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As one of the key technologies of emotion computing, emotion recognition has received
great attention. Electroencephalogram (EEG) signals are spontaneous and difficult to
camouflage, so they are used for emotion recognition in academic and industrial circles.
In order to overcome the disadvantage that traditional machine learning based emotion
recognition technology relies too much on a manual feature extraction, we propose
an EEG emotion recognition algorithm based on 3D feature fusion and convolutional
autoencoder (CAE). First, the differential entropy (DE) features of different frequency
bands of EEG signals are fused to construct the 3D features of EEG signals, which
retain the spatial information between channels. Then, the constructed 3D features are
input into the CAE constructed in this paper for emotion recognition. In this paper, many
experiments are carried out on the open DEAP dataset, and the recognition accuracy
of valence and arousal dimensions are 89.49 and 90.76%, respectively. Therefore, the
proposed method is suitable for emotion recognition tasks.

Keywords: emotion recognition, differential entropy, feature fusion, convolution neural network, stacked
autoencoder

INTRODUCTION

From the changing of physiology or psychology caused by the influence of the surrounding
environment, we can know the emotions of people. Emotion can seriously affect people’s cognitive,
communication, and decision-making skills. Emotion is a comprehensive process of affection from
occurrence to end. It will wake up or weaken in a very short time with a change of the surrounding
environment or its own needs. The complex neural mechanism of the brain can produce stress and
temporary emotions (Joy et al., 2021). Emotion is a necessary condition of human social activities,
which has an important impact on human daily life. Human beings reflect emotional state through
physiological signals and audio-visual state. As a tool for emotion recognition, audio-visual states
such as behavior, voice, intonation, eyes, and facial expressions are easily controlled by individuals
and lack authenticity. Physiological signals generated spontaneously by the human body, such as
electromyographic (EMG) signals, functionality near infrared spectroscopy imaging system (fNIS)
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signals, electrocardiogram (ECG) signals, and
electroencephalogram (EEG) signals, can capture the real
emotional state of humans more effectively and accurately.
Among all the physiological signals, EEG signals can directly
react to the changes of the human brain activity state with the
changes of the emotional state with non-invasive techniques,
so they have been widely concerned. In addition, since the
occurrence time of emotion is often between ten to hundreds
of milliseconds, the high temporal resolution of EEG makes it
very suitable for capturing such fast, dynamic, and sequential
cognitive events (Xin et al., 2021).

At present, in the field of emotion recognition, the emotion
models can be divided into the discrete model and the dimension
model. In the discrete model, each emotional state is taken as an
independent emotional category. There are six basic emotions
such as sadness, joy, surprise, disgust, and fear in the most
widely used discrete model now. In the dimension model, the
value of different dimensions of emotion quantitatively expresses
each specific emotion in different positions of a coordinate
system. The coordinate system is two dimensions (valence and
arousal) or three dimensions (valence, arousal, and dominance).
The representative theory of emotion in the two dimension
classification model is Russell’s circular emotion classification
model (Russell, 1980), also known as V/A (valence/arousal)
emotion model, which is shown in Figure 1. In Figure 1, LV
is defined as low-valence, HV is defined as high-valence, LA is
defined as low-arousal, and HA is defined as high-arousal.

Recently, wearable and portable new EEG equipment has
gradually entered into our horizon, and emotion recognition has
also become one of the key technologies in the field of human-
computer interaction today. Based on the advantage of EEG,
the emotion recognition method based on EEG has aroused
wide interest of scholars. Many effective emotion recognition
algorithms have been proposed by scholars all over the world.
For example, Guo et al. (2017) used time-frequency analysis
in discrete wavelet domain for EEG feature extraction. They
proposed an emotion classification based on the support vector
machine (SVM) and the hidden Markov model (HMM). The
new method can improve the accuracy of emotion recognition.
Zheng et al. (2019) reviewed the mainstream emotion recognition
algorithms based on EEG on SEED dataset and DEAP dataset.
We can find that the differential entropy feature can extract the
features of an EEG signal most effectively from the experimental
results, and the power spectral density feature also can extract
the features of the EEG signal adequately. By combining deep
belief network (DBN) and entropy estimation, in Chen et al.
(2018), proposed a new emotion recognition algorithm, which
achieved 83.34% accuracy in the recognition of four emotions
including joy, calm, sadness, and fear. In Lu et al. (2020), gave
a new emotion recognition method based on dynamic entropy.
In this algorithm, the best accuracy is 85.11%. Zheng (2017)
presented an EEG emotion recognition algorithm based on
group sparse canonical correlation analysis (GSCCA), which can
improve the accuracy of emotion recognition. In Xing et al.
(2019), gave a multichannel EEG emotion recognition algorithm
by combining long short-term memory RNN (LSTM RNN) and
stack autoencoder (SAE). In a DEAP dataset, the average accuracy

