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ABSTRACT

Antigenic variation in African trypanosomes is
induced by DNA double-strand breaks (DSBs). In
these protozoan parasites, DSB repair (DSBR) is
dominated by homologous recombination (HR) and
microhomology-mediated end joining (MMEJ), while
non-homologous end joining (NHEJ) has not been
reported. To facilitate the analysis of chromosomal
end-joining, we established a system whereby
inter-allelic repair by HR is lethal due to loss of an
essential gene. Analysis of intrachromosomal end
joining in individual DSBR survivors exclusively
revealed MMEJ-based deletions but no NHEJ.
A survey of microhomologies typically revealed se-
quences of between 5 and 20 bp in length with
several mismatches tolerated in longer stretches.
Mean deletions were of 54 bp on the side closest
to the break and 284 bp in total. Break proximity,
microhomology length and GC-content all favored
repair and the pattern of MMEJ described above
was similar at several different loci across the
genome. We also identified interchromosomal
gene conversion involving HR and MMEJ at different
ends of a duplicated sequence. While MMEJ-based
deletions were RAD51-independent, one-sided
MMEJ was RAD51 dependent. Thus, we describe
the features of MMEJ in Trypanosoma brucei,
which is analogous to micro single-strand anneal-
ing; and RAD51 dependent, one-sided MMEJ. We
discuss the contribution of MMEJ pathways to
genome evolution, subtelomere recombination and
antigenic variation.

INTRODUCTION

Homologous recombination (HR) and non-homologous
end joining (NHEJ) make the major contribution to
mitotic double-strand break-repair (DSBR) and the gen-
eration of genetic diversity in organisms ranging from

fungi to mammals (1). Important roles for
microhomology-mediated end joining (MMEJ) or other
forms of ‘alternative end-joining’ have recently emerged
in class switch recombination in B cells (2) and in cancer
development (3,4). However, since MMEJ is only revealed
when NHEJ is disrupted in these cells, the pathway
appears to serve only a ‘back-up’ function (5). In
contrast, MMEJ dominates end-joining reactions in tryp-
anosomes (6), divergent protozoan parasites of humans
and livestock that rely upon DSBR for effective antigenic
variation and immune evasion (7). This suggests that
MMEJ is a universally conserved pathway that is
obscured or even suppressed in organisms with the
capacity for NHEJ. The prominence of MMEJ in tryp-
anosomes presents a unique opportunity to study the
features of this pathway.

End-joining mechanisms are non-conservative, typically
resulting in sequence loss. NHEJ may sometimes exploit
just a few paired nucleotides and most commonly results
in loss of <10 bp on either side of the break (1). MMEJ is
distinct in that it allows imperfect, but directly repeated
sequence of 5–20 nt flanking the break to recombine fol-
lowing annealing of the complementary strands from each
repeated sequence (8). Single-strand annealing (SSA) is
another non-conservative DSBR mechanism that allows
more extensive directly repeated sequences to recombine
(9). The products of MMEJ and SSA contain only one
copy of the repeated sequence, with the deletion of se-
quences originally present between the two repeats.
Thus, by analogy to SSA, MMEJ is also known as
micro-SSA and this idea is supported by genetic analysis
(4,8,10,11). However, alternative end-joining, typically
defined genetically as KU70/80 or ligase 4 independent,
can differ substantially in different organisms (12); in
some cases, no or little microhomology is required, the
size of the deletions can vary substantially and insertions
are sometimes observed.

DSBR and DNA rearrangement are central to the
process of antigenic variation in African trypanosomes
(7), but the mechanisms underlying this process remain
only partially characterized. Switching of the variant
surface glycoprotein (VSG) coat depends upon

*To whom correspondence should be addressed. Tel: +44 20 7927 2352; Fax: +44 20 7636 8739; Email: david.horn@lshtm.ac.uk

1372–1380 Nucleic Acids Research, 2011, Vol. 39, No. 4 Published online 21 October 2010
doi:10.1093/nar/gkq981

