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Abstract

associated with quantitative traits.

Background: The rapid development of sequencing technology and simultaneously the availability of large
quantities of sequence data has facilitated the identification of rare variant associated with quantitative traits.
However, existing statistical methods depend on certain assumptions and thus lacking uniform power. The present
study focuses on mapping rare variant associated with quantitative traits.

Results: In the present study, we proposed a two-stage strategy to identify rare variant of quantitative traits using
phenotype extreme selection design and Kullback-Leibler distance, where the first stage was association analysis
and the second stage was fine mapping. We presented a statistic and a linkage disequilibrium measure for the first
stage and the second stage, respectively. Theory analysis and simulation study showed that (1) the power of the
proposed statistic for association analysis increased with the stringency of the sample selection and was affected
slightly by non-causal variants and opposite effect variants, (2) the statistic here achieved higher power than three
commonly used methods, and (3) the linkage disequilibrium measure for fine mapping was independent of the
frequencies of non-causal variants and simply dependent on the frequencies of causal variants.

Conclusions: We conclude that the two-stage strategy here can be used effectively to mapping rare variant

Keywords: Quantitative trait, Rare variant, Association analysis, Fine mapping, Extreme phenotype

Background

Thanks to the rapid development of sequencing technol-
ogy and the lowering of sequencing costs in the last dec-
ade, the availability of large quantities of sequence data
provides an unprecedented opportunity for researchers
to investigate the role of rare variants in complex traits
[1-4]. But due to the low minor allele frequency (MAF <
5%) and thus resulting in weak linkage disequilibrium
(LD) with nearby markers, detecting rare variant (RV)
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association with complex traits faces great challenges
[5-8]. One challenge is that detection of rare causal vari-
ants with traditional designs usually requires a large
sample, which will be the high cost [3, 6]. Thus cost-
effective design should be considered to reduce sample
size. Another challenge is that the statistical power with
test statistics of single-marker tests is generally low in
genetic association studies of rare variants with more
moderate or weak genetic effects [8—10]. To date many
statistical methods have been developed for rare variant
association analysis, including burden tests [11-13],
variance-component tests [14, 15], series of sequence
kernel association tests [10, 16, 17]. Any of these
methods has relative perfect performance in special
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scenario, but none of them can overwhelm others in all
scenarios [8, 9], especially for quantitative traits.

In fact, rare variant association analysis in the past several
years mainly focused on the qualitative trait. Only a few
statistical methods have been developed for the quantitative
trait [13, 18—21]. One approach for rare variant association
analysis of quantitative traits is the linear regression model.
However, most regression-based methods rely on the nor-
mality assumption of the phenotype [8, 21]. Another com-
monly used approach adopts phenotype extreme selection
design where one can transform the quantitative trait asso-
ciation study into case-control association study of qualita-
tive traits by treating the upper extreme as cases and the
lower extreme as controls in a strategy using extreme
phenotype [22-25]. Extreme phenotypes of a quantitative
trait are generally considered to be more informative.
Moreover, a smaller sample size for extreme-phenotype
sampling than that for random sampling is needed to
achieve similar power [23, 24].

In this report, we use phenotype extreme selection de-
sign and Kullback-Leibler distance (KL-distance) [26] to
propose a simple statistic method to identify rare vari-
ants for quantitative traits. Two stages strategies are
adopted in our analysis where association analysis and
fine mapping will be done in the first stage and the sec-
ond stage, respectively. This method will compare the
frequency distributions of rare variant in two extreme
phenotypes based on KL-distance. Our method has three
features: (1) it has increasing power with the stringency
of the sample selection, (2) it is affected slightly by non-
causal variants and the opposite effect variants.in the
first stage for association analysis, and (3) it is not de-
pend on the frequencies of non-causal variants and just
dependent on the frequencies of causal variants in the
second stage for fine mapping. Through simulation stud-
ies, we investigate the performance of the proposed
method and compare it with three commonly used
methods of the burden test [12], the sequence kernel as-
sociation test (SKAT) [17], and the optimal test that
combines SKAT and the burden test (SKAT-O) [10].