of this method can achieve 81.10%. In Yin et al. (2017), used
the transfer recursive feature elimination method to distinguish
the state of emotion. In Liu et al. (2020), applied multi-level
features guided capsule network (MLF-CapsNet) to distinguish
the states of emotion, which achieved good recognition results
on DEAP datasets. Tang et al. (2017) used dual-mode noise
reduction automatic encoder and dual-mode long short-term
memory network to identify emotional states, and they achieved
83.25% recognition accuracy on DEAP dataset. By using the
Pearson correlation coefficient to rearrange EEG signals, in Wen
et al. (2017), gave an emotion recognition method based on the
convolution neural network (CNN), and this method achieved
good results. And in Luo et al. (2020), by using spiking neural
networks, Luo et al. gave a new emotion recognition method.
In the DEAP dataset, this algorithm can achieve 74, 78, 80,
and 86.27% in recognition accuracy of four states of arousal,
valence, dominance, and preference, respectively. In Shen et al.
(2021), applied multi-scale frequency bands ensemble learning
to identify emotional state and achieved average recognition
accuracy of 74.22% in the DEAP dataset.

In different emotion recognition algorithms, feature
extraction and classification are needed whether based on
traditional machine learning or deep learning. The emotion
recognition algorithm based on traditional machine learning
mainly relies on manual feature extraction, while the algorithm
based on deep learning can realize automatic feature extraction.
For emotion recognition, the research shows that the recognition
rate of the method based on automatic feature extraction is
higher than that based on manual feature extraction. Since
the EEG signals have characteristics of non-linear and high-
dimensional, it is not easy to distinguish EEG signals with a
linear algorithm. Deep learning can realize end-to-end mapping,
which is helpful to solve non-linear problems. In deep learning,
as a typical application tool, CNN can map the data input to
the output labels by automatic learning, so as to be suitable for
automatic feature extraction of high-dimensional data. However,
in the training stage, to achieve better performance, CNN should
be fed by a lot of annotation data, which not only requires a lot of
time and energy, but also easily causes over fitting. Autoencoder
is composed of an encoder and a decoder and can overcome
the above disadvantages. In an autoencoder, an encoder can
turn source data to a hidden layer, while a decoder can map
the hidden layer to source data. In addition, the dimension
of hidden layer is lower than the dimension of the original
feature. For a different application, encoder and decoder can be
constructed by many different types of deep learning models. So,
it is natural to think that CNN can be used to construct encoder
and decoder networks. Therefore, in this paper, we combine
CNN and autoencoder to identify emotions.

In this paper, by combining with CAE, we propose a 3D
feature fusion-based emotion recognition algorithm. First, the
differential entropy (DE) features of different frequency bands of
EEG signals are fused to construct the 3D features of EEG signals,
which retain the spatial information between channels. Then,
CAE is constructed by combining CNN and stacked autoencoder
(SAE) for emotion recognition. Compared with other algorithms,
the proposed algorithm makes full use of the characteristics of
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FIGURE 1 | The two dimensions emotion model.

FIGURE 2 | The basic process of this algorithm.

CNN convolution layer and SAE and is suitable for an emotion
recognition task. The experimental results show that CAE can
further improve the recognition accuracy. Figure 2 is the basic
process of the proposed algorithm in our paper. First, we use a
preprocessing method to make the original data available. And
then we use a 3D feature fusion to extract the features. Finally, we
use CAE to recognize the state of an emotion.

The remaining parts of this paper are organized as follows:
the second section introduces the basic knowledge of differential
entropy, convolution neural network and stacked autoencoder;
the third section introduces the algorithm flow; the fourth section
introduces the dataset, experimental setup, and experimental
results; the last section is the summary of this paper.

MATERIALS AND METHODS

Differential Entropy
Entropy analysis is mainly used to classify EEG signals, which is
very suitable for feature construction of EEG signals. The basic
principle of entropy analysis is to extract various entropies from
different frequency bands of EEG signals, and these entropies are
used to construct the features with the highest discrimination
between two types of signals. Previous studies have shown that
differential entropy is the most widely used feature in EEG
emotion classification (Shi et al., 2013). Differential entropy is
the entropy of continuous random variables, which is used to

characterize the complexity of continuous random variables and
can be defined as

h(x) = −

∫
x

fd(x) log(fd(x))dx (1)

where x denotes the EEG signal time series; and fd(x) denotes
the probability density function of x. The time series x obeys
Gaussian distribution N(µ, σ2). Usually, we can represent the
variance of the EEG signal by using its average energy value P. We
assume that the length of fixed time window is N, the differential
entropy of EEG signals can be calculated by

h(x) =
1
2

log(2πeσ2) =
1
2

log(P)+
1
2

log
(

2πe
N

)
(2)