� The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



monoallelic expression of a VSG gene at a telomere (13)
and a large reservoir of subtelomeric VSG templates, that
can be used to copy new VSGs into the active telomeric
expression site (ES). While key factors required for NHEJ
are absent or diverged in trypanosomatids (14),
RAD51-independent MMEJ with exogenous templates
has been described in Trypanosoma brucei (15) and these
reactions have also been shown to be KU-independent in
in vitro assays (14). However, little is known about
chromosomal MMEJ or how this might contribute to
VSG rearrangement. Here, we characterize the features
of chromosomal MMEJ in T. brucei. We describe robust
RAD51-independent, MMEJ-based deletions and also
RAD51 dependent, one-sided, MMEJ-based gene conver-
sion. Our findings suggest that these pathways have
contributed to the evolution of a compact genome and
to the switching of VSG gene expression, which typically
involves recombination among short, repetitive flanking
sequences.

MATERIALS AND METHODS

Trypanosoma brucei growth and manipulation

Lister 427, MITat1.2 (clone 221a), bloodstream form cells
were grown in HMI-11 and transformed as described
earlier (16). For limiting dilution cloning, cells were
distributed over 96-well plates and were analyzed only if
<40% of wells displayed cell growth after 5 days.
Tetracycline was from Sigma and was used at 1 mgml�1.

Plasmid construction

Plasmid constructs for expression of the tetracycline re-
pressor from the TUB locus (TetR-BLE), for tet-on ex-
pression of I-SceI with an N-terminal SV40 nuclear
ocalization signal from a rRNA spacer locus (I-SceI-
HYG) (17) and for integration of the RSP cassette at
the Tb11.02.2110 locus (6) were described previously.

To delete the 2110b allele an RsrII/XcmI fragment in
pARD-NEO (16) was replaced with an RsrII/EcoRI
fragment from pbRn5 (18) encompassing a portion of
the NPT gene and an aldolase polyA signal. This
pAN�HR construct was digested with SmaI/ApaI prior
to transfection and correct integration was confirmed by
PCR.

DNA analysis

For Southern blot analysis of DSBR, genomic DNA was
digested with HindIII and Bsp120I and processed accord-
ing to standard protocols. The 2110 probe was a 699 bp,
SacI fragment from pARD (16). A series of chromosome
11, RFP, PAC and TUB-specific primers were used to
amplify and sequence repair junctions, typically using
Taq polymerase in the presence of 1.5% DMSO. Direct
sequencing of PCR products was carried out according to
standard protocols.

RESULTS

MMEJ dominates repair in a chromosomal
end-joining assay

We previously used the I-SceI meganuclease to introduce
a single DSB on T. brucei chromosome 11a (6); the RsPa

strain used contains a tetracycline-inducible I-SceI gene
and a single I-SceI cleavage site adjacent to the
Tb11.02.2110 gene (Figure 1A). Using this strain, >50%
of cells survived I-SceI induction and repaired the break
and �85% of these survivors underwent allelic HR using
the 2110b-allele as a repair template. In addition, two al-
ternatives to allelic HR were revealed; among
26-independent repair events, three clones displayed
ectopic HR and two displayed MMEJ (6), an insufficient
number for any detailed analysis. To facilitate the isola-
tion of survivors that display end joining and to charac-
terize MMEJ in a chromosomal context, we devised an
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Figure 1. An experimental system to study end-joining. (A) The schematic maps illustrate the Tb11.02.2110 alleles in wild-type (WT), RsPa and R�
strains. The meganuclease cleavage site is embedded within a dsRed Fluorescent Protein (RFP)–Puromycin ACetyltransferase (PAC) fusion gene. B,
Bsp120I; H, HindIII; X, XcmI. (B). The R� strain was validated by Southern blotting with WT and RsPa controls. The R� and RsPa strains were
grown in the absence or presence of tetracycline (1 mgml�1) for 1 week. Genomic DNA was digested with Bsp120I and HindIII. Bands representing
the 2110 alleles are indicated to the right. In the RsPa strain, allelic HR regenerates the 6 kb allele while, in the R� strain, ectopic HR and end
joining generate allele a fragments at 7.9 and 5.2 kbp, respectively; see fragment sizes in (A) and (C). (C) The schematic maps illustrate the result of
ectopic HR and end joining expected to predominate in RsPa/�2110b survivors. The TUB sequences flanking the RsP cassette promote RsP
pre-mRNA trans-splicing and polyadenylation and also allow ectopic HR which replaces RsP with an aTUB gene copied from chromosome 1.
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experimental system to eliminate survivors that use the
major repair pathway of allelic HR. This was achieved
by replacing the 2110b-allele and other break-adjacent
homology with a NEO selectable marker (Figure 1A). In
the resulting RsPa/�2110b (R�) strains, allelic HR was
expected to cause loss of heterozygocity, loss of the
remaining 2110a allele and, because the encoded
N-terminal protein acetyltransferase is essential for
growth (16), cell death. Disruption of a single 2110 allele
had no detectable impact on the growth rate of the R�
strains (data not shown).
To validate these strains, we devised a Southern blot

