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Background: Hepatocellular carcinoma (HCC) is a lethal disease with high

relapse and dismal survival rates. Alternative splicing (AS) plays a crucial role in

tumor progression. Herein, we aim to integratedly analyze the relapse-

associated AS events and construct a signature predicting tumor relapse in

stage I–III HCC.

Methods:AS events of stage I–III HCCwith tumor relapse or long-term relapse-

free survival were profiled to identify the relapse-associated AS events. A

splicing network was set up to analyze the correlation between the relapse-

associated AS events and splicing factors. Cox regression analysis and receiver

operating characteristic curve were performed to develop and validate the

relapse-predictive AS signature. Single-sample gene set enrichment analysis

(ssGSEA) and the ESTIMATE algorithm were used to assess the immune

infiltration status of the HCC microenvironment between different risk

subgroups. Unsupervised cluster analysis was conducted to assess the

relationship between molecular subtypes and local immune status and

clinicopathological features.

Results: In total, 2441 ASs derived from 1634 mRNA were identified as relapse-

associated AS events. By analyzing the proteins involved in the relapse-

associated AS events, 1573 proteins with 11590 interactions were included in

the protein–protein interaction (PPI) network. In total, 16 splicing factors and

61 relapse-associated AS events with 85 interactions were involved in the

splicing network. The relevant genes involved in the PPI network and

splicing network were also analyzed by Gene Ontology enrichment analysis.

Finally, we established a robust 16-gene AS signature for predicting tumor

relapse in stage I–III HCC with considerable AUC values in all of the training

cohort, testing cohort, and entire cohort. The ssGSEA and ESTIMATE analyses

showed that the AS signature was significantly associated with the immune

status of theHCCmicroenvironment. Moreover, fourmolecular subgroupswith
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distinguishing tumor relapse modes and local immune status were also

revealed.

Conclusion: Our study built a novel 16-gene AS signature that robustly predicts

tumor relapse and indicates immune activity in stage I–III HCC, which may

facilitate the deepmining of themechanisms associated with tumor relapse and

tumor immunity and the development of novel individualized treatment targets

for HCC.
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Introduction

Liver cancer is the third leading cause of cancer-associated

deaths worldwide (Sung et al., 2021). Hepatocellular carcinoma

(HCC) is the most predominant type of liver cancer, accounting for

75–85% of cases (Singal et al., 2020). Surgical resection remains the

most effective therapy for HCC with curative potential, yet the high

frequency of tumor relapse (50–70% for 5 years after surgery)

hinders the improved survival (European Association for the

Study of the Liver Electronic address and European Association

for the Study of the Liver, 2018). Relevant data revealed that 70%

and more than 90% of the tumor relapse occurred within 2 and

5 years after surgery, respectively (Zheng et al., 2017). Tumor

relapse of HCC is always associated with poor therapeutic

response and survival due to aggressive pathological

characteristics. Hence, a thorough exploration of the

mechanisms underlying tumor relapse and discovery of robust

relapse predictive factors for HCC is urgently needed to further

improve the long-term prognosis of HCC patients.

Tumor progression is a complex process involving many

genetic alterations, which may result in activating oncogenes,

inactivating tumor suppressors, or enhancing tumor cells

invading normal organs/tissues. The alterations in the genetic

central dogma lead to aberrant expression of relevant

oncogenes or suppressor genes. Alternative splicing (AS) of

mRNA is a common event in the process of the genetic central

dogma, which occurs in more than 95% of human multi-exon

genes and results in encoding of different splicing and protein

isoforms (Nilsen and Graveley, 2010). In addition to that, the

translation of mRNA isomer can be downregulated by termination

codons originating from AS switches (Climente-Gonzalez et al.,

2017). Therefore, AS plays a critical role in the maintenance of

homeostasis for cells or organisms, and increasing evidence reveals

that dysregulation of AS is closely inclined to various diseases,

including tumor development, immune escape, and progression

(Urbanski et al., 2018; Zhang et al., 2021a). AS events are regulated

by splicing factors (SFs); changed expression or mutations of SFs

can lead to complete alterations of AS and may result in tumor-

specific splicing isoforms in human cancers (Salton et al., 2015;

Wang et al., 2019; Song et al., 2020). Thus, dissecting the tumor-

specific AS isoforms and the splicing network between ASs and SFs

could provide insights into the mechanisms of tumor development

and progression, which may offer prognostic tumor biomarkers

and potential therapeutic targets.

Several studies have profiled the tumor-specific AS events in

HCC and identified AS signatures that are associated with overall

survival in HCC (Zhu et al., 2019; Cai et al., 2020; Wu et al.,

2020). However, a comprehensive depiction of the relapse-

associated AS events and robust AS signatures predicting

tumor relapse in HCC remains lacking. Herein, we

integratedly analyze the genome-wide AS events from the

HCC cohort in The Cancer Genome Atlas (TCGA) database

and illustrate the relapse-associated AS events in stage I–III HCC.

More importantly, we built a novel 16-gene AS signature that

predicts tumor relapse and indicates immune activity in stage

I–III HCC with high performance, shedding light on the

individualized therapeutic targets for HCC.