Convolutional Neural Network
In the structure of CNN, there are a convolutional layer, a
pooling layer, and a fully connected layer. Convolution, which
is the core of the convolution neural network, is an effective
method to extract image features. The convolutional layer
adopts a convolution kernel to perform the sliding convolution
operation on the inputted grid data, extracting features. The
distance of each sliding of the convolution kernel is called stride.
Each cell of the grid data can be regarded as a neuron. The
convolution kernel is essentially a weight matrix, and the so-
called “convolution” operation refers to the matrix multiplication
operation. Figure 3 shows the convolution operation with a 3× 3
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FIGURE 3 | Convolution operation diagram.

convolution kernel. The convolution kernel performs matrix
multiplication with the input data from left to right and from top
to bottom.

Traditional CNN is mostly used to extract features of 2D
images. Although the collected EEG data is one-dimensional
data, it can be expanded to a 3D structure to retain the
spatial structure of the brain. 2D CNN will lose the original
data information of EEG signals and reduce the accuracy in
classification. In this paper, instead of a 2D convolution kernel,
we use a 3D convolution kernel to extract the spatial features of
the EEG data. Let vxyz

ij denote the neuron as the output value of
the j-th features map of the i-th layer in

(
x, y, z

)
, that is,

vxyz
ij = f

bij +
∑

n

Pi−1∑
p=0

Qi−1∑
q=0

Ri−1∑
r=0

wpqr
ijn v(x+p)(y+q)(z+r)

(i−1)n

 (3)

where n is the index of the feature map of i-1 layer, and bij
is the deviation of the convolution network. The length of the
convolution kernel is denoted as Pi. The width of the convolution
kernel is denoted as Qi. The height of the convolution kernel is
denoted as Ri. Let wpqr

ijn be the value of the convolution kernel
connected to the n-th feature map, and the non-linear activation
function is denoted as f .

The pooling layer can reduce the size of the input matrix
and the extract key features. There will be a certain loss of
features after pooling. The pooling layer is not used since the
data processed in this paper are relatively small, which will
cause information loss if the pooling layer is still performed.
In model training, it is necessary to calculate the loss function
of the model to find the gradient for back propagation. In
this paper, we use the cross-entropy loss function for model
training, which is calculated based on Softmax. Softmax is
the logistic regression model for binary classification. In this
paper, we extend it to multi-classification by stacking it to the
multinomial logistic regression model. It maps the output of
multiple neurons to the (0, 1). Softmax transforms the final

output of the network into a probabilistic form by exponential,
as shown in Eq. 4.

pi =
ezi∑k
j=1 ezj

(4)

Among them, ezi is the network output index of the category i,
and the denominator is the sum of the network output indexes
of all categories. There are k categories, and pi is the output
probability of the category i.

In this paper, to seep up the net training, we use AdaDelta
as the optimizer to calculate the loss through cross-entropy. The
formula of cross-entropy loss is shown in Eq. 5.

J = −
1
N

N∑
1

k∑
i=1

yi · log(pi) (5)

where yi can be denoted as the real label of the category i. Let
pi denote the probability value of the category i predicted by
Softmax. In addition, the number of categories is denoted as k.
The total number of samples is denoted as N.

Stacked Autoencoder
There are input layer, hidden layer, and output layer in the
simplest autoencoder. In an autoencoder, it uses an unsupervised
way to eliminate the potential noise, which can retain the
important information of the input data and simplify the
output data and improve the effect of classification. A stacked
autoencoder is stacked by multi-layer autoencoders. The previous
autoencoder is the input of the next autoencoder, which forms
the encoder and then adds the decoder part of the autoencoder to
form an SAE with multiple hidden layers.

The parameters of the whole network are abundant since SAE
contains numerous layers. It is prone to be overfitting if the
end-to-end training method is adopted. To avoid overfitting, the
autoencoder of each layer is trained individually from front to
back, and only one hidden layer is trained each time. When the
parameters of each layer are trained, the parameters of other
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layers remain unchanged. When the parameters are trained to
convergence, the parameters of all layers are adjusted by the back
propagation algorithm to improve the results. The details of the
SAE are as follows: First, the sparse self-encoder network is used
to train the parameters from the input layer to the H1 layer.
After the training, the decoding layer is removed, leaving only the
coding stage from the input layer to the hidden layer. Then we can
train the parameters from the H1 layer to the H2 layer, and take
the activation value of the H1 layer neurons without label data
as the input layer of the H2 layer, and then conduct self-coding
training. After training, we remove the decoding layer of H2, and
so on. After training, you can connect the classifier SoftMax for
classification tasks. The structure of SAE is shown in Figure 4.

