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Abstract

The occurrence of multiple strains of a bacterial pathogen such as M. tuberculosis or C. difficile within a single human host, 
referred to as a mixed infection, has important implications for both healthcare and public health. However, methods for detect-
ing it, and especially determining the proportion and identities of the underlying strains, from WGS (whole- genome sequencing) 
data, have been limited. In this paper we introduce SplitStrains, a novel method for addressing these challenges. Grounded 
in a rigorous statistical model, SplitStrains not only demonstrates superior performance in proportion estimation to other 
existing methods on both simulated as well as real M. tuberculosis data, but also successfully determines the identity of the 
underlying strains. We conclude that SplitStrains is a powerful addition to the existing toolkit of analytical methods for 
data coming from bacterial pathogens and holds the promise of enabling previously inaccessible conclusions to be drawn in 
the realm of public health microbiology.

DATA SummARy
The authors confirm all supporting data, code and protocols 
have been provided within the article or through supplemen-
tary data files.

Supplementary data files can be found at 10.6084/
m9.figshare.14562321.

InTRoDuCTIon
Bacterial infections by pathogens such as Mycobacterium 
tuberculosis and Clostridium difficile often occur as mixed 
infections [1, 2], whereby a single patient is infected by 
several different strains of the same organism. Eukaryotic 
pathogens such as the main etiological agent of malaria, 
Plasmodium falciparum, can also cause mixed infections [3]. 
The identification of such mixed infections can be impor-
tant for reasons including both patient- level decisions [4] 
as well as public health measures [5]. In the latter setting, if 
the tracing of the origins of the mixed infection is needed, 

it may be additionally required to separate the mixed infec-
tion into its constituent strains. The separation may also be 
informative when the mixed infection is hetero- resistant [6], 
namely, when some, but not all, the strains are resistant to a 
particular antimicrobial drug. Moreover, a failure to identify 
the within- host pathogen diversity can lead to misdiagnosing 
a relapse and reinfection [7]. However, so far, the problem of 
identifying mixed infections and separating them into their 
constituent strains has not received a sufficient amount of 
attention in the literature.

Although older techniques based on the detection of specific 
regions, such as VNTR (variable- number tandem repeats) 
[8], are often able to detect such a mixed infection [9], this 
is not always the case with next- generation sequencing. The 
main challenge is that the presence of two alternative alleles 
in a given genomic position may signal a sequencing error as 
well as the presence of multiple strains. The key distinguishing 
feature of a mixed infection is the consistency of the fraction 
of the sample attributable to the sub- dominant strain across 
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most of the variable positions. Thus, depending on the depth 
of coverage, the similarity between the constituent strains 
and the proportions in which they are mixed, the problem 
of detecting and separating mixed strains may vary from 
straightforward to nearly infeasible.

Several methods for this problem have appeared over the 
past decade. Eyre et al. [2] propose a Mixed Infection 
Estimator, a two- step approach for mixture proportion 
estimation using a maximum likelihood analysis and mixed 
strain identification using a custom database. Even though the 
paper presents results for C. difficile, the mixture estimation 
algorithm can be generalized to other pathogens such as M. 
tuberculosis. This method computes a deviance statistic and 
uses a threshold value for this statistic to detect mixed infec-
tions. As this algorithm was initially designed for C. difficile 
and relies on a custom database of sequences to identify the 
constituent strains, it could only be used for mixture propor-
tion estimation in our context. More recently, Sobkowiak et al. 
[10] developed MixInfect, a method for mixture propor-
tion estimation using a Bayesian model- based clustering 
technique. This method calculates the ratio of heterozygous 
calls to total SNPs (single nucleotide polymorphisms) and 
uses a threshold on this ratio to identify mixed samples. While 
this algorithm can estimate mixture proportions it does not 
provide any functionality for resolving the constituent strains. 
The most recent method, QuantTB by Anyansi et al. [11], 
relies on a specially constructed publicly available database 
of 2166 M. tuberculosis assemblies from NCBI [12]. This 
method provides mixture estimates of WGS samples as well 
as the identification of strains whose sequence is similar to the 
ones included in the database. To determine the constituent 
strains, this method compares the sample to the sequences 
in the reference database, scoring each of the assemblies. The 
algorithm then determines how many constituent strains are 
present in a sample. This approach does not generalize to 
situations where the underlying strains lack close representa-
tives in the database, which makes its performance highly 
dependent on the database’s representation of the common 
strains in the relevant local context.

In this paper, we address this problem with a tool called 
SplitStrains, grounded in a rigorous statistical 
framework. It is based on formulating, for a given set of 
WGS reads, two alternative hypotheses, namely: the reads 
belong to a single strain (null hypothesis) or to a mixture 
of two strains (alternative hypothesis). We then use the EM 
(Expectation- Maximization) algorithm [13] to estimate the 
parameters of both hypotheses, and compare their likeli-
hoods to draw a conclusion. As a result, we simultaneously 
obtain:

•	 A call to decide whether the sample represents a single 
(pure) or a mixed infection,

•	 A likelihood ratio between the alternative and the null 
hypothesis for the call, and,

•	 If mixed, the proportion of each constituent strain and a 
Binary Sequence Alignment Map (BAM) file grouping the 
reads belonging to each constituent strain.