analysis to distinguish between the 2110 alleles and the
three modes of repair seen previously. Genomic DNA
was extracted for Southern analysis prior to DSBR and
1 week after meganuclease induction and DSBR.
Consistent with previous findings, the control RsPa

strain displayed a modified 2110a allele prior to DSBR
and, after DSBR, survivors displayed dominant allelic
HR and reconstitution of the ‘wild-type’ allele a
(Figure 1A and B). In contrast and as expected, the R�
strain displayed a modified 2110a allele and no 2110b allele
prior to DSBR and, after DSBR, survivors displayed
DNA fragments consistent with ectopic HR and end
joining (Figure 1B and C), but no allelic HR. Thus,
allelic HR leads to cell death in the R� strain and a sub-
stantial proportion of survivors display repair via
end-joining. A second independent R� strain displayed
similar results (data not shown) so the first strain was
selected for more detailed analysis.
We employed clonogenic assays to determine the pro-

portion of R� cells that survive I-SceI-induced lesions
(Figure 2A). The RsPa strain served as a control for this
analysis and, consistent with previous findings, indicated
>50% survival. In contrast, and consistent with cell death
following allelic HR, the R� strain displayed <10%

survival (Figure 2A). To distinguish between different
repair pathways and to quantify the relative contribution
of each pathway in R� cells, we derived a panel of
survivor clones. This approach was favored over analysis
of mixed populations because DNA amplification is
required to access the sequence of end-joining junctions
(see below) and amplification of multiple, related DNA
fragments is prone to ‘template-switching’ artifacts and
amplification bias. In addition, the cloned-survivor
approach improves the chance of revealing repair junc-
tions in unanticipated locations since clones that initially
fail to reveal a junction can be specifically targeted for
further analysis.

We used limiting dilution under I-SceI-inducing condi-
tions to generate a panel of 107 survivor clones. In order
to survey repair mechanisms, we prepared genomic DNA
from the complete set of survivors. A series of primer
pairs, either within or flanking the RsP cassette, was
used to amplify repair junctions by PCR that were then
sequenced directly from amplified products. The process
was iterative, starting with primers closer to the break and
progressing to further distal sites until we amplified
products from every survivor; three yielded a pair of
‘repair fragments’ either due to repair in two cells placed
in the same well or in both replicated genomes from one
cell. Sequencing the set of 110 DNA fragments revealed 65
MMEJ-based deletions (Table 1), 41 cases of ectopic HR,
4 cases of MMEJ-based gene conversion (see below), and
no NHEJ (Figure 2B). Thus, end joining was exclusively
microhomology mediated in our assay.