The encoding steps of SAE are as follows:

a(l)
= f (z(l)) (6)

z(l+1)
=W(l,1)a(l)

+ b(l,1) (7)

The decoding steps are as follows:

a(n+l)
= f (z(n+l)) (8)

z(n+l+1)
=W(n−l,2)a(n+l)

+ b(n−l,2) (9)

where the activation value of the hidden layer unit can be denoted
as a(n). W(k,1) is the parameter corresponding to W(1), W(k,2)

is the parameter corresponding to W(2), and b(k,1) and b(k,2)

are the parameters corresponding to b(1) and b(2) in the k-th
autoencoder, respectively. n is the number of neurons and l is the
number of layers of the neural network.

The hidden layer of the last autoencoder is input to SoftMax
as the feature of the input data for classification.

THE PROPOSED EMOTION
RECOGNITION ALGORITHM

The algorithm mainly includes three steps: preprocessing the
original EEG signals, feature extraction, and classification. The
useless EEG signals in the DEAP dataset can be removed by using
the filtering method due to doping different interference noise.
Since then, the signal-to-noise ratio is improved to a certain
extent, and the band is divided. EEG time series is decomposed
into 5 bands (δ, θ, α, β, γ) through 3-order Butterworth bandpass
filter (Wang et al., 2019), as shown in Table 1.

As the brain gradually wakes up, the frequency of EEG signals
in the brain also gradually increases. In the δ band, the brain does
not produce specific emotions in an unconscious state (sleep or

FIGURE 4 | Structure of trestle autoencoder.
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TABLE 1 | Five bands of EEG.

EEG frequency
band

Frequency
range

Brain state Level of
consciousness

δ 0.5–4 Hz Deep sleep Very low

θ 4–8 Hz Mild sleep Low

α 8–12 Hz Awake quiet, closed eyes,
relaxed state

Medium

β 12–30 Hz Mind active, focused, highly
alert, anxious, excited

High

γ 30–100 Hz Multimodal perception
processing state, meditation

Very high

coma), so we do not deal with this band in this paper. To remain
the time-spatial feature, we use differential entropy to express the
features of EEG signals. To improve the accuracy of recognition,
we divide the 3 s baseline signal into three EEG segments with
the length of 1 s, and each EEG signal segment is converted to
4 one-dimensional differential entropy feature vectors. Then the
average value of these three feature vectors is taken as the baseline
signal differential entropy feature of the subjects each time before
they watched a specific emotional video. Finally, subjects under
emotional video stimulation of brain electrical signals generated
by the differential entropy features minus the baseline signal
differential entropy to represent every emotional state feature
of EEG segments.

The sensors that collect EEG signals are distributed in
the brain, and it is intuitive to think that EEG signals from
the same parts of the brain are fairly correlated. If the one-
dimensional EEG signals are directly processed, the network
will be forced to find the neighborhood correlation itself,
which will affect the final recognition result. This neighborhood
correlation can be obtained by using the representation of a
two-dimensional matrix. When the one-dimensional EEG signals
are mapped to the two-dimensional plane, the new data format
can maintain the spatial information between adjacent electrode
channels, which is conducive to mining the correlation between
channels and is helpful to the convolutional autoencoder for
emotion recognition.

The location of the DEAP data collection device used in this
paper is shown in Figure 5A, the EEG electrodes marked in light
blue are the channels during the collection of DEAP dataset.
To preserve the spatial features between EEG channels, we first
turn the one-dimensional feature vector into a two-dimensional
plane signal (size isN × N, where Nis the maximum number of
electrodes). For the DEAP dataset,Nis 9, each of these channels
can form a 9 × 9 matrix, such as in Figure 5B. If there is no
electrode in the position, we assume that the gray value is 0.

In frequency dividing of the EEG signals, the frequency range
of the four channels (θ, α, β, γ) has no overlap. Therefore,
these four independent band signals can be used to encode EEG
signals just like RGB images. In this paper, the four feature
matrices formed by the four channels are stacked into a three-
dimensional EEG signal cube to realize three-dimensional feature
fusion, and the differential entropy feature in the EEG signals
correspond to the gray intensity in the image. We encode the four

independent bands of EEG signals, and the four feature matrices
are stacked into a three-dimensional EEG signal cube, denoted as
3D_cube ∈ R9×9×4. Table 2 lists the terms corresponding to the
representation of images and EEG signals.