Our results on both simulated and real M. tuberculosis data 
show that SplitStrains is effective at identifying mixed 
infections and continues to perform well even at a relatively 
low depth of coverage (60×) and low genetic distance (20 
SNPs) between strains. Moreover, SplitStrains outper-
forms previously published tools Mixed infection 
estimator, MixInfect and QuantTB on simulated 
data. Furthermore, our results show that SplitStrains 
accurately separates the constituent strains provided that their 
proportions are not too close to each other and they are not 
too similar. SplitStrains is available on GitHub: https:// 
github. com/ WGS- TB/ SplitStrains.

mETHoDS
This part of the paper is organized as follows. First, we 
briefly describe the datasets used in our analysis. Second, 
we explain the construction of the feature vector used in 
our probabilistic model and show how to use it to classify 
an isolate. Third, we define the Naïve Bayes Classifier for 
the assignment of reads to strains. Lastly, we show how this 
approach can be generalized to three or more strains.

We begin by describing the datasets used in our analysis. We 
report the average number of SNPs relative to the reference 
genome in the Results section. Here we additionally report 
the average number of heterogeneous SNPs, defined by a 
0/1 in the GT field of the VCF file produced by aligning the 
sample to the reference genome. We note that the number of 
heterogeneous SNPs depends on the alignment and variant- 
calling steps of the pipeline. Therefore, for the in silico 
datasets, this number may be lower than the total number 
of SNPs added to the reference genome when generating 
the sample. We report the per- sample statistics in Table S1 
(available in the online version of this article).

Dataset A, in vitro. The 48 mixed M. tuberculosis samples 
presented in [10] are artificially generated in vitro by 
combining the DNA from two clinical cultures of M. 

Impact Statement

When multiple strains of a pathogenic organism are 
present in a patient, it may be necessary to not only detect 
this, but also to identify the individual strains. However, 
this problem has not yet been solved for bacterial patho-
gens processed via whole- genome sequencing. In this 
paper, we propose the SplitStrains algorithm for 
detecting multiple strains in a sample, identifying their 
proportions, and inferring their sequences, in the case of 
Mycobacterium tuberculosis. We test it on both simulated 
and real data, with encouraging results. We believe that 
our work opens new horizons in public health microbi-
ology by allowing a more precise detection, identification 
and quantification of multiple infecting strains within a 
sample.
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tuberculosis. The DNA is quantified through spectrophotom-
etry in liquid culture and combined to produce four sets of 12 
samples with major strain proportions of 70, 90, 95 % (mixed) 
and 100 % (pure). The average number of heterogeneous SNPs 
is 327.

Dataset B, in silico. The 60 artificial samples presented in 
[14] are generated from the standard reference genome for 
M. tuberculosis by substituting randomly chosen alleles 
at each of 553 genes in an essential core genome MLST 
scheme (ecgMLST), created by intersecting the set of core 
genes in an existing scheme with the set of 615 essential 
M. tuberculosis genes [15]. The full dataset contains three 
pure genomes, with ten samples generated from each one by 
varying the depth of coverage from 10 to 100 in increments 
of ten, and three mixed genomes obtained by mixing an 
additional three pure genomes in pairs, with ten samples 
generated from each by varying the major strain proportion 
from 50% to 95 % in 5 % increments. The average number 
of heterogeneous SNPs is 2843.

Dataset C, in silico. For this dataset, generated specifically 
for this paper, the constituent strains are produced from the 
H37Rv reference genome. The WGS data is produced by the 
ART simulator [16] with the following settings:

(1) Profile: HiSeqX PCR free
(2) Read length: 150
(3) Per base sequence quality scores: 20 to 30 on the Sanger/

Illumina 1.9 scale.
(4) Quality shift: in order to match the quality of the real 

data, we shifted the quality scores down by nine to pro-
duce relatively uncertain sequences with high sequenc-
ing errors.

(5) Depth of coverage: 100 for single- strain and two- strain 
samples and 150 for three- strain samples.

The dataset consists of eight two- strain mixtures, six three- 
strain mixtures, and eight single strains. The two- strain 
mixtures have major strain proportions varying from 50% 
to 95 % in 5 % increments, with 55% and 60 % omitted. The 
six three- strain samples have proportions 10:25:65, 15:30:55, 
20:35:45, 25:40:35, 30:45:25, and 35:50:15. The average number 
of heterogeneous SNPs is 136 for the two- strain samples and 
583 for the three- strain samples. The simulated reads were 
aligned back to the reference genome with BWA- MEM [17].

Dataset E, in silico. For this dataset, generated specifically 
for this paper, the constituent strains are produced from 
the same H37Rv reference genome with N ∈{10, 15, 20, 
25} random base substitutions. This yields four subsets 
that contain single and two- strain samples. The first subset 
contains eight single strain and eight two- strain samples 
with proportions varying from 50% to 95 % in 5 % incre-
ments, with 55% and 60 % omitted. All the samples in the 
first subset have ten SNPs relative to H37Rv, and since these 
SNPs are chosen independently at random, the two- strain 
samples are 20 SNPs apart. The remaining sample subsets 
have the same proportions, but more SNPs. The genetic 
distances between mixed strains in each of the subsets are 

thus 20, 30, 40 and 50 SNPs, respectively. The WGS data 
is produced by the ART simulator with the same settings 
used to generate Dataset C except for the depth of coverage, 
which is set to 60 for all the samples.

Required input data
The SplitStrains pipeline uses the BWA- MEM tool, 
which makes use of paired- end information to produce 
the alignment. The current pipeline only keeps those pairs 
for which both elements have been mapped, in order to 
reduce the possibility of errors. Hence, SplitStrains 
only requires a BAM file of the paired- end data, a reference 
genome, and optionally, a generic feature format (GFF) file. 
We say that a sample represented in the BAM file contains 
a single strain if it is pure, a pair of strains called major 
strain and minor strain if it is a mixture of two strains, 
or multiple strains in the case of a mixture of more than 
two strains.