Materials and Methods

Data extraction and pre-processing

Raw RNA sequence data of the liver hepatocellular carcinoma

(LIHC) cohort was extracted from the TCGA database (https://

portal.gdc.cancer.gov/) (Hutter and Zenklusen, 2018), and the

corresponding clinicopathological information including age, sex,

hepatitis virus infection status, tumor grade, tumor stage, relapse,

and survival status was downloaded from the University of

California Santa Cruz (UCSC) Xena platform (https://xena.ucsc.

edu/) (Goldman et al., 2020). The inclusion criteria for the present

study were as follows: (I) R0 resection was achieved in the surgical

procedure; (II) the histopathological diagnosis was HCC; (III) the

pathological TNM stage of HCC was stage I, stage II, or stage III;

(IV) HCC patients with complete clinicopathological and survival

information; (V) HCC patients with overall survival time over than

30 days; (VI) correspondingAS event data were available. According

to the inclusion criteria, we finally enrolled 277 HCC patients in this

study for further analysis. The mRNA AS profiles of HCC were

obtained from TCGA SpliceSeq (https://bioinformatics.

mdanderson.org/TCGA-SpliceSeq/) (Ryan et al., 2016). Seven

types of AS were illustrated in Figure 1A, namely, alternate
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acceptor site (AA), alternate donor site (AD), alternate promoter

(AP), alternate terminator (AT), exon skip (ES), mutually exclusive

exons (ME), and retained intron (RI). The percent-spliced-in (PSI)

value, ranging from 0 to 1, was a normalized method to evaluate the

AS events. In order to achieve credible data on AS events, the

percentage of clinical samples with PSI values greater than or equal

to 75% were included in the present study. Furthermore, relevant

splicing factor (SF) data were acquired from the SpliceAid-F

database (http://www.caspur.it/SpliceAidF) (Giulietti et al., 2013).

Identification of relapse-associated
alternative splicing events in stage I–III
hepatocellular carcinoma

The cohort of enrolled stage I–IIIHCCpatients was divided into

a relapse group and a long-term relapse-free survival (RFS)

group. The relapse group was defined as HCC patients who

suffered tumor recurrence or distant metastasis after R0 hepatic

resection, and the long-termRFS groupwas defined asHCCpatients

without tumor recurrence or distant metastasis after a minimum

follow-up time of 3 years after R0 hepatic resection. The propensity

score matching (PSM) method was conducted to achieve more

balanced groups by matching TNM stage and Path_T, which

showed a significant influence on tumor relapse. The relapse

group and long-term RFS group were matched as 2:1. The

Wilcoxon test was performed to identify relapse-associated AS

events, and p-values less than 0.05 were considered statistically

significant. The UpSet plot was used for illustrating the relapse-

associated AS events. Gene Ontology (GO) functional enrichment

analysis was performed using the R package clusterProfiler on the

relevant genes of the relapse-associated AS events to identify

significantly enriched biological processes (BP), cellular

components (CC), and molecular functions (MF).

Construction of protein–protein
interaction network and regulatory
splicing network

The related genes based on the relapse-associated AS events

were further analyzed by performing protein–protein interaction

(PPI) analysis on the online STRING Version 11.5 database

(www.string-db.org/) (Szklarczyk et al., 2019). MCODE and

Cytohubba in Cytoscape (version 3.8.2) were used for

clustering the PPI network and selecting hub proteins,

respectively. The correlation between the expression level of

SFs and the PSI level of the relapse-associated AS events was

assessed by Spearman’s test; p values less than 0.01 and the values

of correlation coefficient (cor) less than −0.55 or over 0.55 were

FIGURE 1
Overview of the relapse-associated AS event profiling in HCC. (A) Illustrations for the seven subtypes of AS events including AA, AD, AP, AT, ES,
ME, and RI. (B) UpSet plot delineating the overlaps of the seven subtype AS events and the relevant mRNA. One mRNA owns four splicing patterns at
the maximum. (C) Number of the seven subtype AS events and the involved genes. Abbreviations: AA, alternate acceptor site; AD, alternate donor
site; AP, alternate promoter; AT, alternate terminator; ES, exon skip; ME, mutually exclusive exons; RI, retained intron.
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considered statistically significant. Finally, the results of the PPI

network and the regulatory splicing network were visualized by

Cytoscape (version 3.8.2).

Survival analysis and alternative splicing
signature identification for predicting
tumor relapse in stage I–III hepatocellular
carcinoma

The enrolled stage I–III HCC patients were randomly divided

into the training cohort and testing cohort with a ratio of 7:3. The

training cohort was used to build the relapse predictive AS

signature, while the testing cohort and entire cohort were

used to validate the accuracy. Then, a univariate Cox

regression analysis was performed to explore the effects of the

identified relapse-associated AS events on RFS in stage I–III

HCC, and p values less than 0.05 were considered statistically

significant. The data of those AS events were visualized as

volcano plot, UpSet plot, and bubble plot. To enhance the

robustness of the signature, only AS events with p values less

than 0.0005 in the univariate Cox regression model were

included for further screening by LASSO Cox regression

analysis (Liu et al., 2021a; Zhang et al., 2021b). Finally,

multivariate Cox regression analysis was conducted, and AS

events with p values less than 0.05 were selected to establish

the relapse predictive signature. The predictive accuracy of the

final signature was evaluated by risk score analysis, RFS survival

analysis, and receiver operating characteristic (ROC) curve.

Subgroup analysis was also conducted to further investigate

the prognostic significance of the signature via stratifying the

entire cohort into different subgroups based on age, gender, T

stage, and TNM stage. The cutoff point of the low-risk and high-

risk score group was identified using the R package survminer.