Figure 6 shows the overall flow chart of the 3D feature fusion.
The steps are as follows: First, we divide the original EEG signals
to four frequency bands. Second, we extract the differential
entropy feature of each frequency. Third, we construct an image
by inserting the pixel to the two-dimensional matrix. Finally, the
two-dimensional features of each frequency band are fused to
obtain a three-dimensional signal cube.

As can be seen from Figure 6, the three-dimensional EEG
signal cube can be regarded as a color image with 4 primary
color channels. Therefore, the ability of the CAE in feature
extraction can be fully utilized, and high-dimensional features
can be extracted effectively from the EEG signal cube. One hot
encoder is used to code the feature in this paper.

The three-dimensional feature representation preserves the
spatial correlation between EEG signal channels and integrates
the differential entropy features of signals in different frequency
bands. This feature representation can make the model achieve
better recognition results. Before being input to the recognition
model, the differential entropy features of all segments have
been subtracted from differential entropy features of the
corresponding baseline signals. After feature extraction, the input
format of each sample data in convolutional autoencoder is
an array of 9 × 9 × 4. The value at each position in the
array represents the differential entropy feature value of the
EEG signals with a length of 1 s at a particular frequency band
at that position.

In this paper, after obtaining 3D features, we construct the
convolutional autoencoder to distinguish the state of emotion
by combining CNN and SAE. Figure 7 shows the overall
network structure.

Convolution neural network is a deep neural network with a
core of convolution. To promote the recognition ability of CNN,
we adopt the small scale of convolution kernels to extract local
features in more detail and use four continuous convolutional
layers to increase the non-linear expressiveness of the model.
We also optimize the parameters of the network with dropout
technology, and reduce the interdependence between neurons,
and utilize L2 regularization to suppress network overfitting.
The adaptive optimizer is used to optimize the model. Enter the
output of the CNN network as a result of image feature extraction
into the SAE. SAE is composed by a 2-layer sparse autoencoder.
Batch normalization of input data on each sparse autoencoder is
used to improve the accuracy of classification.

EXPERIMENT

Dataset
The DEAP dataset is a common public database for testing
EEG emotion recognition algorithms. It includes 32 subjects,
with 16 men and 16 women. Each subject watched 40 excerpts
of music videos of 1-min duration of different emotional
markers, with random video sequence and content, and the
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FIGURE 5 | Electrode placement diagram and feature matrix mapping method of the international 10–20 system. (A) Electrode placement diagram. (B) Feature
matrix mapping.

emotional excitation of each music video is looked at as a
separate experiment. Multimedia stimulation materials combine
visual and auditory ways to effectively induce emotions, which
can effectively induce the emotional state of subjects. Before
each subject watched the video, the testers collected baseline
signals generated by a subject of 3 s without receiving an
emotional stimulation state (relaxation state), and from each
subject was collected 63 s of physiological signals, including a 3-s
baseline signal and a 60-s experimental signal. The experiment
collected subjects’ responses to the brain electrical signals of
the music video and 8 surrounding physiological signals. The 8
peripheral physiological signals include EMG signals of musculus
zygomaticus maximus and trapezius facialist, horizontal and
vertical EOG signals, skin temperature, blood volume pulsation,
and respiratory signals, basically covering several physiological
signals commonly used in emotional recognition.

The brain electrical signals were collected at 512 Hz sampling
frequency by using the “10–20” IAAF standard 32-guide
electrode caps. All the subjects were required to fill in the
self-evaluation form after watching the video, scoring from
the continuous value range of 1–9 and marking the Valence
and Arousal magnitude of the video watched. We use the 32-
channel Biosemi active 2-device to record the brain electrical
signals when subjects are exposed to the video. After the
original data collection, the experimenter basically preprocessed
the original data set and published the preprocessing version
dataset for facilitating rapid verification by other researchers. All
experiments in this paper are performed on the pretreatment

TABLE 2 | The term for images and EEG signals.

Image EEG signal

Color image Three-dimensional EEG signal cube

Color channel (R, G, B) Signal frequency band (θ, α, β ,γ )

Image grayscale value intensity Differential entropy feature value

version of the DEAP dataset. Table 3 shows the preprocessed
dataset parameters.

The DEAP dataset contains data and label. The experimental
data format is shown in Table 4.