Data pre-proccessing
All datasets are pre- processed with Trimmomatic [18]. The 
Trimmomatic settings are:

ILLUMINACLIP=TruSeq3- PE-2,

SLIDINGWINDOW=4 with trimming threshold=16,

Leading=10,

Trailing=10,

Minlen=40.

Feature vector construction
The BAM file contains the alignment information for each 
individual read of a sequenced organism. We first convert the 
BAM file into a pileup format using the pysam library [19]. This 
pileup format summarises the alignment information for each 
individual base of the reference genome. We then construct a 
per- base feature vector defined as follows:

 xi := (p(i)A , p(i)C , p(i)G , p(i)T ; d(i)), (1)  

where  p
(i)
b ∈ [0, 100]  for  b ∈

{
A,C,G,T

}
  is the percentage of 

base  b  at position i, so that ∑b ∈ {A,C,G,T}  p
(i)
b = 100,  and d(i) is the 

total depth (number of aligned reads) at this position. Note 
that if  p

(i)
b > 0  for more than one b, there could be a SNP at 

position i. In practice, at most two of the  p
(i)
b  ’s are non- zero 

most of the time. In the absence of sequencing errors, we 
expect exactly one of the  p

(i)
b  ’s to equal 100 for every in the case 

of a single strain. On the other hand, in the case of a mixed 
sample that has a major strain at a proportion  p ≥ 1

2  and a 
minor strain at a proportion  1− p , we expect to see  p

(i)
bi

= p  
and 

 
p(i)
b
′
i
= 1− p

 
, where  bi ̸= b

′

i , for sufficiently many positions i.

Fig. 1 shows an example with two adjacent positions, i and 
 j . There are  n = 8  reads supporting position i, six of them 
containing an A  and the remaining two containing a T  . The 
depth is  d(i) = 8  and the percentages of bases A and T at    
are  p

(i)
A = 75  and  p

(i)
T = 25 , respectively. The adjacent position 
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Fig. 1. An example read alignment and the corresponding feature vector.

 j  has the same depth and a  G  in one of the reads, with the 
remaining reads containing a  C . They are summarized by the 
feature vectors  xi = (75, 0, 0, 25; 8)   and  xj = (0, 87.5, 12.5, 0; 8)  , 
respectively.

We empirically observed that sites with a relatively low depth of 
coverage contained reads that could not be reliably aligned by 
BWA- MEM (i.e. they had poor alignment quality scores). For 
this reason, we chose to filter out any site  xi  with depth coverage 
 d(i)  below  k = 70%  of the mean depth of coverage. Additionally, 
we use a GFF file based on the M. tuberculosis reference genome 
(NC 000962.3), but with the mobile and PE/PPE genes removed. 
This user- customizable GFF file ensures that SplitStrains 
analyses only annotated gene regions excluding mobile and PE/
PPE genes, as the latter are known to be highly repetitive and 
produce unreliable alignment and variant calling results [20].

Detecting mixed samples
We test two hypotheses: the null hypothesis  (H0) , which states 
that there is a single strain in the data, and an alternative 
hypothesis  (H1) , which states that there are two strains with 
proportions  p  and  1− p , respectively. Our data D  consists of 
all the feature vectors  xi  described above.

The likelihood of the data D under  H0  is based on the fact 
that, for every position i, the feature vector  xi  can only have a 
non- zero percentage at one base  b , that is  p

(
i
)

b = 100 . That is, 
under the null hypothesis, the maximum likelihood estimator 
of the underlying base given a single strain would always be the 
most frequently observed nucleotide. However, we also allow 
sequencing errors to occur with probability  ϵ0 . Therefore, using 
the notation  di  for the number of reads that map to position i, 
and  ki  for the number of those reads that end up with the most 
frequent base, we have

 
P(D| H0) =

∏
i


di

ki


 ϵdi−ki

0 (1− 3ϵ0)ki , with ki := di ·max
b

p(i)b . (2)
  

where the last term in the product arises from the fact that 
a sequencing error can occur in three different ways, so the 
probability of getting the correct base is  1− 3ϵ0 .

Under  H1  we assume that there are two strains with proportions 
 p  and  1− p , and sequencing errors which occur with prob-

ability  ϵ1 . We now use  
n(i)M := di ·max

b
p(i)b   and 

 
n
(
i
)

m := di ·max
b′ ̸=b

p
(
i
)

b
′

 
 

to denote the counts of the most and second most frequent 
bases at position i, and  n

(i)
e := di − (n(i)M + n(i)m )   to denote the 

count of the remaining bases.

Repeating the above analysis gives us the following expression:

 

P(D| H1) =
∏
i


 d(i)

n(i)M , n(i)m , n(i)e


(

p(1− 3ϵ1) + (1− p)ϵ1
)n(i)M (

(1− p)

(1− 3ϵ1) + pϵ1
)n(i)m ϵ

n(i)e
1 , (3)   

where

 


 d(i)

n(i)M , n(i)m , n(i)e


 :=


 d(i)

n(i)M





d(i) − n(i)M

n(i)m


 (4)

  

is the trinomial coefficient, which generalizes the binomial 
coefficient.