The univariate, LASSO, and multivariate Cox regression analyses

were conducted using R language (version 4.0.3).

Functional enrichment analysis and
immune activity analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) functional

enrichment analysis was performed using the R package

clusterProfiler to identify the biological functions and pathways

associated with the relapse predictive AS signature. Single-sample

gene set enrichment analysis (ssGSEA) was conducted to analyze the

local immune infiltration levels of immune cell types, immune-

related functions, and pathways in HCC using the R package GSVA

(Liu et al., 2021b; Wang et al., 2022). Moreover, the ESTIMATE

algorithm was applied using the R package ESTIMATE to evaluate

the infiltration degrees of immune and stromal cells within the HCC

microenvironment, which further validated the effectuality of

ssGSEA analysis.

Identification and analysis of molecular
subtype clusters

Considering AS events varied much differently at the

personal level, unsupervised consensus clustering was

performed by the R package ConsensusClusterPlus to

achieve a more robust classification based on the AS events

involved in the relapse predictive signature. Elbow and Gap

analysis was conducted to identify the optional number of

clusters, and the consensus molecular subtype was classified

using the R package CMScaller. The correlation between

molecular subtypes and RFS was illustrated as the

Kaplan–Meier plot, and the correlations between molecular

subtypes and local immune infiltration status and

clinicopathological features were illustrated as a heatmap.

Results

Identification of relapse-associated
alternative splicing events in stage I–III
hepatocellular carcinoma

277 patients with stage I–III HCC from the TCGA-LIHC

cohort were enrolled in the present study; 131 cases and

39 cases of which were sorted as the relapse group and long-

term RFS group, respectively. PSM analysis was conducted to

achieve more balanced groups by matching TNM stage and

Path_T, which showed a significant influence on tumor relapse.

The summary clinicopathological features of the two groups

before and after PSM are listed in Table 1. Seven types of AS,

namely, AA, AD, AP, AT, ES, ME, and RI are presented in

Figure 1A. To identify the AS events associated with HCC

relapse, we compared the PSI values of the HCC patients in the

two groups. Then, we identified 2,441 significantly differently

expressed AS events derived from 1,634 mRNA, containing

875 ES from 722 mRNA, 555 AT from 312 mRNA, 522 AP from

303 mRNA, 196 AD from 190 mRNA, 173 AA from 166mRNA,

111 RI from 106 mRNA, and nine ME from nine mRNA

(Figure 1C). The most frequent AS type was ES which

accounted for more than half of the total relapse-associated

AS events, while ME was the least common AS type. The

overview of these AS events was depicted in the UpSet plot,

which also presented the overlapping of the relapse-associated

AS events and relevant mRNA in detail (Figure 1B). As

illustrated in the UpSet plot, diverse types of AS events

might be derived from one mRNA, and one single mRNA

could possess four splicing patterns at the maximum. To

investigate the potential function of the relapse-associated

AS events, the relevant genes of which underwent GO

enrichment analysis were analyzed. Representative significant

enriched terms (p < 0.05) in the three GO categories (BP, CC,

and MF) are shown in Supplementary Figure S1.

Frontiers in Pharmacology frontiersin.org04

Chen et al. 10.3389/fphar.2022.939912

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.939912


Construction of protein–protein
interaction network and regulatory
splicing network

The PPI network was constructed based on the relevant

proteins of the relapse-associated AS events, totally including

1573 proteins with 11590 interactions (Supplementary Table S1).

Meanwhile, 34 clusters were identified, and the individual score

of those clusters ranged from 2.500 to 31.937. Figures 2A–C in

detail depicted the top three clusters, which scored 31.937,

18.222, and 10.367. In the cluster owning the highest score,

64 proteins with 1006 interactions were included (Figure 2A); in

the cluster ranking second, 55 proteins with 492 interactions

were included (Figure 2B); in the following cluster, 61 proteins

with 311 interactions were included (Figure 2C). Among the

proteins included in the cluster with the highest score, ten

proteins (AKT1, ALB, HNRNPA1, VEGFA, SRSF1, RHOA,

RPS3, MDM2, CUL1, and PTBP1) were identified as hub

TABLE 1 Clinicopathological characteristics of HCC patients in relapse and long-term RFS groups before and after PSM.

Clinicopathological index Before PSM After PSM

Relapse Long-term RFS P Relapse Long-term RFS P

(n = 131) (n = 39) (n = 78) (n = 39)

Age (year) <60 65 21 0.779 42 21 1.000

≥60 66 18 36 18

Sex Female 40 16 0.303 28 16 0.736

Male 91 23 50 23

Alcohol consumption No 83 29 0.420 51 29 0.627

Yes 40 9 23 9

NA 8 1 4 1

Viral hepatitis Negative 69 27 0.316 48 27 0.774

HBV 23 5 15 5

HCV 4 1 4 1

HBV + HCV 35 6 11 6

Liver cirrhosis No 54 20 0.197 39 20 0.871

Yes 35 6 15 6

NA 42 13 24 13

Vascular invasion No 66 26 0.224 47 26 0.812

Yes 40 9 20 9

NA 25 4 11 4

Tumor grade G1 14 7 0.508 12 7 0.897

G2 59 17 39 17

G3 53 13 24 13

G4 4 2 3 2

NA 1 0 0 0

TNM stage I 53 27 0.005 47 27 0.625

II 35 7 17 7

III 43 5 14 5

Path_T T1 54 27 0.020 47 27 0.718

T2 35 7 17 7

T3 38 5 14 5

T4 4 0 0 0

Path_N N0 102 32 0.786 62 32 0.810

N1 2 0 0 0

NX 27 7 16 7

Path_M M0 105 33 0.695 64 33 0.931

MX 26 6 14 6
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proteins, in which, AKT1 and ALB obtained the top place

followed by HNRNPA1, VEGFA, and SRSF1, while

PTBP1 was the tail ender (Figure 2D).