Experimental Setting
In this paper, we focus on the emotion recognition with a short
segment of the brain telecom signal. The original collected data
with the length 8,064 by watching videos each time was divided
into n segments with the length l, and all the n segments share
the same emotion label. It is shown that for the DEAP dataset, 1 s
is a more suitable time window length for emotion recognition
(Yang et al., 2018b), so each 1-min brain signal is divided into 60
segments. Since the sampling frequency of the EEG acquisition
device is 128 Hz, the 1-s EEG signal contains 128 signal points.
For each subject, the total number of samples was 2,400.

To improve the recognition accuracy, we divide the 3-s
baseline signal to three 1-s EEG segments, and transform each
brain signal segment into four one-dimensional differential
entropy feature vectors. We can gain the differential entropy
feature of the baseline signal by averaging the three feature
vectors of the subject before watching a specific emotional video.
Eventually, the differential entropy features of the brain electrical
signal are generated when the subject was stimulated by the
emotional video, which minus the baseline signal’s differential
entropy features represented the emotional state characteristics
of each EEG segment. After several stages of data preprocessing,
feature extraction, and feature fusion, the EEG signal storage
format has changed differently, as shown in Table 5.

The convolutional autoencoder contains two parts, including
convolutional layers and an autoencoder, which is shown in
Figure 8.

As shown in Figure 8, the Conv1 layer is a convolution layer
with an input by selecting the logical combination of one subject’s
different bands in the arousal or valence. In Conv1, the number
of convolution kernels is set to 64 and each convolution kernel’s
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FIGURE 6 | The flow chart of 32 channels one-dimensional EEG signal is transformed into a three-dimensional cube. (A) Electrode placement diagram. (B) Feature
matrix mapping.

FIGURE 7 | The network structure of the proposed algorithm.

size is 4 × 4 × 4. The Conv2 layer is a convolution layer, too. In
Conv2, the size of the convolution kernel is 4 × 4 × 64 and the
number of convolution kernels is set to 128. The Conv3 layer is
also a convolution layer. In Conv3, the size of the convolution
kernel is 4 × 4 × 128 and the number of convolution kernels
is set to 256. To fuse the feature maps of the different channels

TABLE 3 | Overview of the preprocessing DEAP dataset.

Index Parameter

Number of experiments 40 times/person

Experiment duration 60 s

Emotional division method Two-dimensional mood model

Label type and label value interval Valence, Arousal; continuous value 1–9

Signal acquisition frequency 128 Hz

Number of signal channels of
different types

32 EEG channels

and reduce the computational cost, the number of convolution
kernels of the Conv4 layer is set to 64. In addition, in Conv4, the
size of the convolution kernel is 1 × 1 × 256 and the stride size
is 1. After four continuous convolutions, the brain signal cube
is computed by the four times non-linear activation functions,
which enhances the expression of the complexity of function and
the non-linear degree and is beneficial to enhance the abstraction
ability of local models. To preserve the edge information of the
3D EEG feature cube, we use a zero-padding operation in each

TABLE 4 | Data styles of the subjects in the DEAP dataset.

Array name Array dimension Array content

Data 40 × 32 × 8,064 Video (number of experiments) ×
channels × sampled signal

Labels 40 × 2 Video (number of experiments) ×
label (valence, wake-up)
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TABLE 5 | Storage format of different processing states of EEG signals.

The EEG signal
processing state

Storage format

Primary signal 40 × 8,064 × 32 (video × sampling signal × channel)

Frequency mode
decomposition

40 × 8,064 × 4 × 32 (video × sampling
signal × frequency band × channel)

Divide into short
segment brain signal

40 × n × l × 4 × 32 (video × segment × segment
length × frequency band × channel)

Feature extraction 40 × n × 4 × 32 (video × segment × frequency
band × channel)

Feature fusion 9 × 9 × 4

convolution layer. In each convolution layer, the sizes of input
and output are the same. Next to the convolution operation, we
use ReLu activation function to realize the non-linear feature
transformation of the model. In addition, the negative value is
suppressed to 0 (namely, inactive state, positive feedback), which
effectively solves the “gradient disappearance” problem. Since
EEG data have features with high complexity and small sample,
we use a dropout layer with a ratio of 0.2 to avoid over-fitting of
the neural network. Finally, we send the output of the dropout
layer into the SAE. The SAE network model totally has 4 layers—
an input layer, two hidden layers, and an output layer. In the input
layer, the number of neurons is the same as the dimension of the
input sample. Moreover, in the two hidden layers, the number of
neurons is set to 400 and 100, respectively. In the output layer,
we use a SoftMax activation function to calculate the probability
estimation of the emotional state. The SoftMax output layer is
used to calculate the probability of category labels and output the
results of emotion recognition.