Results

Type | error rate and power for association analysis

Table 1 exhibits the estimated type I error rates of the
statistic Typ for the extreme sample with sample-

Table 1 Estimated type | error rates of the statistic Ty

Threshold Estimated Type | error rate
values 2N=1000 2N=1500

a=.05 a=.01 a=.05 a=.01
20% 0.048 0.012 0.048 0.011
10% 0.049 0014 0.051 0013
5% 0.053 0.009 0.052 0.013
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selection threshold value of 20, 10, and 5% and with
sample size of 1000 and 1500. It can be seen that, under
various genetic parameters, type I error rates of Ty are
not appreciably different from the nominal alpha levels,
which indicates the validity of the statistic Tir.

Figure 1 shows the results of power for 9 scenarios
when sample sizes are 1000 and 1500. It is found that
the power of the statistic Ty with the sample size of
1500 is nearly 0.20 larger than that with the sample
size of 1000, indicating that the power of the statistic
Ty significantly increase with the increasing of the
sample size. It can be seen that, under the same sam-
ple size, the powers of the statistic Ty with the low
5% samples and the up 5% samples are highest and
the powers with the low 20% samples and the up
20% samples are lowest, which indicates that the
powers of the statistic Ty increase with the strin-
gency of the sample selection. It is observed from
scenarios {1, 2, 3} that, when rare variant effects are
in the same direction, the powers of the statistic Ty,
increase with the increasing of the number of causal
variants. The same above conclusions are observed
when 80% causal variants have positive effect and
20% causal variants have negative effect (scenarios {4,
5, 6}) and when there is the same number of causal
variants with positive effects and negative effects (sce-
narios {7, 8, 9}). By comparing the powers under sce-
narios {1, 4, 7} with 10 causal variants, the powers
under scenarios {2, 5, 8 with 20 causal variants, and
the powers under scenarios {3, 6, 9} with 50 causal
variants, we found that, when the number of causal
variants with negative effect increases, the power of
the statistic Ty decreases slightly. From Fig. 1, we
can observe that, among four statistics of the Ty, the
burden test, the SKAT, and the SKAT-O, the power
of Typ is higher than that of other three statistics.
The burden test, the SKAT, and the SKAT-O are se-
verely affected by the number of non-causal variants
and the opposite effect variants, especially when there
are the same number of opposite effect variants. Al-
though non-causal variants and the opposite effect
variants affect the power of the Ty, the impact is
slight. For example, when the sample size is 1500 and
the number of causal variants is 50 for 10% sample-
selection threshold value (B2), as the number of vari-
ants with negative effect increases from zero to 25,
the powers of the burden test, the SKAT, and the
SKAT-O decrease from ~0.80, ~0.79, and ~ 0.84 to
~0.23, ~0.63, and ~ 0.74, respectively, with the de-
cline rate of 71.2, 20.2, and 12.0%. Nevertheless, when
the number of variants with negative effect is 25, the
Tk, still achieves ~ 0.83 power, with the decline rate
of just 7% comparing to ~0.90 when the number of
variants with negative effect is zero.
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Fig. 1 Empirical power of four statistics from the extreme samples with 20% threshold value a, 10% threshold value b, and 5% threshold value ¢
when the sample sizes are 1000 (a1, b1, 1) and 1500 (a2, b2, c2) at a 0.05 significance level
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Power for fine mapping

In fine mapping study, the QTL can be located by the
maximum value of the measure ;. So we sample 10
times from each of 100 simulation populations where each
sample includes 750 individuals with the up-extreme
phenotype of Y> U and 750 individuals with the lower-
extreme phenotype with Y < L. For each sample, we calcu-
late the value of the measure Ig; for each variant. In order
to guard against noisy distributions of the measure Ix;, we
adopt the 5-point moving-average method to determine
the maximum value. We count the number (here, we

denote it B) of the maximum values that locate at variant
10 or variant 11. Then the probability that the maximum
values of lg; locate at variant 10 or variant 11 is B/1000.
We refer this value as the power of l/x;, which measure the
likelihood of fine mapping the QTL. Table 2 shows the re-
sults of the power for lg;. It can be seen that the power of
Iz for fine mapping under dominant model is highest and
the power of /iy for fine mapping under recessive model
is lowest. The power of Ix; increases with increasing of
the heritability h* of the causal variant and the stringency
of the sample selection. For example, power of Iz; under
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Table 2 The power of the QTL fine mapping for three LD measures by use of five-point moving average