Using the likelihood ratio test, we can now formulate the 
following condition:

 
 if− 2

(
log(P(D | H0))− log(P(D | H1))

)
< c, then selectH0, otherwiseH1. (5) 

 

The threshold value  c  is defined based on the significance 
level α  using the  χ2  distribution with one degree of freedom. 
Finally, in order to evaluate Equation (5) we estimate the 
parameters  ϵ0  for  H0  and  p, ϵ1  for  H1  using the well- established 
Truncated Newton constrained optimization algorithm [21]. 
In both cases we estimate a set of parameters that maximize 
the likelihood of the data conditional on the hypothesis, i.e. 
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we perform maximum likelihood estimation on the corre-
sponding parameters.

Read assignment with two strains
In order to obtain a read assignment to a strain, we wish to 
compute the probability of a read r belonging to the major 
strain M   and to the minor strain  m . Let  Pr[r ∈ M]  and 
 Pr[r ∈ M]  denote the respective probabilities. A read often 
supports multiple SNPs at the same time, say, at positions 
 i1, i2, . . . , in ; we let  Cr =

{
i1, i2, . . . , in

}
  be the set of such posi-

tions for a read  r .

For each  i ∈ Cr  we get the counts of each base  b ∈
{
A,C,G,T

}
  

from the feature vector  xi . Let  x
(
i
)
  denote the count of the 

base  ri  found in the read  r  at position  i ∈ Cr . We then define 
the following condition:

 if
Pr[r ∈ M|x(i) , i ∈ Cr]
Pr[r ∈ m|x(i) , i ∈ Cr]

≥ 1, then r ∈ M, otherwise r ∈ m. (6)  

We now analyse Equation (6) under two alternative models - a 
binomial one and a Gaussian one with equal variances (which 
would be the case if the Gaussian model was approximating the 
binomial one because  σ2

1 = d(i)p(1− p) = d(i)(1− p)p = σ2
2  . We 

show that both of these models simplify to a majority vote of the 
variants present inside a read, where the  i− th variant’s number 
of votes for a strain equals to its frequency in the feature vector, 
 xi . However, these votes are unweighted in the binomial model, 
while in the Gaussian model, each variant’s total number of votes 
is normalized to one by dividing it by the depth of coverage  d(i) .

Suppose that the proportions of the major and the minor 
strains are  p  and  1− p , respectively, as inferred from the 
mixture model. Since  p  is the proportion of the major 
strain, we may assume that  p ≥ 1

2 . To further simplify the 
computation, we assume that each  xi  is independent. Then 
the left- hand side of Equation (6) can be expressed as a ratio 
of products:

 
if

∏
i∈Cr

(
d(i)
x(i)

)
px

(i)
(1−p)d

(i)−x(i)

∏
i∈Cr

(
d(i)
x(i)

)
(1−p)x(i) pd(i)−x(i)

≥ 1, then r ∈ M, otherwise r ∈ m. (7)
  

Simplifying the left- hand side further, we arrive at a simple 
condition, independent of  p :

 
if

∑
i∈Cr

(2x(i) − d(i)) ≥ 0, then r ∈ M, otherwise r ∈ m. (8)
  

Therefore, by applying Equation (8) we can classify whether 
a read  r  belongs to the major or the minor strain. In the case 
of a perfect tie, we assign the read to the major strain.

If, instead of the derivation above, we use the Gaussian prob-
ability density functions  f

(
x|µ,σ1

)
  and  f

(
x|1− µ,σ2

)
  to model 

the ratios in Equation (6), and further assuming equal variances 
 σ = σ1 = σ2 , we arrive at a condition very similar to that in Equa-
tion (8):

 

∏
i∈Cr f (x

(i)/d(i)|µ,σ)∏
i∈Cr f (x

(i)/d(i)|1−µ,σ) ≥ 1 iff
∑
i∈Cr

(2x(i)/d(i) − 1) ≥ 0. (9)
  

Although similar, Equations (8) and (9) can lead to opposite 
conclusions when the depth of coverage  d

(
i
)
  varies between 

the positions occurring in a read; for instance, when a read 
r contains two biallelic positions, with the first one occur-
ring in six reads of which five (including r) agree with the 
major strain, and with the second one occurring in nine 
reads of which two (including r) agree with it, then the 
binomial model would assign this read to the minor strain 
(since 2 (5 + 2) = 14 < 15 = 6 + 9), while the Gaussian 
model would assign it to the major strain (since 5/6 + 2/9 
= 19/18 > 1). On the other hand, it is easy to see that if 
the coverage is uniform, i.e.  d

(
i
)
= D  for every position in 

the read, then Equation (8) and Equation (9) are equiva-
lent. Hence, it is possible to use either the binomial or 
the Gaussian distribution in Equation (6), with identical 
assignments when we assume uniform coverage and equal 
variances and normalize the means to add up to one. In our 
implementation we choose not to constrain the variances to 
be equal, and apply the left- hand side of Equation (9) with 
the empirically fitted mean and variance, but with the fitted 
means normalized by their sum prior to the computation. 
This leads us to the more general situation, where we have 
 n > 2  strains in a sample.

Binomial and Gaussian mixture models for multiple 
strains
In this subsection we describe a probabilistic model for 
proportion estimation and read assignment in the case of 
multiple strains.

In order to build the Mixture Model, we use the information 
in the feature vectors  xi  to construct a matrix X as follows

 X := [p(i1)A , p(i1)C , p(i1)G , p(i1)T , . . . , p(iN)A , p(iN)C , p(iN)G , p(iN)T ], (10)  

where  
{
in
}N

n=1  is a strictly increasing sequence of integer indices 
(i.e.  i1 < i2 < . . . < iN  ) of variable positions. Now, let K   be the 
number of strains in a sample. We denote the unknown 
proportions of each strain as  µ1, . . . ,µK  , the standard devia-
tion of each proportion as  σ1, . . . ,σK  . and the weight of each 
mixture model component, as  w1, . . . ,wK  . Define the param-
eter vector  θ : =

{
µ1,σ1,w1, . . . ,µK,σK,wK

}
 ; then the mixture 

model has the following form:

 
p(θ | X) =

K∑
k=1

wkf (x | µk,σk), (11)
  

where  f
(
x |µk,σk

)
  is the density function of a binomial or 

Gaussian distribution.