The learning rate of the network can control the learning
progress of the network model. There is a positive correlation
between the speed of model training and the learning rate. But
a larger learning rate can easily produce a loss value explosion
and shock. The smaller learning rate may lead to overfitting and

slow convergence. In this paper, we use Formula (12) to set the
learning rate, that is,

learning_rate =


10−4, train_accuracy < 0.7

5× 10−5, 0.7 < train_accuracy < 0.85

10−6, train_accuracy > 0.85
(10)

Experimental Results
Cross-validation (CV) is a tool of classification verification.
In CV, we divide the overall dataset into a training set
and a test set by a certain proportion. The training set is
used for model training, and the test set is used for model
testing. In our experiment, we adopt leave-out CV, fivefold
CV, 10-fold CV, and 20-fold CV to verify the effect of sample
size on classification accuracy. The following describes the
experimental methods used.

Leave-out CV: We assume that the data set is
(x1, x2, x3, · · · xn). The total number of samples is n. One
sample is selected as the test set of the test stage, while the
remaining n− 1 samples are left as the training set of the training
stage. After n times in turn, each sample has been a test set once,
we can get the final classification accuracy by averaging all the
test classification accuracy.

K-fold CV: We assume that the data set is (x1, x2, x3, · · · xn),
the total number of samples is n. The data set is evenly divided
into K groups. One group of the sample data is selected as the
test set in the test stage, and the rest of the K-1 groups of sample
data are selected as the training set in the training stage. The
experiments are conducted K times in turn. Each group of sample
data is regarded as a test set, and the classification accuracy is the
average value of K classification results.

Figure 9 shows the results of emotion recognition by using a
convolutional autoencoder for features constructed by different
channels. Each recognition result is the recognition accuracy
tested under four kinds of CV.

FIGURE 8 | Network structure of the convolution autoencoder.
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FIGURE 9 | Four kinds of CV experiment results.

Figure 9 shows that the classification accuracy of K-fold CV is
very high. However, the run time increases almost linearly with
the increase of fold number. In order to balance the classification
accuracy and run time, for each subject’s data, we use 10-fold
CV to evaluate the recognition effect of the emotion recognition
algorithm. In the follow-up experiments, we divide the data
set into 10 parts, 1 of which is used as the test data, and the
remaining 9 parts are used as the training data in turn. In our
experiment, we randomly select 240 fragments as the test set, and
the remaining 2,160 fragments as the training set. In addition,
we can get the final recognition accuracy on the current subject
data by averaging the recognition accuracy of the model on 10
test sets. Finally, the result, used to evaluate model accuracy, is
the average of all the recognition accuracy of the model on the 32
subjects’ datasets.

To verify the validity of the constructed convolutional
autoencoder, the proposed feature extraction algorithm of this
paper is compared with CNN and MLP on several single rhythm
signals and multi-band signals. The positive influence of a
convolutional autoencoder on the classification result is verified.
The network parameters of CNN are the same as the network
parameter settings proposed in this paper. In CNN, the SAE
structure is removed, and the recognition accuracy is obtained
directly through the full connection layer output, which can show
the influence of the SAE part of the proposed algorithm. In MLP,
the input is a one-dimensional signal. The multilayer perception
model introduces the ReLu activation function to avoid the
disappearance of the gradient and improve the convergence
speed. L2 regularization avoids the over-fitting problem and
Adam optimizer optimizes the cross-entropy at different learning
rates. The results of the experiment are given in Table 6.

To better illustrate the experimental results in Table 6, we
visually compare the above results with the arousal of emotion

recognition, as shown in Figure 10. The graph shows that the
classification accuracy of the proposed algorithm is the highest,
which shows the advantage of the convolutional autoencoder.

We also visually compare the above results in the valence
of emotion recognition in Figure 11. The graph shows
that the classification accuracy of the proposed algorithm is
also the highest, which also proves the effectiveness of the
convolutional autoencoder.

Valence describes the degree of an individual’s mood from
negative to positive, distinguishing between positive and negative
emotions. While arousal describes the degree of mood from calm

TABLE 6 | Comparison of model recognition accuracy.