Microhomology pairing and junction formation

Our survey yielded 65 MMEJ junction sequences, a data
set that provides sufficient information to describe the vari-
ous characteristics of chromosomal MMEJ in T. brucei.
Three sequences revealed MMEJ using a perfect 18-bp
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Figure 2. MMEJ is common in R� survivors. (A) As expected, the R� strain displays a reduced cloning efficiency after DSBR due to cell death
after allelic HR. Data derived from dilution cloning in 96-well plates: �Tet, n=4; +Tet, n=6. (B) R� survivors display ectopic HR, one-sided
MMEJ and MMEJ-based deletions as determined by DNA sequencing; n=110.
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microhomology created during strain assembly. These se-
quences (gCCAgtccttgtgTGGgt) contain the XcmI sites
(upper case characters) used in the assembly of the RsP
construct and are found 953- and 961 bp on either side of
the break (Figure 1A). This is the longest and most
break-distal microhomology we observed (Table 1 and
see below), indicating that at least two factors
co-operatively promote MMEJ-associated annealing,
length of microhomology and proximity to the break.

For the remaining 62 sequences, we plotted the fre-
quency of joining events that use microhomology blocks
within 50 bp intervals along a physical map of the RsP
cassette (Figure 3A). We also illustrate the frequency of
each microhomology pairing spanning the DSB
(Figure 3B). These data show a strong bias for selection of
microhomology closer to the DSB revealing mean dele-
tions of 54 bp on the side closest to the break and
284 bp in total. Deletions ranged from 6- to 561 bp on
one side and 81- to 948 bp in total (see Table 1 for full
details).

Since template availability, chromatin structure and
sequence context could impact the pattern of repair; we
next asked whether MMEJ-based repair is similar at dif-
ferent loci across the T. brucei genome. A PCR assay using
primers flanking the RsP cassette was used to amplify
repaired fragments from a large population of survivors
(>50 000). Using this assay, we examined the pattern of
repaired fragments in the current RsPa and R� strains and
at three other loci: within the tubulin gene array (TUB),
within an rDNA spacer (19) and within a subtelomeric
VSG expression site (PES). A similar banding pattern in
all cases (Figure 3C) suggested that MMEJ operates

similarly at multiple genomic loci, and the sequences of
eleven MMEJ junctions from PES survivors were consist-
ent with this interpretation (Supplementary Table S1). The
contribution of MMEJ to survival, where known for the
RSPa, R� and PES strains, was �5 (6), 59 (Figure 2B) and
23%, respectively, indicating that the PCR assay is quan-
titative. The fainter banding pattern obtained with the
rDNA and TUB samples therefore indicate that the
relative contribution of MMEJ to repair is reduced at
these tandem arrayed loci where multiple adjacent and
allelic copies likely facilitate HR-based mechanisms.
Analysis of microhomology-pairing in our survey-set

revealed 14 distinct classes (numbered MH1-14) with
MH1 and MH4 accounting for 70% of all events
(Table 1). Microhomologies are typically 5–20 bp in
length with several mismatches tolerated in longer
stretches (Figure 4A). Inspection of the junction sequences
revealed multiple possible outcomes from a single
microhomology pairing as exemplified by MH4 which
yields five different junctions (Figure 4A). Four other
classes revealed a mixture of two possible junctions
emerging from a single microhomology pairing (3X/x,
4X/xa, 4X/[xb] in Figure 4A and 4xa/xb in Table 1) pre-
sumably due to differential processing on each strand.
We next asked whether base composition influences

MMEJ. The RFP and PAC sequences contain 63 and
73% GC base pairs, respectively and the sum of paired
bases from all sequences depicted in Figure 4 is 724 (gray
boxes) so we expected 492 GC-pairs (68%) if there is no
bias. We observed 543 (75%) GC-pairs which indicates
that GC base pairs significantly (P< 0.0001) favor pro-
ductive annealing (Figure 4B); presumably due to

Table 1. MMEJ junctions in R� survivors

Microhomology
(MH) class

Junction
typea

Survivor(s) Sum
Survivors

RFP � PAC � Total �b

1 X 1, 13, 30, 33, 49, 54, 60, 66, 76, 83, 86, 87, 88, 91,
93, 96, 98, 103, 104, 106

20 52 20 81

2 X 72 1 165 19 192
3 X/x 68 1 6 224 240
4 X 3, 14c, 25, 28, 42, 81, 100, 107 8 231 47 291

xa 10, 17, 29, 31, 63, 64, 92 7 227 57 291
xb 43, 94, 97, 102 4 217 64 290
(xa) 58 1 215 71 290
(xb) 90 1 225 61 291
Mixed 8d (4xa/xb), 56 (4X/xa), 41 [4X/(xb)] 3 217–231 47–64 290–291