For a given X  , we use the well- established EM (expectation 
maximization) algorithm to learn θ .

Once the model has been learned (Fig. 2), it is possible to 
proceed to the assignment of each read to a strain via Naïve 
Bayes classification:

 
pk = Pr[r ∈ Sk | p(i)ri for i ∈ Cr] ∝ wk

∏
i∈Cr

f (p(i)ri | µk,σk). (12)
  



6

Gabbassov et al., Microbial Genomics 2021;7:000607

Fig. 2. Example of a simulated mixed sample, the data X  , containing a major and a minor strain with respective percentages 

 µ1 = 70,µ2 = 30 . The red bars represent filtered out sites  xi  with depth  d(i)  less than  κ = 70%  of the average depth of coverage.

Finally, we use a maximum a posteriori assignment:  r ∈ Sj  if 
and only if  pj = max

{
pk

}
 .

Computational settings
All our computations are performed on a 64- bit Ubuntu 
Linux computer with eight CPU cores and 16 GB of RAM. 
The entire pipeline’s running time ranges from 2 minutes to 
30 minutes per sample, depending on the settings and the 
depth of coverage.

RESuLTS
For simplicity, a WGS sample will be called pure if it contains 
a single strain of the sequenced organism and mixed other-
wise. The SplitStrains algorithm classifies a sample as 
being pure or mixed. If the sample is classified as mixed, the 
algorithm detects the proportion of each strain and separates 

the reads according to which strain they belong to. In order to 
accomplish this, the algorithm proceeds through three stages.

First, SplitStrains uses the sample’s SNPs to infer 
the parameters of a Gaussian or binomial Mixture Model 
(GMM), which identifies the number and the proportions of 
the constituent simple strains. The likelihood ratio statistic 
produced in the process provides a rigorous quantification 
of the confidence about its status as a pure or mixed sample. 
The algorithm then uses the model’s estimated parameters in 
a Naïve Bayes classifier to assign each read that contains vari-
able positions to one strain. Finally, it produces a BAM file for 
each constituent strain. Note that any read that does contain 
any variable positions does not get classified, and instead gets 
included in all the BAM files produced. The process is shown 
in Fig. 3.

In principle, it would be possible for SplitStrains to 
partition the SNPs instead of the reads. However, we choose 
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Fig. 3. SplitStrains workflow overview.

to partition the reads for two reasons. First, there is generally 
more information to classify a read than there is to classify 
a SNP, because a single read can contain multiple SNPs, as 
we explain in the Methods. Second, an assembly program 
(either reference- based or de novo) can be applied directly 
to the BAM files representing each strain, which can make 
the downstream analysis more accurate in cases where the 
variation present in some of the strains is not limited to SNPs, 
but also includes indels or copy number variants.

Although SplitStrains is primarily designed for samples 
containing one or two strains, we also apply it to situations, 
rarely seen with M. tuberculosis but more common with other 
bacteria, where three strains are present in a single sample. 
We note that our likelihood ratio statistic is calibrated to 
distinguish between the pure and the mixed case but is not 
in general sensitive enough to distinguish between two- strain 
and three- strain samples. For this reason, we consider our 
mixed sample detection to be correct if it classifies a mixed 
sample as mixed, regardless of the number of underlying 
strains.

To evaluate the strain proportion estimation in a uniform 
way, we consider the accuracy of the proportion estimation 
for the major strain (which, in the case of a two- strain sample, 
is equivalent to the accuracy for the minor strain). Lastly, to 
evaluate the assignment of reads to constituent strains, we 
separately analyse the samples with two and three strains, and 
explicitly specify the number of constituent strains as two or 
three.

We evaluate the performance of the SplitStrains algo-
rithm by quantifying the accuracy of its mixture proportion 
estimation and strain separation on several datasets:

•	 Dataset A 48 in vitro samples, including 12 pure and 36 
artificially mixed two- strain samples with known strain 
proportions, published together with a previous method, 
MixInfect [10]. The samples have an average of 1249 
SNPs relative to the reference genome. This dataset is the 
most realistic representation of mixed infections since it 
is generated in vitro by combining the DNA from two M. 
tuberculosis cultures.

•	 Dataset B 60 in silico samples, including 30 pure and 30 
mixed two- strain samples with known strain proportions, 

published together with a study on whole- genome MLST 
schemes from our group [14]. The samples have an average 
of 6375 SNPs relative to the reference genome. This dataset 
is the second most realistic dataset since it is based on 
previously observed alleles of genes and includes a wide 
range of different mixture proportions.

•	 Dataset C 22 in silico samples, of which eight are pure and 
14 are mixed (eight with two and six with three constitu-
ent strains) produced specifically for this work. The mixed 
samples are derived directly from the reference genome 
by independently adding 100 SNPs per strain in the two- 
strain samples, and 300 SNPs per strain in a three- strain 
sample. This is the least realistic dataset, and it is designed 
to test SplitStrains’s ability to generalize to data 
with one, two or three strains and a wide range of mixture 
proportions.