A regulatory splicing network was constructed by analyzing

the correlation of the expression level of the SFs and the PSI level

of the relapse-associated AS events with a strict standard. In total,

16 SFs were significantly related to 60 relapse-associated AS

events by forming 85 interactions (including 36 positive and

49 negative regulation) in the splicing network. Moreover,

27 relapse-associated AS events were significantly upregulated

and the others were significantly downregulated in the relapse

group, as compared with the long-term RFS group. ARAF-

88922-AT, ARAF-88921-AT, FMO5-7368-AT, MRPS24-

79351-AT, and MRPS24-79350-AT were considered the hub

relapse-associated AS events in the splicing network.

Meanwhile, PCBP1, RBM25, QKI, TIA1, and RBFOX2 were

FIGURE 2
PPI networks of the relevant proteins of the relapse-associated AS events. (A) PPI network of the cluster with the highest score. (B) PPI network
of the cluster ranking second. (C) PPI network of the cluster ranking third. (D) Network of the top ten hub proteins in the cluster owning the highest
score. The color of the nodes represents the rank of hub proteins ordered as follows: red, orange, and yellow.
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identified as the core SFs, which owned the most interaction with

the relapse-associated AS events, implying their dominant

position in determining the relapse-associated AS events in

stage I–III HCC (Figure 3A; Supplementary Table S2).

Subsequently, the relevant genes involved in the regulatory

splicing network underwent GO enrichment analysis.

Representative significant enriched terms (p < 0.05) in the

three GO categories (BP, CC, and MF) are shown in Figure 3B.

Survival analysis and relapse predictive
alternative splicing signature construction

Univariate Cox regression analysis was further performed to

explore the prognostic value of the relapse-associated AS events

mentioned earlier. A total of 496 AS events derived from

377 mRNA were detected to be prognostically significant (p <
0.05). The statistically significant AS events (Z-score < −2 or > 2,

p < 0.05) are shown in the Volcano plot and Upset plot (Figures

4A,B). The Upset plot also showed the overlapping of the

statistically significant AS events and relevant mRNA in detail

(Figure 4B). ME was the only AS type that was not involved in the

statistically significant AS events, and ES was still the most

frequent AS type. A bubble plot was further performed to

depict the representative top 20 AS events in each AS type

(Figure 4C). SETMAR-62996-AA, SERBP1-3355-AA, and

COMT-61102-AA in AS type of AA; TAF6-80899-AD,

C6orf1-75778-AD and RPS16-49830-AD in AS type of AD;

TJP2-86533-AP, SERPIND1-61191-AP, and SERPIND1-

61190-AP in AS type of AP; SUFU-12963-AT, AP1S2-88571-

AT, and AP1S2-88569-AT in AS type of AT; FAM98C.49642.ES,

COMMD4-31852-ES, and PRDX5-16639-ES in AS type of ES;

SYNGR2-43774-RI, CLU.83171.RI, and RNASEH2C.16916.RI in

the AS type of RI were the top three AS events in each AS type.

Subsequently, the AS events with p values less than 0.0005 in the

univariate Cox regression were further screened by LASSO Cox

regression analysis. The results of cross-validation for tuning

parameter selection and LASSO coefficient profiles of the AS

events are shown in Figures 5A,B. Through minimum criteria,

66 AS events with non-zero coefficients at lambda.min were

filtered by the LASSO Cox regression analysis.