5 (x) 34 1 15 288 312
6 (x) 5 1 6 330 341
7 X 27 1 129 327 465
8 X 50 1 430 59 498
9 X 12, 53 2 8 504 523

(x) 45 1 7 511 522
10 x 20, 74, 78 3 58 454 522
11 X 7, 79 2 454 59 522
12 X 14c 1 235 355 598
13 X 48, 82 2 387 217 615
14 X 23 1 379 561 948
XcmI X 40, 44, 85 3 953 961 1914

aJunction types are defined in the legend to Figure 4.
bThe net loss of bp (�) includes 4 bp representing both single-stranded overhangs left after I-SceI cleavage.
cSurvivor 14 revealed two independent MMEJ events.
dThe sequence from survivor 8 is not shown in Figure 4 because the ‘mixed’ junction generates frame-shifted, overlapping traces.
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increased stability. Furthermore, we observed 423/504
(84%) GC-pairs if MH1 repair, favored due to break
proximity, was excluded from the analysis (Figure 4B).
These results indicate that GC-rich microhomologies and
long or break-proximal microhomologies act coopera-
tively to promote annealing and MMEJ.

One-sided MMEJ-based gene conversion

The junction sequences from four survivor clones dis-
played a gene conversion-based interchromosomal repair
mechanism. This resulted from allelic HR on one side of
the RsP cassette and MMEJ on the other, replacing RsP
with a segment from the NPT cassette on chromosome

0

5

10

15

20

25

RFP PAC

-500 -250 DSB +250 +500
Location of microhomology (bp)

N
um

be
r 

of
 jo

in
in

g 
ev

en
ts

0

5

10

15

20

25

N
um

be
r 

of
 jo

in
in

g 
ev

en
ts

A

B

MH1MH4

1000

1500

750

81 (MH1)
290-291 (MH4)

522-523 (MH9-11)

Deletion (bp)bp

RSPa RΔ TUB rDNA PES

Tet: - + - + - + - + - +
C

MH9

MH10

MH11
MH13

Figure 3. The distribution of microhomologies used for repair. (A) Frequency of microhomologies was mapped in 50-bp intervals on either side of
the DSB. (B) Frequency of paired microhomologies was mapped as in A. All microhomology (MH) classes represented by >1 junction are indicated;
see Table 1. (C) A PCR assay indicates a similar pattern of MMEJ at different loci across the genome. Products corresponding to frequent MH
pairings and size of deletion are indicated; see Table 1.

1376 Nucleic Acids Research, 2011, Vol. 39, No. 4



11b (Figure 5A). A second PCR amplification of frag-
ments spanning each gene conversion tract confirmed
the expected size in each case (Figure 5B) and sequencing
indicated that clones 4 and 71 used a related
microhomology, while clones 24 and 73 used the
same microhomology but generated different junctions
(Figure 5C).

MMEJ is typically RAD51-independent. To assess the
role of RAD51 in chromosomal MMEJ-based deletion
and gene conversion, we applied a PCR assay to popula-
tions of survivors from RsPa strains with wild-type RAD51
expression or with rad51 disrupted. An assay for
MMEJ-based deletions indicated robust activity in the
absence of RAD51 (Figure 6A, upper panel), and
sequencing of nine rad51 survivors revealed exclusively
MMEJ-based deletions (data not shown). In contrast,

one-sided MMEJ-based gene conversion was specifically
ablated in the rad51 null strain (Figure 6A, lower panel).
Sequencing confirmed that the major products detected
using this assay in wild-type RAD51 cells both represented
one-sided MMEJ (Figure 6B and C). Thus, one-sided
MMEJ-based gene conversion can use allelic or ectopic
homology on chromosome 1. The RAD51-requirement
suggests that gene conversion is initiated by HR within
tubulin sequence and resolved by MMEJ. We also
analyzed an RsPa survivor for which we previously failed
to identify a repair mechanism [see Figure 5B, lane 4 in
(6)] and this survivor was also found to have arisen
through one-sided ectopic MMEJ (Figure 6B and C, iii).
Segments copied from chromosome 1 in these
RAD51-dependent, one-sided MMEJ reactions ranged
from 28 to 1084 bp.
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DISCUSSION