Sample- Power of the QTL fine mapping
:ﬁ:z:::g::j Recessive model Additive model Dominant model
values h?=0.01 h*=0.05 h*=0.10 h? =0.01 h*=0.05 h*=0.10 h*=0.01 h*=0.05 h*=0.10
20%
I 039 050 058 044 053 062 052 059 0.70
/ 040 049 0.59 045 0.53 0.62 0.51 0.60 0.70
Pexcess 0.29 036 047 036 047 0.58 041 052 061
10%
la 049 0.59 0.66 0.52 0.64 0.70 0.62 0.69 0.80
/ 0.50 0.59 067 053 0.63 0.71 061 0.68 0.80
Pexcess 037 0.51 0.56 044 0.52 0.63 0.55 0.60 0.68
5%
It 0.56 0.64 0.71 061 067 0.77 067 0.75 0.83
/ 0.56 0.64 0.71 061 0.67 0.77 067 0.75 083
Pexcess 041 0.55 063 048 051 065 0.59 068 0.72

Note: The MAF of the causal variant is 0.01(P,=0.01). The sample size is 1500 (2 N = 1500)

dominant model with the heritability h* of 0.01 is 0.52,
0.62, and 0.67 at 20, 10, and 5% sample-selection thresh-
old value, respectively; power of /; under dominant at 5%
sample-selection threshold value increase from 0.67 to
0.83 with the heritability h* of the causal variant increasing
from 0.01 to 0.10. We also investigate the effect of differ-
ent sample sizes (e.g., 2n =1000, 1500, and 2000). As ex-
pected, power of [x; increases with the increasing sample
size (data not shown). In order to assess the performance
of Ixz, we compare it with two LD measures / [27] and p,,.
cess 28] with case-control design using extreme samples.
Table 2 also lists the powers for [ and py..ss. We found
that the powers of lx; and [ are nearly the same and higher
than those of pycess-

Discussion

In this report, we present a robust approach to identify
rare variant of quantitative traits. The proposed ap-
proach adopts phenotype extreme selection design and
KL-distance method. We use a two-stage strategy in our
analysis where the first stage is association analysis and
the second stage is fine mapping of QTL if the first stage
is positive result. We propose a statistic Ty, for associ-
ation analysis and a LD measure I, for fine mapping.
Simulation studies present the performance of the pro-
posed method. We found that the power of the Ty in-
creases with the stringency of the sample selection and
the increasing of the number of causal variants. The Ty
here has higher power for association analysis than three
existing statistics. Meanwhile, the impact of non-causal
variants and the opposite effect variants on the Ty is
slight. The LD measure /i for fine mapping in the sec-
ond stage has a good feature of not dependence on the

frequencies of non-causal variants and just dependence
on the frequencies of causal variants. These results show
that our method can be used to detect rare variant asso-
ciated with quantitative traits. At the same time, we
found that the proposed method can be easily extended
to case-control study by treating cases and controls as
samples with upper extreme phenotype and lower ex-
treme phenotype, respectively.

In rare variant association analysis, in order to achieve
high statistical power of tests, usually a large sample with
high sequencing costs is needed. Thus less costly sequen-
cing design is preferred in rare variant association study.
For quantitative traits, extreme phenotypes are generally
considered to be more informative because of rare causal
variants enriched among them. One can use a smaller
sample size for extreme-phenotype sampling to achieve
similar power as that for random sampling [23, 24]. More-
over, because extreme phenotypes of quantitative traits
relative to human health are of primary clinical signifi-
cance and thus data set can be obtained easily for subjects
with extreme phenotypic values, using extreme phenotype
samples in association analysis will make our study useful
and practical. Here we use KL-distance to construct the
statistics Ty to measure the difference between two prob-
ability distributions of rare variants in two extreme popu-
lations. Based on the principle that the larger Ty value is,
the more dissimilar two probability distributions of rare
variants, the statistics Ty can be used as a test statistic to
quantify the magnitude of association between the vari-
ants and the quantitative trait in the first stage of associ-
ation analysis. We found that the statistic Ty here for
association analysis has higher power than three existing
statistics of the burden test, the SKAT, and the SKAT-O.
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Moreover, whereas increasing the number of non-causal
variants and the opposite effect variants result in decreas-
ing severely the powers of the burden test, the SKAT, and
the SKAT-O, non-causal variants and the opposite effect
variants affect slightly on the Ty;. The Ty has relatively
stable power with small change range under various pa-
rameters set.