Finally, those 66 AS events were analyzed by multivariate

Cox regression analysis. AS events with p values less than

0.05 were selected to establish the relapse predictive signature,

and 16 AS events were included (Table 2). Kaplan–Meier survival

analysis revealed that all the 16 AS events were significantly

associated with the RFS of HCC patients; high expression of

ACOT9-88691-AT, ACYP2-53567-AT, AP1S2-88569-AT,

ATP8B3-46543-AT, COMT-61102-AA, EPS15L1-48154-AT,

FAM3A-90630-AA, PLCH2-272-AT, RNASEH2C-16916-RI,

SCN11A-64113-AT, SH2D4A-82872-ES, and SMS-88682-ES

was correlated with poor RFS in HCC, whereas low

expression of ACBD4-41944-ES, ANXA1-86607-AP,

LETMD1-21743-ES, and OGFOD3-44325-AD was correlated

with poor RFS in HCC (Figure 5C). Based on the 16-gene AS

signature, the following formula was developed to calculate the

FIGURE 3
Regulatory splicing network and functional enrichment analysis of the SFs and relapse-associated AS events. (A) Regulatory splicing network of
the SFs and relapse-associated AS events. Diamond nodes represent SF, and the circle nodes represent AS events. The AS events represented by red
nodes and blue nodes were upregulated and downregulated, respectively, by comparison of the relapse group to the long-term RFS group. The red
and blue lines showed positive and negative correlations between SFs and AS events, respectively. (B) Functional enrichment analysis of the
relevant genes involved in the regulatory splicing network. The top ten significant enriched terms in the three GO categories (BP, CC, and MF) were
shown. Abbreviations: BP, biological processes; CC, cellular components; GO, Gene Ontology; MF, molecular functions.
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FIGURE 4
Overview of the relapse-associated AS events from initial screening by univariate Cox regression analysis. (A) Volcano plot showing the
statistically significant relapse-associated AS events, which was presented by red. (B)UpSet plot delineating the overlaps of the statistically significant
relapse-associated AS events and the relevant mRNA. One mRNA owns two splicing patterns at the maximum. (C) Bubble plots delineating the
distribution of each type of statistically significant relapse-associated AS events after univariate Cox regression analysis. Representative top
20 AS events in AA, AD, AP, AT, ES, and RI were shown.
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FIGURE 5
Selection of the optimal relapse-associated AS events for constructing the relapse predictive signature. (A) Cross-validation for tuning
parameter selection in the LASSO Cox regression. The optimal value determined by minimum criteria is marked by a dotted vertical line. (B) LASSO
coefficient profiles of the candidate relapse-associated AS events in the LASSO Cox regression. The optimal value determined byminimum criteria is
marked by a dotted vertical line. (C) Kaplan–Meier survival analysis of the individual AS events involved in the relapse predictive signature.
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risk score of tumor relapse: risk score = (−9.15 × PSI value of

ACBD4-41944-ES) + (6.14 × PSI value of ACOT9-88691-AT) +

(12.70 × PSI value of ACYP2-53567-AT) + (−41.19 × PSI value of

ANXA1-86607-AP) + (3.01 × PSI value of AP1S2-88569-AT) +

(2.65 × PSI value of ATP8B3-46543-AT) + (20.94 × PSI value of

COMT-61102-AA) + (2.98 × PSI value of EPS15L1-48154-AT) +

(4.98 × PSI value of FAM3A-90630-AA) + (−1.48 × PSI value of

LETMD1-21743-ES) + (−6.67 × PSI value of OGFOD3-44325-

AD) + (1.65 × PSI value of PLCH2-272-AT) + (3.77 × PSI value

of RNASEH2C-16916-RI) + (9.59 × PSI value of SCN11A-

64113-AT) + (8.13 × PSI value of SH2D4A-82872-ES) +

(−80.63 × PSI value of SMS-88682-ES).

The cutoff point of the risk score was determined using the

R package survminer. According to the cutoff point, the three

cohorts of the stage I–III HCC patients (the training cohort,

testing cohort, and entire cohort) were divided into the low-

risk group and high-risk group, respectively. Risk score and

RFS survival analysis suggested that the relapse predictive

signature has great efficiency in distinguishing the low-risk

and high-risk groups in all three cohorts (Figures 6A–C). To

further assess the performance of the relapse predictive

signature, the ROC curve was plotted at different time

points after surgery. The AUC values of different ROC

curves at 1, 2, 3, and 5 year after surgery were considerable

and stable in all three cohorts, which displayed good relapse

predictive performance (Figures 6A–C). The relationship

between the risk score and the clinicopathological features

in the entire cohort was illustrated as a heatmap, and

significant correlations were identified between the risk

score and tumor relapse, tumor stage, and T classification

(Figure 6D). Furthermore, univariate and multivariate Cox

regression analysis was performed to assess the significance of

the clinicopathological characteristics and risk score. The

results showed that the risk score was an independent

predictor of tumor relapse in HCC patients (Supplementary

Figure S2).

To further investigate the prognostic significance of the

relapse predictive signature in HCC, subgroup analysis was

conducted via stratifying the entire cohort into different

subgroups according to age (< 60 and ≥ 60), gender (male

and female), T stage (T1 + T2 and T3 + T4), and TNM stage

(stage I + stage II and stage III). The results of Kaplan–Meier

survival analysis and ROC curve analysis showed that the

relapse predictive signature was stable and had a great

performance in different subgroups (Figures 7A–D).

Functional enrichment analysis and
immune activity analysis based on the
risk mode

Due to the different tumor relapse patterns of HCC

patients in the low-risk group and high-risk group,

differentially expressed genes between the two risk

subgroups were explored and subjected to KEGG functional

enrichment analysis. The KEGG pathway analysis revealed

that several immune-related pathways were significantly

enriched, such as graft-versus-host disease, intestinal

immune network for IgA production, primary

immunodeficiency, allograft rejection, antigen processing

TABLE 2 Information of ASs included in the signature.

Gene As id Splice type Exon From exon To exon

ACBD4 41944 ES 10 9.2 12

ACOT9 88691 AT 13.2 NA NA

ACYP2 53567 AT 3 NA NA

ANXA1 86607 AP 1 NA NA

AP1S2 88569 AT 5.2 NA NA

ATP8B3 46543 AT 14.2 NA NA

COMT 61102 AA 6.1 4 6.2

EPS15L1 48154 AT 23.2 NA NA

FAM3A 90630 AA 7.1 6 7.2

LETMD1 21743 ES 3.3:4:5:6 3.2 7

OGFOD3 44325 AD 2.2 2.1 3

PLCH2 272 AT 23.2 NA NA

RNASEH2C 16916 RI 1.2 1.1 1.3

SCN11A 64113 AT 26 NA NA

SH2D4A 82872 ES 3 1 4

SMS 88682 ES 3 2 4

Abbreviations: NA, not available.
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FIGURE 6
Assessment of the efficacy of the signature in predicting tumor relapse in HCC. (A) Efficacy of the relapse predictive signature in the training
cohort. (B) Efficacy of the relapse predictive signature in the testing cohort. (C) Efficacy of the relapse predictive signature in the entire cohort. The
upper panel depicted the risk score analysis, the middle panel depicted the Kaplan–Meier survival analysis, and the lower panel depicted the ROC
curve analysis. (D) Heatmap of the relationship between the risk score and the clinicopathological features in the entire cohort. **p < 0.01 and
***p < 0.001.
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and presentation, B-cell receptor signaling pathway, viral

protein interaction with cytokine and cytokine receptor,

cell adhesion molecules, and human T-cell leukemia virus

1 infection (Figure 8A).