In SSA, repeated sequences flanking a DSB are able to
anneal once single-stranded regions are exposed.
Resolution requires processing by digestion of the
single-stranded tails and gap filling (9). MMEJ is also
known as micro-SSA and our results provide insight
into the equivalent processing steps in T. brucei MMEJ.
For example, the MH4-type events we report indicate
removal of single-stranded tails at five alternative loca-
tions. In this case, cleavage or digestion of the
single-stranded tail is most common within a 9 or 3 bp
microhomology patch. Comparison with MH1-type
events, where processing is exclusively within the longer
microhomology patch, suggests that a nearby,
out-of-register 5 bp patch of microhomology (Figure 4A,
4xb) distorts the paired sequence and promotes processing
at different locations. In addition, four junction sequences
revealed a mixture of two possible outcomes (3X/x, 4X/xa,
4X/[xb] and 4xa/xb), which suggests staggered processing

of the single-stranded tails and the maintenance of mis-
matched base pairs until the next DNA replication cycle.

A DSB initiates a homology search which, if successful,
results in HR. This search for homology is typically suc-
cessful at diploid loci in T. brucei while non-conservative
MMEJ generates a deletion. Using our experimental
system, �5% of cells survive DSBR via MMEJ at a
single copy diploid locus and this is increased to �60%
in the R� strains where allelic HR is lethal. A bias
towards deletions associated with DSBR by end joining
in trypanosomatids may have made a major contribution
to genome evolution. Specifically, MMEJ-mediated dele-
tions, with a mean size of 284 bp in our assays, may be
responsible for the remarkably compact organization of
trypanosomatid genomes, which are comprised of �50%
protein-coding sequence. MMEJ may also be responsible
for many of the synteny gaps found in trypanosomatid
chromosomes which often reflect loss of redundant genes
in a lineage (20).

Interestingly, at a subtelomeric VSG expression site,
�25% of cells survive DSBR using MMEJ-based repair.
This increased contribution to DSBR when compared to
other loci could reflect reduced competition with allelic
HR or could equally be explained by another feature of
subtelomeric chromatin. To further explore the contribu-
tion of microhomology to DNA rearrangement at
subtelomeric loci, we examined the available VSG expres-
sion site sequences which are thought to reflect host–
parasite interactions (21). Remarkably, we identified
three examples of putative microhomology-based
deletion (Supplementary Figure S1). In two cases,
putative parental sequences were found at multiple
subtelomeres and, consistent with frequent recombination,
the putative derived sequences were also found at multiple
subtelomeres. Retention of the junction sequences
suggests that these deletions occurred relatively recently.
At only 12–18 bp though, the deleted segments are short
relative to those described above. We also noted that
larger deletions involving the loss of ESAGs could have
resulted from SSA mediated by flanking homology;
ESAG3 (pseudo)genes in the case of ESAG4/8 deletion
in BES12 and BES14 for example.

Approximately 30 copies of the tubulin sequence are
present in tandem on chromosome 1 and the presence of
tubulin gene segments flanking our reporter cassette
allowed for ectopic HR between chromosomes 1 and 11.
This revealed 41 (37%) such repair events when allelic HR
was eliminated and clearly demonstrates the capacity to
search genome wide for suitable homologous templates
for DSBR in T. brucei. In addition, a subset of these inter-
actions initiated one-sided MMEJ. These robust ectopic
recombination pathways may reflect mechanisms that are
important for subtelomeric interactions that underpin
VSG recombination and antigenic variation.