•	 Dataset D 59 real samples chosen among those collected 
in population- level surveys in Azerbaijan, Bangladesh, 
Belarus, Pakistan, Philippines, South Africa (Gauteng 
and Kwazulu Natal provinces) and Ukraine, collected 
between 2009 and 2014 [22], with additional samples from 
a large- scale whole genome sequencing study conducted 
in Malawi [23]. The samples have an average of 1248 SNPs 
relative to the reference genome. This dataset contains real 
samples, and their true label (pure or mixed) is unknown.

•	 Dataset E 64 in silico samples, 32 pure ones and 32 mixed 
ones with two strains each, used to test the method at a low 
depth of coverage (60) and a low genetic distance. The 32 
mixed samples have one of eight known major strain pro-
portions, and for each proportion, the samples are derived 
from the reference genome by independently adding 10, 
15, 20, or 25 SNPs per strain. This is a calibration dataset 
designed to test SplitStrains’s ability to detect mixed 
infections with very short genetic distances.

The analysis starts by classifying a given sample as mixed or 
pure. It uses the likelihood ratio test (LR) to compare the 
single strain (null) and the multiple strains (alternative) 
hypotheses. We use the LR statistic to guide the decision 
process. The algorithm also reports the estimated mixture 
proportions. If the sample is called mixed, the algorithm 
further classifies each read containing one or more variants 
as belonging to a specific strain. Note that this assignment can 
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Fig. 4. Proportion estimation. The 74 true mixed samples and their major proportion estimated by SplitStrains.

be extended to a full strain assembly as is frequently done in 
metagenomics [24], but we do not explicitly do so to focus 
on our contribution and avoid the complications due to the 
choice of a suitable assembly algorithm [25]. We now discuss 
the performance of SplitStrains on each of the datasets, 
omitting the real Dataset D which cannot be used for evalua-
tion due to the absence of “gold standard” information.

mixed sample detection
SplitStrains is consistently able to detect mixed infec-
tions across all the datasets, which suggests its robustness to 
different numbers of SNPs, depths of coverage, minor strain 
proportions, and synthesis methods.

Dataset A SplitStrains correctly classifies all 12 pure 
samples when the significance level threshold set to α = 0.05. 
Then 23/24 mixed samples with major strain proportions of 
70 and 90% are also correctly classified. 11/12 samples with 
a major strain proportion of 95 % are misclassified as pure; 
however, by increasing the significance level threshold to 
α = 0.1, SplitStrains correctly classifies 8/12 of these 
samples, while the classification results for the 24 mixed 
samples remain unchanged. In total, 43/48 samples (90 %) 
get correctly classified with α = 0.1.

Dataset B SplitStrains classifies 29/30 mixed samples 
as mixed, the exception being a sample with a major strain 
proportion of 95 %. However, using α = 0.1 instead of α = 0.05 
allows for the correct classification of all 30 mixed samples. 
Then 27/30 pure samples get classified as pure with α = 0.1, 
and the three misclassified samples have a very low average 

depth of coverage (10). In total, 57/60 samples (95 %) get 
correctly classified with α = 0.1.

Dataset C SplitStrains correctly detects 13/14 mixed 
samples using α = 0.05, including 6/6 samples with three 
constituent strains. The misclassified sample is the two- strain 
sample with a major proportion of 95 %. All 8 pure samples 
are correctly classified as pure. In total, 21/22 samples (95 %) 
get correctly classified with α = 0.05.

Dataset D We also applied SplitStrains to a real dataset 
containing 59 samples. A preliminary analysis used a refer-
ence mapping pipeline with variant calling optimized on 
curated databases [26], and declared 27 of the samples as 
mixed. SplitStrains classifies 24/27 of these samples as 
mixed with α = 0.05, and classifies the remaining 35 samples 
as pure, demonstrating a concordance of 56/59 (95 %) with 
the reference mapping pipeline that makes extensive use of 
database information.

mixture proportion estimation
In those datasets where the true proportion of the major strain 
is known, we can compare that proportion to the one inferred 
by SplitStrains, conditional on its correctly classifying 
the sample as mixed. The correctly classified mixed samples 
have a maximum deviation from the true solution of 11 %; 
the worst case occurs for a sample with true major propor-
tion of 95 %, which is estimated as 84 % by SplitStrains. 
In general, the estimation is accurate up to a 90 % major 
strain proportion but starts to decrease as this proportion 



9

Gabbassov et al., Microbial Genomics 2021;7:000607

Table 1. RMSE comparison across all datasets

Dataset Size (two- strains only) SplitStrains Mixed infection estimator MixInfect QuantTB

A 36 0.056 0.068 0.178 0.153

B 30 0.025 0.018 0.031 0.202

C 8 0.066 0.066 0.041 0.312

Combined 74 0.047 0.053 0.126 0.196

Fig. 5. Confusion matrices for two- strain samples, Dataset C. The major and minor strains are denoted A and B; their proportions are 
displayed above each matrix.

approaches 95 % (Fig. 4). We measure the deviation of all the 
estimates from their true values using the Root Mean Square 
Error (RMSE). Averaged across all three datasets with known 
true proportions, the RMSE of SplitStrains is less than 
5 %, as also shown in Table 1 below.

Assignment of reads to constituent strains - 
Dataset C
Once the mixture model parameters have been estimated, the 
algorithm assigns each read containing one or more variable 
sites to a constituent strain using a Naïve Bayes approach. 
Note that those reads that do not contain any variant sites or 
have zero map quality remain unassigned (i.e. we perform a 
partial, rather than complete, strain reconstruction). In Figs 5 
and 6 we respectively present the two- strain and three- strain 
confusion matrices to show the performance of this assign-
ment on Dataset C, which is designed in such a way that the 
provenance of each read is known. We set α = 0.05 to resolve 
the mixed strains. As explained above, the two- strain mixed 
sample with 95 % major strain proportion is misclassified as 
pure, so Fig. 5 only contains seven contingency matrices. 
Here, a read is deemed to be classified correctly when it is 
assigned to its own strain, and incorrectly otherwise. These 

figures suggest that our assignment accuracy decreases as 
the two major strain proportions get close to each other, for 
samples with both two as well as three strains.