Driven by the results of KEGG pathway analysis, we

further investigated the local immune characteristics of the

two risk subgroups using ssGSEA analysis, and the

enrichment scores of ssGSEA for 16 immune cells and

13 immune-related functions or pathways between the two

risk subgroups were compared. The low-risk group showed

higher local infiltration fractions of several immune cell types,

including CD8+ T cells, dendritic cells (DCs), macrophages,

neutrophils, plasmacytoid DCs (pDCs), T helper (Th) cells,

and tumor-infiltrating lymphocytes (TILs) (Figure 8B).

Similarly, the local immune functions of chemokine

receptors (CCR), check point, cytolytic activity, human

lymphocyte histocompatibility antigen (HLA),

inflammation-promoting, parainflammation, T cell co-

stimulation, type I interferon (IFN) response, type II IFN

response were also more activated in the low-risk group

(Figure 8C). Moreover, the ESTIMATE algorithm was

applied to evaluate the infiltration degrees of immune and

stromal cells within the tumor microenvironment. The results

revealed that the low-risk group exhibited significantly higher

ESTIMATE score, immune score, and stromal score, which

further confirmed the ssGSEA results (Figure 8D).

Conclusively, those findings suggested that the local

immune activity within the HCC microenvironment, which

may benefit the antitumor effects, is more activated in the low-

risk group.

FIGURE 7
Assessment of the efficacy of the signature in diverse subgroups with different clinicopathological features. (A) Age (< 60 and ≥ 60). (B)Gender
(male and female). (C) T stage (T1 + T2 and T3 + T4). (D) TNM stage (stage I + stage II and stage III). The upper panel depicted the Kaplan–Meier
survival analysis, and the lower panel depicted the ROC curve analysis.
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FIGURE 8
Functional enrichment analysis and immune activity analysis based on the risk mode. (A) KEGG functional enrichment analysis of the
differentially expressed genes between the two risk subgroups. (B) Infiltration fractions of 16 immune cell types in the two risk subgroups. (C)
Comparisons of 13 immune-related functions in the two risk subgroups. (D) Heatmap of the relationship between the risk score and the infiltration
degrees of immune and stromal cells within the tumor microenvironment. *p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 9
Identification of relapse-associated AS clusters related to clinical outcomes and molecular subtypes. (A) Elbow analysis for identifying the
optimal number of clusters. (B) Gap analysis for identifying the optimal number of clusters. (C) Consensus clustering matrix depicting the four
clusters of the patients. (D) Kaplan–Meier survival analysis of the four clusters of HCC patients. (E) Heatmap of the relationship of the four molecular
subtype clusters and the local immune infiltration status, clinicopathological characteristics. *p < 0.05, **p < 0.01, and ***p < 0.001.
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Molecular subtype clusters associated
with tumor relapse and local immune
status

Unsupervised consensus clustering was further conducted

for all the stage I–III HCC patients, based on the AS events

involved in the relapse predictive signature. Elbow and Gap

analysis showed that the optimal number of clusters was four

groups (Figures 9A,B). Then, the four clusters were defined by

the distribution of the consensus value of each sample, which was

classified as follows: cluster 1 (n = 89, 32.1%), cluster 2 (n = 44,

15.9%), cluster 3 (n = 71, 25.6%), and cluster 4 (n = 73, 26.4%)

(Figure 9C). The Kaplan–Meier curve was plotted to evaluate the

association between clustering and RFS. The results revealed that

different molecular subtype clusters were related with diverse

RFS patterns as shown in Figure 9D. Cluster 2 had the best RFS of

the four clusters followed by cluster 3, while cluster 1 and cluster

4 showed relatively poor outcomes in the RFS analysis. Finally,

the association of the four molecular subtype clusters and the

local immune infiltration status and clinicopathological features

was illustrated as a heatmap, and significant correlations were

identified between the molecular subtype cluster and tumor

relapse, ESTIMATE score, and immune score (Figure 9E).

Collectively, these data clearly indicated that the molecular

subtype clustering based on the relapse predictive signature

has a good performance in distinguishing the different relapse

patterns and local immune infiltration status between diverse

clusters.

Discussion

Despite the great progress in surveillance and therapeutic

strategies improving overall survival, the clinical outcomes of

HCC remain dismal due to high frequency of tumor relapse, even

after curative surgery (Bosch et al., 2004; Rahbari et al., 2011).