So what contribution does MMEJ make to antigenic
variation? A switch in VSG expression involves replace-
ment of the previously active VSG at the single active
telomeric ES (13) and this proceeds via RAD51 dependent
and independent mechanisms (22) that are not fully under-
stood. This is typically an interchromosomal gene conver-
sion process that relies upon imperfect homology within

4 TUB  GCTGTGTGCGTGTGTGTGTGTGTGTGTGAG
        GCTGTGTGCGTGTGTGTGTGTTGTTGTTGT 

ALD  AGTGTGTGTGTGTGTGTGTGTTGTTGTTGT 

71 TUB  GTGTGCGTGTGTGTGTGTGTGTGTGAGCCA
        GTGTGCGTGTGTGTGTGTGTGTGTGTTGTT

ALD  AAATAAGTGTGTGTGTGTGTGTGTGTTGTT 

2110 RFP:PAC

11b:

11a:

NPT

24 2110 AGCTCCGGAAAGGGGCGGCGACAGC 
        AGCTCCGGAAAGGGGCGGCGAACCA

ALD CACCCCGGAAATGGTCAGCGAACCA

73 2110 AGCTCCGGAAAGGGGCGGCGACAGC 
        AGCTCCGGAAATGGTCAGCGAACCA

ALD  CACCCCGGAAATGGTCAGCGAACCA 

M
w

t

w
t

2

1.5

kbp
4    24   71    73

clones

A DSB

B

4 / 7124 / 73

C

Figure 5. One-sided MMEJ-based gene conversion. (A) The schematic
map illustrates four allelic one-sided MMEJ events; the gray box indi-
cates HR and the lines indicate the locations of microhomologies, in
the aldolase (ALD) processing sequence (cross-hatched box) linked to
the NPT gene in this case. In clones 24 and 73, the terminal 21 codons
of the 2110 gene are replaced with 11 new codons and a stop codon;
presumably allowing the expression of a functional protein. (B) PCR
amplification of fragments spanning the gene conversion tract reveals a
product of the expected size in each case; wild-type (wt) cells serve as a
control. The locations of the primers are indicated in A (small arrows).
(C) The four one-sided allelic MMEJ junction sequences are shown;
other details as in Figure 4A.
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repetitive sequences upstream of VSG genes (7); ‘70 bp’
repeats that are widely distributed among subtelomeres.
Break-induced replication (BIR), typically a RAD51 de-
pendent process in Saccharomyces cerevisiae (23), has been
proposed as a mechanism of telomere conversion based
VSG switching (7). Recent work in T. brucei indicates
both RAD51-dependent and -independent BIR with sup-
pression of the RAD51-dependent pathway by TOPO3a
(24). Since we demonstrate RAD51 dependent and inde-
pendent pathways, MMEJ is an excellent candidate for
mediating 70 bp repeat recombination. Gene conversion
tracts involving BIR or two-sided recombination could
be initiated, terminated or both by MMEJ and this
could explain why antigenic variation is relatively insensi-
tive to regulation by mismatch repair (25,26). It is also
interesting to note in this respect that translocations
involved in class switch recombination in B cells (2), as
well as replication fork breakage-induced rearrangements
in human cells (27), may use a micro-BIR pathway.
MMEJ-based equivalents of the three major HR mechan-
isms, gene conversion, BIR and SSA, and one-sided gene
conversion are all possible and we describe the latter two,
micro-SSA and one-sided gene conversion, in a chromo-
somal context in T. brucei. Thus, the gene conversions we
describe could reflect important pathways of VSG re-
arrangement and antigenic variation. However, it will
be challenging to distinguish between the use of
microhomology or longer tracts of homology following
recombination among highly repetitive T. brucei
sequences.

MMEJ is considered a backup end-joining mechanism
in cells where NHEJ operates. Unusually in T. brucei,
MMEJ dominates end joining (6), but little is known

about this repair mechanism in trypanosomes. We de-
veloped strains to facilitate studies on chromosomal
MMEJ in T. brucei and show that proximity to the
break, number and proportion of matched bases and
GC-content all promote pairing and MMEJ-based dele-
tions. In addition, we show that one-sided MMEJ can
mediate interchromosomal gene conversion.
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