In the second stage of fine mapping, lx; is essen-
tially a measure of LD between the variant and the
QTL. Although LD between rare variant and QTL
maybe weak [24], the maximum value across all rare
variants can be usually found to identify the causal
variant (QTL). The measure Iz; here has a good per-
formance of just dependence on the frequency of the
causal variant. In practice, not dependence on the fre-
quency of the non-causal variant can eliminate“noise”
and even bias introduced by varying frequencies of
non-causal variants. In our early works, we proposed
the LD measure / for mapping common variant of
the QTL [27]. The performance of the measure [ for
mapping rare variant is unknown. We found from
theory analysis that the two LD measures [x; and !/
are parallel and have the same performance, that is,
both of them can quantify LD between the variant
and the QTL and do not depend on frequencies of
non-causal variants. The difference between them is
that the measure Ilx; here is based on KL-distance
and the measure / is based on entropy theory. An-
other LD measure for fine mapping iS peycess [28].
The Pexcess is originally developed for fine mapping
common variant of qualitative trait. We compare the
performance of these three LD measures for fine
mapping rare variant of quantitative traits using ex-
treme samples. We found from theory analysis and
simulation study that /x; is superior to pexcess-

It is noted that, in practice, we do not know how
many causal variants there are in the region estab-
lished through association analysis at first stage. Al-
though we considered a region having only a single
causal variant, our method works for the general case
with a region consisting of multiple causal variants.
In fact, when there is a region linked to a quantitative
trait has multiple causal variants, we can detect all
causal variants using following steps: (1) Ixy is used
to mapping a causal variant with the maximum value
of Ixr; (2) Tyy is used to do association analysis for
all variants except the causal variant detected in (1).
If the association analysis result is positive, then re-
turn to (1). All causal variants will be found when
the association analysis result is negative. It should be
noted that we use the permutation procedure to as-
sess the statistical significance of the statistic Ty for
association analysis. Permutation procedure may need
more computing time to conduct simulation. But with
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the development of high-performance computing,
computing time may not be a problem in our study.
In addition, it can be seen that our method involves
only rare variants. A phenotype may affected by com-
mon variants or both common variants and rare vari-
ants. So our further work will involve extensive field
for common variants or both common variants and
rare variants.

Conclusions

The statistic Ty is affected slightly by non-causal
variants and the opposite effect variants. The power
of the Ty for association analysis of rare variants
increases with the stringency of the sample selection
for quantitative traits. Extreme phenotypes allow Tyg
to achieve higher power than three commonly used
methods. The LD measure lx; for fine mapping is
independent of the frequencies of non-causal variants
and just dependent on the frequencies of causal
variants.

Methods
In this study, all datasets were publically available
and no research requiring ethics approval was
conducted.

We consider an interesting gene region with k bial-
lelic variants and assume that each variant has a
minor allele m with the MAF P,, and a normal allele
M with the allele frequency P, (P, + Py=1). The
variants are indexed by i (i=1, .., k). The index i
may or may not correspond to the variant orders. Let
X; be minor allele count at ith variant carried by a
subject. Assume that there is a quantitative trait Y:

k
Y=By+G+¢e, where G= .ZlﬁtXi , Bo is the mean
=

baseline value, and ¢ is residual due to random envir-
onmental effects. Without loss of generality, we as-
sume B, =0 and e~N(0,¢%). To simplify our
presentation, we use a measure with a superscript “U”
to indicate a measure in the upper extreme popula-
tion that has phenotypic values of the quantitative
trait Y>U (U is an upper-threshold value, chosen
from the continuous distribution of the study quanti-
tative trait). We also use a measure with a superscript
“L” to indicate a measure in the low extreme popula-
tion that has phenotypic values of the quantitative
trait Y<L (L is an low-threshold value, chosen from
the continuous distribution of the study quantitative
trait). Assume NY and N subjects are sequenced
with k variants in the upper extreme population and
in the low extreme population, respectively, which are
indexed by j (j=1,.., N’/ N"). Denote X}j and Xﬁ; as
the number of copies “m” for jth subject at ith
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variant in the upper extreme population and in the
low extreme population, respectively. Then the fre-
quencies of P,, and P, at ith variant in the upper ex-
treme population and in the low extreme population,
denoted as pY., pY, and pL., pl., respectively, are es-
timated as follows:

/U L
N U N L

=1 _ U L _ i
NU’le l_pmi’pmi_ NL’

Pm, = and ph, =1-

pmi‘

A statistic test for association analysis in the first stage
In the first stage, we propose a statistic test for asso-
ciation analysis. We define a k-dimensional random

- = N\T
B> > Pontc)
minor allele m among all k variants, where p,,

vector p,, = as the proportion of the

= kz,# and X;; is the number of copies “m” for jth
ZZiXy

subject at ith variant. In the upper extreme popula-

tion and in the low extreme population, the k-

dimensional random vector of the proportion of the

. N - _u T
minor allele m are denoted as pb = (Do, Doy
L (=L .. =L \T : ~U
and  p,, = (P, " Pyi) - respectively, where p,.
NY NE
_zl)(;I L zlx}/
— _J= - —
= — and p,, = (i=1, 2, -+, k). We com-
¥ X} 5 z X

i=1j=1 Y
pare the two probability distributions pY and p-
using the KL-distance which is defined as in Kullback
& Leibler [26], here, we denote it the statistic Tgy:

i=1j=1 Y

T = H(p),,. P},

1(Ms P P
= | 2 P log= " +pr log™ ) (1)

mi mi

It is easy to find the relationship between Ty and the
frequencies of P, and P, as follows:

L U
1| & pY. U 2 Py k Lo Py

T =3 Z kp"” - log %’”’.7‘*1 +E f’m - log ifmf.‘j(l
Zprm " Elp%i Elpyliu " Elpbu‘

(2)

Ty, is the mean between two KL-distances where one
is the KL-distance between [92 and pr and the other is
the KL-distance between pm and pU KL-distance pro-
vides a non-symmetric measure of how big of the dif-
ference between two probability distributions are. The
KL-distance is always non-negative and equal to 0 only
if two distributions are identical. It can be seen that
Tk is a non-negative and symmetric measure of the
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two probability distributions [72 and i),Ln. So, Tky can be
used as a statistic to quantify the magnitude of associ-
ation between the variants and the quantitative trait: a
much larger Ty value will be observed under the alter-
native hypothesis of association compared to that under
the null hypothesis of no association.

A KL-distance index for fine mapping of QTL in the
second stage

Assume that a region linked to a quantitative trait
has already been established through association ana-
lysis at first stage. In order to simplify our presenta-
tion, we assume that this region contains only a
causal variant with a minor allele a (with frequency
P.) and a normal allele A (with frequency ps=1-p,),
here, we call it the quantitative trait locus (QTL). We
consider the quantitative trait Y = G, + ¢, where Gg is
the genotypic value at the QTL and e~N(0, ). We
hope to fine map this region by calculating the link-
age disequilibrium (LD) measure between the QTL
and a variant. We still use KL-distance to construct
this measure through comparing the probability distri-
butions of allele m and M at a variant in the upper
extreme population and in the low extreme popula-
tion. Following the previous symbols, let P,, and P,
be the frequencies of allele m and M at a variant.
From Eq. (1), we have

H({p,.pii}- {vapM})
P
:§< . logpL +pY - IngL +pk - long+pM logﬁ)

(3)

From Appendix, H({pY,p%}, {pt.pP5}) can be
asymptotically expressed as a function of LD (J,,,) be-

tween the QTL and the variant:

63}151 i (bu B bL)2

4

H({py, o3} v P }) =

Assume that there is an initial complete associ-
ation between the variant allele m and the QTL
allele a, at the Oth generation when the allele a is
initially introduced into the study population. Let
65221 be the initial complete LD between the allele a4
and m at the Oth generation, Sﬁm)l =py - P, After n
generations, the LD between the allele m and a is
8" = (1-60)"8%) = (1-0)" - py - p, [29], where, 6 is
the recombination between the QTL and the variant.
Then we have
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82 - (by -by)*
H U, U , L’ L ~ _am
({py pMi {Ph. P }) —2219M s
_ (1 - 0) npi p12\4 ! (bu _bL) (5)

Now we define a LD measure, here, we denote it as
Ixt, as follows:

1 "
lKL = &H ({me7pMU}7 {mevaL}) i 5(1 - 9)2 pi : b2
Pm
(6)

where b =b;— b;. It can be seen that /7 is a decreasing
function of the recombination 8 and reaches its maximum
at 6=0. So we can use lg; to find the variant closest to
the QTL and thus fine map the QTL. Notice from Eq. (6)
that Ix; is independent of the frequency of the variant, just
only dependent on the frequency of the QTL.