Rhythm Arousal Valence

MLP CNN Our method MLP CNN Our method

θ 70.68 78.09 79.69 68.70 75.66 77.56

α 67.70 80.81 81.02 61.97 78.73 79.64

β 69.43 79.97 80.12 65.90 78.13 79.89

γ 68.37 80.98 82.90 64.67 79.83 80.19

θ+ α 80.88 85.30 86.25 80.06 83.60 83.86

θ+ β 83.47 85.43 86.65 82.53 83.65 84.05

θ+ γ 80.99 85.99 86.29 80.17 84.51 84.93

α+ β 80.07 86.75 86.83 78.86 85.40 85.62

α+ γ 80.21 87.55 87.64 78.07 86.77 86.81

β+ γ 81.47 86.63 88.28 80.85 85.47 86.51

θ+ α+ β 86.79 88.45 88.56 85.32 87.34 87.60

θ+ α+ γ 85.86 89.12 89.47 84.92 87.89 87.94

θ+ β+ γ 86.85 88.55 88.98 86.15 87.50 88.40

α+ β+ γ 86.13 89.74 89.91 84.47 88.80 88.95

θ+ α+ β+ γ 88.68 90.24 90.76 87.82 89.45 89.96

The bold values are the best value in the according objective index.
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FIGURE 10 | Comparison of recognition results of three methods in the arousal dimension.

FIGURE 11 | Comparison of three methods in the valence dimension.

to excitement and represents the degree of emotional arousal. In
order to observe the comparison of the recognition accuracy of
our algorithm in the valence and the arousal dimension more
directly, a bar graph is drawn in Figure 12. Figure 12 shows
that the recognition accuracy of the proposed algorithm is higher
overall in the arousal dimension. The classification accuracy of
our method in arousal is higher than in valence, which may be
due to the influence of people’s subjective score when collecting
EEG signals. In the same case, people are more likely to perceive
their own emotional arousal.

To fully illustrate the effectiveness of our algorithm, we
compared it with 9 other typical methods. These 9 algorithms
include: (1) decision tree (DT) based emotion recognition

algorithm presented in Reference (Liu et al., 2021); (2)
support vector machine (SVM) based emotion recognition
algorithm presented in Reference (Suykens and Vandewalle,
1999); (3) emotion recognition algorithm based on multi-
layer perceptron (MLP) proposed in Reference (Yang et al.,
2018a); (4) convolutional neural network (CNN) based emotion
recognition algorithm proposed in Reference (Tripathi et al.,
2017); (5) the emotion recognition algorithm based on the
convolution recursive attention model (CRAM) presented in
Reference (Zhang et al., 2019); (6) the multi-modal emotion
recognition algorithm based on the Gauss process dynamics
model (GPDM) presented in Reference (García et al., 2016); (7)
emotion recognition algorithm based on phase space dynamics
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FIGURE 12 | Comparison of the recognition accuracy of our method in the valence and arousal dimensions.

(PSD) presented in Reference (Soroush et al., 2019); (8)
emotion recognition algorithm based on sparse discrimination
ensemble (SDEL) presented in Reference (Ullah et al., 2019);
and (9) emotion recognition algorithms based on continuous
convolutional neural network (CCNN) proposed in Reference
(Yang et al., 2018a). Table 7 shows the accuracy rates of all the
algorithms in the valence and arousal dimensions, which proves
that our algorithm is superior to other methods.

As can be seen from Tables 6, 7, (1) high frequency band
EEG is helpful to improve the accuracy of emotion recognition,
which proves that emotion is produced in the waking state.
(2) The combination of signal features of different frequency
bands can complement each other, which can improve the
accuracy of emotion recognition. (3) By comparing the multi-
layer perceptron of one-dimensional input, the convolutional

TABLE 7 | Comparison results between the proposed algorithm and
other algorithms.

Classification methods DEAP dataset

Arousal (%) Valence (%)

DT 71.16 68.28

SVM 87.43 86.60

MLP 88.88 87.73

CNN 73.40 81.40

CRAM 83.65 85.54

GPDM 90.60 88.30

PSD 87.42 84.59

SDEL 74.53 82.81

CCNN 90.42 89.45

Ours 90.76 89.49

The bold values are the best value in the according objective index.

neural network of 3D input and the convolutional autoencoder
of 3D input presented in this paper, it is found that the
combination of 3D input data and convolutional autoencoder is
more effective for emotion recognition. (4) A wider frequency
band is helpful to improve the accuracy of emotion recognition
because the single frequency band brings a bigger error to the
experimental result.

CONCLUSION

In this paper, we propose an EEG emotion recognition algorithm
based on 3D feature fusion and convolutional autoencoder. In
this paper, we used a Butterworth band-pass filter to divide
the EEG signals to different frequency bands. The 3D features
are constructed by using four frequency bands, and then
the convolutional autoencoder is constructed as the emotion
recognition classifier, which provides an efficient analysis method
for emotion recognition. In this paper, through the experimental
comparison of multi-layer perceptron, convolutional neural
network, and the proposed convolutional autoencoder, we
find that the constructed convolutional autoencoder has better
performance in emotion recognition. We will further study how
to retain the spatial characteristics of EEG signals as much as
possible and strive to explore models and methods with shorter
time and higher classification accuracy.
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