With HCC relapse, the therapeutic options are limited and the

treatment response is usually poor due to the aggressive

pathological characteristics, which certainly leads to poor

prognosis. Early precise warning and detection of HCC with a

high risk of tumor relapse may be the optimal maneuver to settle

this issue. Until now, the TNM staging system of the American

Joint Committee on Cancer (AJCC), together with other

prognostic staging systems (BCLC, CLIP, and JIS classification

of HCC), is most commonly used to assess the prognosis of HCC

(Pons et al., 2005; Amin et al., 2017). However, these prognostic

staging systems are mostly focused on clinical features but ignore

the genetic and epigenetic dysregulations in the process of HCC

development and progression, which always makes them not

sufficient for efficiently predicting tumor relapse or prognosis of

HCC. Development of robust signatures based on the molecular

biological process in HCC to predict tumor relapse would be

probable to supplement the current prognostic staging systems

and guide the therapeutic strategies after surgery, further

improving the prognosis of HCC patients. AS is an important

biological process and has been demonstrated to play a critical

role in the genetic central dogma (Nilsen and Graveley, 2010;

Kozlovski et al., 2017). Dysregulation of AS is closely inclined to

tumor development, immune escape, drug resistance, and

progression (Sciarrillo et al., 2020; Zhang et al., 2021a; Su and

Huang, 2021). However, there is little literature dissecting the

mechanism of AS in tumor relapse of HCC, and a comprehensive

depiction of the relapse-associated AS events and robust AS

signatures predicting tumor relapse in HCC remains lacking.

In the present study, we focused on stage I–III HCC

received curative resection and comprehensively analyzed the

relapse-associated AS events in these cases. In total, 2441 ASs

derived from 1634 mRNA were identified as relapse-associated

AS events. ES was determined as the most common AS event

among the seven AS subtypes, implying its critical role in the

tumor relapse of HCC. In the PPI network based on the relevant

proteins of these AS events, 34 clusters including 1573 proteins

with 11590 interactions were identified. The complicacy of the

PPI network suggested that the tumor relapse of HCC is not

driven by one or two AS events but by an integrated network.

We further surveyed the ten hub proteins in the cluster with the

highest score and found most of the hub proteins has been

demonstrated to figure prominently in the development and

progression of various tumor types. The top one hub protein

AKT1, as one isoform of protein kinase B (PKB or AKT), has

been reported to be involved in many tumor growth-related

biology processes such as cell proliferation, apoptosis, growth,

metabolism, and tumor angiogenesis and inflammatory cell

infiltration by regulating mTOR, GSK3, BAD, p27KIP1, FoxO,

and MDM2 signaling (Somanath et al., 2009; Hers et al., 2011;

Fruman and Rommel, 2014; Mundi et al., 2016). Other two

high-ranking hub proteins (HNRNPA1 and VEGFA) were also

proved to play a vital role in tumor cell biology. HNRNPA1 has

been reported overexpressed in many malignancies such as lung

cancer, myeloma, leukemia, and Burkitt lymphoma (Roy et al.,

2017). It accelerates cell cycle progression and aerobic glycolysis

by activating telomerase to promote tumor growth, controls the

anti-apoptotic signaling to enhance tumor maintenance and

drug resistance, and advances the metastatic dissemination of

cancer cells, all of which make HNRNPA1 promote various

stages of cancer progression (Ting et al., 2009; Ko et al., 2014;

Yu et al., 2015). VEGFA signaling played a crucial role in the

progression of angiogenesis-related diseases, particularly in

cancers; agents blocking VEGFA have been reported that

could effectively inhibit tumor growth and metastatic spread

(Claesson-Welsh and Welsh, 2013). The middle-ranking hub

protein RHOA was well known as a signal mediator associated

with multiple biological events such as cell polarity, cell

morphology phenotypes, and migration, all of which are

essential for progression of diverse malignancies (Nam et al.,

2019). Another middle-ranking hub protein, RPS3, has been
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demonstrated to facilitate hepatocarcinogenesis through

posttranscriptionally regulating SIRT1 (Zhao et al., 2019a).

Moreover, hub protein MDM2, as E3 ubiquitin ligase,

modulated tumor development and progression by forming

an autoregulatory feedback loop with p53, which resulted in

increased ubiquitin-mediated degradation of p53 (Konopleva

et al., 2020). Other hub proteins SRSF1 and PTBP1 were

considered splicing factors involved in cell proliferation, cell

cycle progression, apoptosis, invasion, and migration,

dysregulated expression of which has been validated to be

associated with tumorigenesis and diminished immune

response (Paz et al., 2021; Taniguchi et al., 2021). These

previous research studies also validated the accuracy and

convincement of our investigation. Similarly, in the

regulatory splicing network, many AS events and SFs were

associated with tumor cell biology. PCBP1, with the most

interaction with the relapse-associated AS events in the core

SFs, was identified as an intracellular immune checkpoint for

maintaining the functions of effector T cells in tumor immunity

and has been reported to inhibit HCC cell invasion by

regulating the alternative splicing of CD44 (Zhang et al.,

2010; Ansa-Addo et al., 2020). RBM25 acts as a tumor

suppressor and regulator of MYC activity by controlling the

splicing of the MYC inhibitor BIN1 (Ge et al., 2019). TIA1 and

RBFOX2 were reportedly associated with tumor relapse or

metastasis in malignancies (Hong et al., 2020; Mochizuki

et al., 2021). Among the hub relapse-associated AS events in

the splicing network, two AS events derived from one mRNA

(ARAF-88922-AT and ARAF-88921-AT) were noted due to the

most significance in the analysis. ARAF, as one isoform of the

RAF family of kinases, has been proved to have an obligatory

role in promoting MAPK activity and cell migration in a cell

type-dependent manner, and ARAF mutations were identified

in various tumor types which associated with resistance to RAF

inhibitors (Mooz et al., 2014; ARAF Mutations Limit Response

to RAF Dimer Inhibition, 2021). The results suggested that the

dysregulated AS events of ARAF regulated by SFs may become a

novel part of the mechanisms of tumor relapse in HCC, which

needs further experimental investigation.