Simulation

Simulation for association analysis

To evaluate the performance of the test statistic Ty, we
perform a series of simulation studies. We consider k =
100 variants with MAF values of causal variants deter-
mined by a uniform distribution U (0.001, 0.01) and MAF
values of non-causal variants determined by a uniform
distribution U (0.001, 0.05). The genotype data are simu-
lated similar to those in Wang and Elston [30]. We first
generate haplotypes for k variants based on a latent vari-
able Z=(Z,, -+, Zy) from a multivariate normal distribu-
tion with covariance structure cov(Z;,Z)= 041771
between any two latent components. Then we combine
two haplotypes to obtain the genotype value for each indi-
vidual X; = (Xj1, -+, Xir)- A phenotype Y under the null hy-
pothesis of no association is generated using the model
Y = ¢ with e~N(0,1) (51 =" =x=0). Under the alterna-
tive hypothesis of association, we randomly chose s vari-
ants as causal variants while other k-s variants as non-
causal variants having 5; = 0. Here, we let s = 10, 20, 50 in
which 10, 20%, or 50% of rare variants were causal. For
causal variants under the alternative hypothesis, we set
Bj=c -logio(p,m:) as used in Lee et al. [10], where c is 0.6,
0.3, and 0.2 for different values of s and different direction
of the effects of causal variants. We consider 9 scenarios
in the simulation study with the parameter values detailed
in Table 3. We conduct 1000 simulations for each sce-
nario. In each simulation, we select three extreme sample
strategies, the low 20% and the up 20%, the low 10% and
the up 10%, and, the low 5% and the up 5%, each of which
consists of 2N individuals including N individuals in an
upper sample and N individuals in a lower sample. The
statistical significance is assessed by a permutation pro-
cedure. We first calculate the value of the data-based stat-
istic Typ for each simulation. Then we permute the

Page 7 of 9

Table 3 The parameter values for power study

Scenario causal variants Effect size weights Positive direction:
(s) (c) Negative direction

1 s=10 c=06 10:0

2 s=20 c=03 20:0

3 s=50 c=02 50:0

4 s=10 c=06 8:2

5 s=20 c=03 16:4

6 s=50 c=02 40:10

7 s=10 c=06 55

8 s=20 c=03 10:10

9 s=50 c=02 25:25

“upper sample” and “lower sample” labels with equal
probability and recalculate the statistic Ty for 1000 times.
The estimated P value is then the proportion of
permutation-based statistics that are larger than the data-
based statistic in 1000 permutations for each simulation.
For a given significance level a, the power/type I error rate
is estimated as the proportion of rejecting the null hypoth-
esis when p-value < a in 1000 simulations. In order to
compare the performance of the test statistic Ty with the
existing methods, we also obtain the power for the bur-
den, SKAT, and SKAT-O tests using case-control design
with the same samples as for the test statistic Tyq.

Simulation for fine mapping

To assess the performance of the LD measure [x; in
fine mapping rare causal variants of quantitative
traits, we conduct a simulation study using the
method similar to those described in our early work
[27, 28]. We consider a genetic region that has 21
variants, where only a variant locating at the middle
of variant 10 and variant 11 is causal variant (that is,
the QTL). The MAF of the causal variant is set to be
0.01(p, =0.01) and the MAFs for 20 other variants
are uniformly determined with values ranging from
0.001 to 0.05. Other parameters in simulation include
the ratio d/v (here, v and d are the genotypic values
for individuals with genotypes aa and Aa, respect-
ively), the thresholds L and U, the heritability (h?) of
the causal variant, and the sample size (2N) [31]. We
let the ratio d/v be —1, 0, and 1 which correspond to
recessive, additive, and dominant models, respectively.
Once the parameter values are chosen, a population
with the effective size of 15,000 is simulated starting
from the Oth generation, with an initial complete as-
sociation between the minor allele a at the causal
variant and m at other variants [P(m|a)=1]. The
population then evolved for 50 generations under ran-
dom mating and genetic drift. A hundred populations
are simulated for analyses.
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Appendix
Firstly, we calculate pY - log?—i’i. Under the assumption

