Abdel-Meguid, S. S. & Tsukihara,

T. (1979). J. Appl. Cryst. 12, 570–581.
Shin, H., Kim, S. & Yoon, C. H. (2018). J. Korean Phys. Soc. 73, 16–20.
Stellato, F., Oberthür, D., Liang, M., Bean, R., Gati, C., Yefanov, O.,

Barty, A., Burkhardt, A., Fischer, P., Galli, L., Kirian, R. A., Meyer,
J., Panneerselvam, S., Yoon, C. H., Chervinskii, F., Speller, E.,

White, T. A., Betzel, C., Meents, A. & Chapman, H. N. (2014).
IUCrJ, 1, 204–212.

Thayer, J., Damiani, D., Ford, C., Gaponenko, I., Kroeger, W.,
O’Grady, C., Pines, J., Tookey, T., Weaver, M. & Perazzo, A. (2016).
J. Appl. Cryst. 49, 1363–1369.

White, T. A. (2014). Philos. Trans. R. Soc. Lond. B Biol. Sci. 369,
20130330.

White, T. A., Barty, A., Liu, W., Ishchenko, A., Zhang, H., Gati, C.,
Zatsepin, N. A., Basu, S., Oberthür, D., Metz, M., Beyerlein, K. R.,
Yoon, C. H., Yefanov, O. M., James, D., Wang, D., Messerschmidt,
M., Koglin, J. E., Boutet, S., Weierstall, U. & Cherezov, V. (2016).
Sci. Data, 3, 160057.

White, T. A., Barty, A., Stellato, F., Holton, J. M., Kirian, R. A.,
Zatsepin, N. A. & Chapman, H. N. (2013). Acta Cryst. D69, 1231–
1240.

White, T. A., Kirian, R. A., Martin, A. V., Aquila, A., Nass, K., Barty,
A. & Chapman, H. N. (2012). J. Appl. Cryst. 45, 335–341.

White, T. A., Mariani, V., Brehm, W., Yefanov, O., Barty, A.,
Beyerlein, K. R., Chervinskii, F., Galli, L., Gati, C., Nakane, T.,
Tolstikova, A., Yamashita, K., Yoon, C. H., Diederichs, K. &
Chapman, H. N. (2016). J. Appl. Cryst. 49, 680–689.

Winkler, F. K., Schutt, C. E. & Harrison, S. C. (1979). Acta Cryst. A35,
901–911.

Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P.,
Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G. W.,
McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S.,
Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A. & Wilson,
K. S. (2011). Acta Cryst. D67, 235–242.

Yefanov, O., Mariani, V., Gati, C., White, T. A., Chapman, H. N. &
Barty, A. (2015). Opt. Express, 23, 28459–28470.

Zaefferer, S. (2000). J. Appl. Cryst. 33, 10–25.
Zhou, L., Liu, P. & Dong, Y.-H. (2013). Chin. Phys. C, 37, 028101.

research papers

Acta Cryst. (2019). D75, 219–233 White � Processing serial crystallography data with CrystFEL 233

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5291&bbid=BB46