Subsequently, univariate Cox regression analysis was

further performed, which identified 496 AS events derived

from 377 mRNA to be prognostically significant. Based on the

results, LASSO and multivariate Cox regression analysis were

performed with tough screening standards and finally

established a robust 16-gene AS signature for predicting

tumor relapse in stage I–III HCC. According to the survival

analysis, this novel relapse predictive AS signature displayed

good performance in distinguishing the low-risk and high-risk

groups in all of the training cohort, testing cohort, and entire

cohort. The AUC values of different ROC curves at 1, 2, 3, and

5 year after surgery were all considerable in all the three

cohorts, which indicated the great efficiency of the

signature. Moreover, the results of subgroup analysis

suggested that the relapse predictive signature was stable

and has great performance in different conditions. After

exploring the differentially expressed genes between the

low- and high-risk groups, we found that these genes were

significantly associated with immune-related pathways. Based

on those results, the AS events involved in the signature may

have important roles in tumor progression and regulate the

immune microenvironment in HCC. The relevant genes of

several AS events in this signature have been reported to play

similar roles in human cancers by previous studies. For

example, ACYP2 was reported to contribute to the

malignant progression of glioma by promoting Ca2+ efflux

and the subsequent activation of c-Myc and STAT3 signals (Li

et al., 2020). Moreover, ACYP2 gene polymorphism was

associated with the risk of cirrhosis developing into liver

cancer, and high ACYP2 expression was associated with

better overall survival in HCC, which indicated its

important role in HCC progression (Zhao et al., 2019b).

ANXA1 was highlighted as a biomarker in oncology, and

manipulation of ANX1 in cancers can influence the metastatic

behavior of the tumor cells by modulating inflammation,

immune response, and angiogenesis (Delorme et al., 2021).

COMT was considered a tumor suppressor that is associated

with anticarcinogenesis, antiproliferation, pro-apoptosis,

anti-angiogenesis, and anti-inflammation (Bastos et al.,

2017). RNASEH2C was reported as a metastasis

susceptibility gene and modulator of T cell-mediated

immune response in breast cancer (Deasy et al., 2019).

SH2D4A was identified as a chromosome 8p tumor

suppressor and positively correlated with effector and

regulatory T cell infiltration by blocking IL-6 signaling in

HCC, which implies its crucial role in HCC (Ploeger et al.,

2016). Furthermore, our ssGSEA analysis demonstrated that

the local infiltration fractions of several important immune

cells, including CD8 + T cells, DCs, macrophages, neutrophils,

pDCs, Th cells, and TILs, were significantly higher in the

lower-risk group than in the high-risk group. Similarly, the

local immune functions of CCR, checkpoint, cytolytic activity,

HLA, inflammation-promoting, parainflammation, T cell co-

stimulation, type I IFN response, and type II IFN response

were also more activated in the low-risk group than in the

high-risk group. Moreover, ESTIMATE analysis revealed that

the low-risk group exhibited significantly higher ESTIMATE

score, immune score, and stromal score, which further

confirmed the ssGSEA results. Finally, unsupervised

consensus clustering was further conducted based on the

AS events involved in the relapse predictive signature, and

the entire cohort of the included stage I–III HCC patients was

divided into four molecular subtype clusters. The molecular

subtype clustering exhibited good performance in

distinguishing the different relapse patterns and local

immune infiltration status between diverse clusters, which

further verified the power of the signature.
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Conclusion

In summary, our study first provides an overview of the relapse-

associated AS events in stage I–III HCC and further constructed a

novel AS signature that robustly stratifies tumor relapse risk, indicates

immune activity, and facilitates identifyingmolecular subtypes in stage

I–III HCC. The results of the study facilitate the deep mining of the

mechanisms associated with tumor relapse and tumor immunity and

the development of novel individualized treatment targets for HCC.
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Glossary

HCC Hepatocellular carcinoma

AS Alternative splicing

SFs Splicing factors

TCGA The Cancer Genome Atlas

LIHC Liver hepatocellular carcinoma

UCSC University of California Santa Cruz

AA Alternate acceptor site

AD Alternate donor site

AP Alternate promoter

AT Alternate terminator

ES Exon skip

ME Mutually exclusive exons

RI Retained intron

PSI Percent-spliced-in

SF Splicing factor

RFS Relapse-free survival

PSM Propensity score matching

GO Gene Ontology

BP Biological processes

CC Cellular components

MF Molecular functions

PPI Protein–protein interaction

cor Correlation coefficient

ROC Receiver operating characteristic

KEGG Kyoto Encyclopedia of Genes and Genomes

ssGSEA Single-sample gene set enrichment analysis

DCs Dendritic cells

pDCs Plasmacytoid DCs

Th T helper

TILs Tumor-infiltrating lymphocytes

CCR Chemokine receptors

HLA Human lymphocyte histocompatibility antigen

IFN Interferon

AJCC American Joint Committee on Cancer

PKB Protein kinase B
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