of random mating and, thus, Hardy-Weinberg (HW)
equilibrium holding in the population, we can get.
pt=pr(m|Y <L) =pr(m,Y < L)/¢;, where ¢; = pr(Y < L)

pr(m,Y <L) =pr(m,aa,Y <L)+ pr(m,aA,s <T)
+pr(m,AA)Y <L)=p,.. p, pr(Y < Ll|aa)
F(Pra " Pa+ Pa - Pa) - pr(Y < Llad)
FPpa P pr(Y <LIAA) = p,, - p, - 1
+BPma " Pa + Pma Pa) * P12+ P Pa P2

=41 Pyt a2 Pya

where ¢y =pr(Y<L|aa), ¢p=pr(Y<L|aA), ¢n=
pr(Y<L|AA), a1 = (P11 - pa+ 2 - Pa) @1, az = (o2 - pa +
b12 - pa) @1

Note that.

Pma=Pm " Pat (Sma! PmA =Pm Pa+t 6mA! 6ma =
—Oma and ay -p,+ay -pa=1, here §,,. is the measure
of LD between variant allele 7 and the QTL allele ~ and
is defined as 8., =p_,, - p- - Py Where p,,_ is the fre-
quency of haplotype m ~ .

Then,

pfn:ﬂl»(pm~pa+5mu)+ﬂ2'(Pm'pA+5mA)

=Pm + 6ma(al — dz) =Pum + bL . 6ma

by =a; -ay (Where)

Similarly, we can get pi =py +br Omar P4 =p,,
+by - Oma and pY = py + bu - Saa, where by =c; - co,
c1= (11 Pat 12 - PAPws c2= (Y22 - Pa+ Y12 - Pa)Pus
¢LI=P7(Y> LI)!

yin=pr(Y> Ul aa), yo=pr(Y>U|aA), yxn=pr(Y>U|
AA), c1=(y11 - Pa+ 112 PO €2= (Y22 - Pa+ Y12 - Pd) I Pur

Then

U

b

P log 1 =p)y - logpy, —py, - logp,
m

P~ L+ by - Oma/P,,)
=W, +bu-0m)- lo ud
B b Ome) - 108y Soma )

=W +bu-0ma) - [log(1+ bu - Sma/p,y)

- log(1+ bL, - 6ma/pyy)] [by log(1 + %) =~ x—xz/Z]

bu . 6mu bu2 : dma2
b (20 - 2R
_ bL 3 Emu _ bL2 3 6ma2 ]
Pu 2"
. (bU - bL) N 6mu

= (Pm +bU‘5ma)

JECELRS

P 2p,,

Similar
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(bLI _bL) '6Ma i
Pm

y by +by) -9,
Pu- IOg% ~ (pp +bu - Oma) - (1—( u+ bi) Ma)
M

2py

L b - bu) - Sma br + bu) - S
p‘;n-log;%z(zfm+bpama)»“ ) -(1-(” u) )

P 2p,,

L b, -by) -5 (b + bu) - dm,
L logPM < (py 4 by - by) 2L 0Y M“-(1- )
Py gl’y/t (Pm L - OMa) Pt 2t
Then

H u U L L 71 U . 1 p_ﬁ U 1 lﬁ
({pm7pM}7 {pmpr}) - Z(Pm ngL +pM ngL

L L

P L Py
+py, - log=2 + pj; - log=)
S M Y

1|(bu~b1)" 8ma®  (bu-br)” - Sua”
~ +

2 P Pm
O’ (bu-by)”

Assume that there is an initial complete association
between the variant allele m and the QTL allele a4, at the
Oth generation when the allele « is initially introduced
into the study population. Let 55221 be the initial complete
LD between the allele 2 and m at the Oth generation,
89 = pur - p,. After n generations, the LD between the
allele 7 and a is 6) = (1-6)"6% = (1-6)"-py; - p,
[29], where, 8 is the recombination between the QTL
and the variant. Then we have

Oma” + (bu - by)"
u U L _L ~ e
H({pwpity Ao pin}) = =5, = -

_(1-0)"p; piy - (bu - b1)*

Then, we have
1 n
e =221 ({0, o} (o ")) = 5 (1 -0)"p. - b
Pm

where b =by; - b;.
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