In practice, even if major and minor strain proportions are well 
apart, say 70:30, each individual variant in a read alignment file 
rarely has a clean 70:30 allele split. Instead, a variant’s allele propor-
tions take on values which are approximately normally distributed 
with respective means 70 and 30. SplitStrains successfully 
handles such variants. However, if a variant comprised of two 
alleles has an allele with a frequency below a user- specified 
threshold (the default being 10 %), such a variant is deemed to be 
noisy and is not processed.

Using the read assignments to the strains, the algorithm 
outputs a new alignment file for each strain. In order to 
further evaluate the accuracy of the assignment, we create 
a consensus sequence from each alignment file. We expect 
the consensus sequences to match the respective genomes 
of the constituent strains. As the genome of each constituent 
strain has the same number N of base substitutions relative to 
the reference genome, due to the way they are generated, the 
consensus sequences can have between 0 and N mismatches 
with the true sequences. In the case of the two- strain mixtures, 
our algorithm successfully separates the strains with major 
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Fig. 6. Confusion matrices for three- strain samples, Dataset C. The strains in each sample are denoted A, B and C; their proportions are 
displayed above each matrix.

strain proportion varying from 55% to 90 %. However, as the 
major strain proportion gets closer to 50 %, correct assign-
ment of reads becomes steadily more challenging, as shown in 
Fig. 7. We note that SNPs in the reads that the alignment algo-
rithm was unable to find a reasonable quality alignment for 
are not counted toward the errors in this analysis. Such reads 
are contained in the intervals [400 130, 401 700], [888 990, 
891 520] and [2 550 020, 2 551 390] in the reference genome 
for M. tuberculosis, H37Rv (accession number NC 000962.3 
at NCBI [12]), which fall within repetitive or mobile genome 
regions and are known to cause poor read alignments.

Comparison with other tools
SplitStrains consistently outperforms MixInfect 
[10], QuantTB [11] and Mixed Infection Esti-
mator [2] in discriminating between pure and mixed infec-
tions. We illustrate their discrimination performance on 
datasets A, B and C combined in Fig. 8; their performance 
on each of the datasets separately is shown in Fig. 9 in the 
Supporting Information. The Receiver Operating Character-
istic (ROC) curve shows the true positive rate (TPR) against 
the false positive rate (FPR) at various threshold settings. 
The Area Under the Curve (AUC) quantifies how well the 
algorithm is able to distinguish between pure and mixed 

infections. Higher AUC values mean that the algorithm is 
better at predicting the class of a sample. The statistics used 
as inputs to the AUC computation are as follows: likelihood 
ratio for SplitStrains, proportion het/total for MixIn-
fect, deviance for Mixed Infection Estimator, 
and internal totscore for Quant TB. SplitStrains has 
the highest AUC (0.99) and can achieve close to 100 % TPR 
with an FPR as low as 11 %. The second best classification 
performance is obtained by MixInfect, with an AUC of 
0.97. The ROC curves of SplitStrains and MixInfect 
are fairly close to one another, but the latter produces more 
false positives at higher true positive rates, giving a lower 
overall area under the curve.

SplitStrains also consistently obtains the lowest or second 
lowest proportion estimation error among the tools, and has the 
lowest error on the combined dataset. These results are shown in 
detail in Fig. 10 and summarized in Table 1.

Performance with low genetic distance and depth 
of coverage
We test the performance of SplitStrains on Dataset 
E which contains 32 pure and 32 mixed strains with small 
genetic distances (20, 30, 40 and 50 SNPs) and a low depth 
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Fig. 7. Assignment error. The proportion of mismatches due to the incorrect assignment of reads among the positions where the strains 
differ from one another.

Fig. 8. ROC curves for the four tools. Performance in separating pure and mixed samples in datasets A, B and C.

of coverage of 60. SplitStrains’s ability to detect mixed 
infections in this setting depends on the threshold α. Higher α 
values allow the detection of mixed strains with small genetic 
distances at the risk of classifying pure strains as mixed. 

Fig. 11 shows the minimum α threshold needed to correctly 
identify mixed samples as mixed at a given SNP distance 
and major strain proportion while also correctly classifying 
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Fig. 9. ROC curves of all tools for each individual dataset A, B and C.

the pure samples as pure at the same SNP distance from the 
reference genome.

Fig. 11 shows that smaller genetic distances and larger major 
proportions require larger values of α. For instance, a distance 
of 20 SNPs and a major strain proportion of 90 % represents a 
challenging case which requires α to be set to 0.75, while the 

default value, α = 0.05, suffices for a distance of 50 SNPs and 
a 50 % major strain proportion.

We also show a separate ROC curve for Dataset E, in Fig. 12. 
Despite the challenges of classifying this Dataset, Split-
Strains displays a reasonable trade- off between true posi-
tive and false positive rates and achieves an AUC of 0.96.
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Fig. 10. Proportion estimation comparison. Major proportion estimates by four different tools on the 74 mixed samples from datasets 
A, B, and C.

Fig. 11. α calibration, Dataset E. The α values required for the detection of mixed strains.
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Fig. 12. ROC curve, Dataset E. The ROC curve for all 32 mixed and 32 pure samples.

DISCuSSIon
In this paper we introduced a novel algorithm, called 
SplitStrains, based on a rigorous statistical frame-
work, for detecting multiple- strain infections, estimating 
the proportion of the major and minor strains, and partially 
reconstructing their sequences by assigning the reads that 
contain variants to one of these strains.

The M.tuberculosis’s genome is 4.4 million base pairs long 
and encodes roughly 4000 genes [27]. The genome features 
low amounts of recombination [28]. In addition, it has a 
high G+C content, with nearly two- thirds of all the base 
pairs being G- C [27]. This makes SplitStrains not 
only applicable to M. tuberculosis, but to other clonal path-
ogens whose genomic diversity is low and in the absence 
of significant amounts of recombination. This is the case 
of genetically monomorphic pathogens like Yersinia pestis, 
Salmonella typhi, and Bacillus anthracis [29], and patho-
gens that exhibit clonal evolution during infections [30]. 
It is also possible that SplitStrains could be applied 
to more recombinogenic bacteria like Neisseria menin-
gitidis [31], provided that the recombination hotspots are 
removed in a preprocessing step using a software such as 
ClonalFrameML [32].

Although successful in many simulation scenarios, our algo-
rithm suffers from the following limitations:

•	 When the proportions of two of the strains are very close to 
one another (for instance, a 50–50 mixture of two strains), 
the estimation becomes numerically sensitive and the 
identified strain sequences cannot be reliably inferred.

•	 When the overall depth of coverage is too low (below 20 
or so), the proportions and the strain sequences cannot be 
reliably estimated either.

•	 The multiple infection status cannot be determined with 
confidence when the proportion of one of the strains is 

below 10%, which is therefore the resolution of our algo-
rithm.

•	 Although there is no required minimum threshold on 
genetic distance between the strains in a mixed sample, 
those with a high genetic similarity (around 20 SNPs apart) 
are challenging to identify and deconvolute. This suggests 
that our method will likely perform better on mixed sam-
ples due to multiple infection events than those due to 
within- host evolution [1].

We now discuss these limitations in turn, and sketch possible 
ways to improve on them. The situation when two strains are 
present at equal or near- equal proportions is rare in practice, 
since the strains will in general have unequal fitness and one 
will tend to dominate the other [5]. However, if it does occur, 
SplitStrains provides a useful diagnostic in the propor-
tions it returns, and this can then serve as a starting point for 
separately culturing and sequencing each of the strains.

The situation when the depth of coverage is too low also occurs 
infrequently in practice, since most modern sequencing 
experiments tend to have a depth of coverage of at least 75 to 
100. In the case of a low depth of coverage, for instance in a 
historical sequencing experiment, it is frequently not possible 
to reliably determine the sequence of even a simple strain, 
due to the difficulty in differentiating between a true SNP 
and a sequencing error. As can be expected, this difficulty 
is exacerbated in the presence of multiple strains. A more 
time- consuming method, such as a de Bruijn graph- based 
assembly, may be able to address this limitation in some situ-
ations [33].

Similarly, a very low- frequency minor strain is typically 
difficult to distinguish from noise due to sequencing 
errors, and in a situation when this appears to happen, a 
more targeted approach such as amplicon sequencing may 
be used to establish the sequence of at least a subset of the 
important genes. This approach may be used, for instance, 
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to determine the resistance to a specific drug of the major 
and the minor strain [34].

Lastly, mixed samples with a small SNP distance (around 
20) between the constituent strains should arise primarily 
through within- host evolution, although there is also a small 
likelihood of reinfection by two very similar strains in a high- 
prevalence region. Such similar strains may be more easily 
detectable by amplicon sequencing as well, provided that the 
sequencing is focused on the regions containing the variable 
positions. Alternatively, as we show in Fig. 11, the α signifi-
cance level threshold in the SplitStrains algorithm can 
be increased to enable their detection in situations where such 
occurrences are expected to be frequent and the downside of 
false positive mixed calls is lower.

In spite of these limitations, we believe that our approach is a 
promising way forward, as also demonstrated by its favour-
able performance relative to existing methods. In particular, 
our approach appears to perform better than both QuantTB 
as well as Mixed Infection Estimator, and performs 
comparably to MixInfect, in most simulated settings, with 
regards to the task of identifying the presence of mixed infec-
tions and estimating proportions.

In addition, SplitStrains is unique among existing 
methods in its ability to provide additional information, 
namely, the assignment of each read to one of the underlying 
strains, with a subsequent identification of their sequence if 
desired. Importantly, unlike QuantTB, it does not rely on 
the knowledge of a large number of previously identified 
sequences, which is a clear advantage when investigating 
either a novel outbreak or an isolate originating from a data- 
poor setting. Furthermore, SplitStrains returns not 
only a call, but also a likelihood ratio, which is an indicator 
of the algorithm’s confidence about the presence or absence 
of a mixed infection. We believe that, in situations where such 
information has either clinical or public health importance, 
the SplitStrains method will be a valuable addition to 
the existing collection of tools.

In future work, we plan to extend SplitStrains to work 
with other bacterial pathogens as well as to improve its resolu-
tion, at least in datasets with a high depth of coverage. Lastly, 
we plan to use SplitStrains as a pre- processing step 
in two pipelines - one for identifying related isolates in an 
outbreak [35], where mixed infections can mask such relat-
edness, and another one for predicting drug resistance [36], 
where mixed infections can impede a correct prediction when 
only the minor strain is drug- resistant.
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