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d-aspartate uptake, even though the density of GLT-1 molecules in 
neurons appears about ten times lower than in astrocytes (Furness 
et al., 2008). The expression of GLT-1 in such an elevated percentage 
of neurons may have important functional effects, and could change 
our understanding of the physiology of glutamatergic synapses.

In this context, it would be of some interest to know whether 
the promoter of the GLT-1 gene is active in neurons and its degree 
of activation. Here, we used GLT-1 BAC promoter reporter trans-
genic mice that express enhanced green fl uorescent protein (eGFP) 
under the transcriptional control of the GLT-1 promoter (Regan 
et al., 2007) to quantify the distribution of cells displaying GLT-1 
promoter activation in CA1, CA3 and SI cells of adult mice, and 
the relative levels of GLT-1 promoter activity.

MATERIALS AND METHODS
ANIMALS
Adult heterozygous GLT-1 eGFP BAC promoter reporter trans-
genic mice were used in this study. Heterozygous offsprings were 
obtained from homozygous GLT-1 eGFP BAC transgenic mice bred 
with C57BL/6 wild-type mice (Regan et al., 2007). Animals care 
and handling were approved by the Ethical Committee for Animal 
Research of Università Politecnica delle Marche.

Mice were anesthetized with an intraperitoneal injection of 12% 
chloral hydrate and perfused transcardially with a fl ush of saline 
solution, followed by 4% freshly depolymerised paraformaldehyde 
in 0.1 M phosphate buffer (PB). Brains were removed, post-fi xed 
in the same fi xative for 3–7 days, and cut in the parasagittal plane 
in 50-µm thick sections with a Vibratome. Sections were mounted, 
air dried and coverslipped with Vectashield mounting medium 
(H-1000; Vector).

INTRODUCTION
Glutamate is the main excitatory neurotransmitter in the mam-
malian CNS, where it plays a key role in numerous functions 
(Conti and Weinberg, 1999; Danbolt, 2001). Extracellular gluta-
mate concentration is regulated by fi ve high-affi nity plasma mem-
brane transporters (EAATs), which belong to SLC1 family: GLAST 
(EAAT1, SLC1A3), GLT-1 (EAAT2, SLC1A2), EAAC1 (EAAT3, 
SLC1A1), EAAT4 (SLC1A6) and EAAT5 (SLC1A7) (Kanai and 
Hediger, 1992, 2004; Pines et al., 1992; Storck et al., 1992; Fairman 
et al., 1995; Kanner, 2006; Torres and Amara, 2007). GLT-1 is 
responsible for the largest proportion of total glutamate uptake in 
the forebrain (Rothstein et al., 1996; Tanaka et al., 1997); accord-
ingly, the lack of GLT-1 determines excitotoxicity, whereas its 
increase is neuroprotective (Tanaka et al., 1997; Guo et al., 2003; 
Rothstein et al., 2005).

Early localization studies showed that GLT-1 is primarily local-
ized to astroglial membranes (Danbolt et al., 1992; Levy et al., 1993; 
Rothstein et al., 1994; Torp et al., 1994; Chaudhry et al., 1995; Lehre 
et al., 1995; Minelli et al., 2001). However, several studies reported 
the presence of GLT-1 in neurons, e.g. in pyramidal cells of hip-
pocampal CA3 region and parietal cortex (Torp et al., 1994, 1997; 
Schmitt et al., 1996, 2002; Berger and Hediger, 1998; Brooks-Kayal 
et al., 1998; Mennerick et al., 1998; Plachez et al., 2000; Chen et al., 
2004; Berger et al., 2005). In addition, GLT-1 protein has been docu-
mented in a signifi cant percentage of axon terminals in different 
brain regions (Chen et al., 2004; Furness et al., 2008; Melone et al., 
2009). Recently, Danbolt and co-workers re-evaluated the percentage 
of axon terminals expressing GLT-1 in CA1 stratum radiatum, and 
found that about 50% of them are GLT-1-positive (GLT-1+); they 
also showed that about 80% of terminals exhibit GLT-1- mediated 
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IMMUNOCYTOCHEMISTRY
Sections were fi rst incubated in normal goat serum (NGS) (10% in 
PB; 1 h) and then overnight at room temperature in a solution con-
taining primary antibodies directed to glial fi brillary acidic protein 
(GFAP; 1:800; Sigma; six mice, two sections/animal) or neuronal 
specifi c nuclear protein (NeuN; 1:200; Chemicon; six mice, two 
sections/animal). The next day, after several rinses in PB, sections 
were incubated in NGS (10% in PB; 20 min) and then in a solution 
containing an anti-mouse tetramethylrhodamine isothiocyanate 
(TRITC)-conjugated secondary antibody (1 h; 1:150; Molecular 
Probes). Sections were fi nally washed with PB, mounted, air dried 
and coverslipped with Vectashield mounting medium (H-1000; 
Vector). In control experiments primary antibodies were omitted.

DATA COLLECTION
Data were collected from CA1, CA3 and fi rst somatic sensory cortex 
(SI) using a Leica (TCS SP2) confocal laser microscope. To improve 
signal/noise ratio, 10 frames of each image were averaged. For low 
magnifi cation confocal microscopy, images were collected with an 
air dry 10× lens and aligned to obtain composite images of hip-
pocampus and SI using Adobe Photoshop CS2 (Adobe System, San 
Jose, CA, USA). For high resolution confocal microscopy (applied 
to eGFP co-localization and intensity studies; see below) images 
were acquired with a HCX PL APO 63× oil-immersion lens (1.4 
numerical aperture), a pinhole of 1 Airy Unit, an image size of 
512 × 512 pixels and a pixel size of 0.423 µm, with the exception of 
the astrocyte intensity studies in which the pixel size was 0.230 µm. 
Acquisition of astrocytic and neuronal eGFP signals was optimized 
through the ‘Q LUT’ button, which permitted direct visualization of 
pixel saturation; photomultiplier gain was set so that the brightest 
pixels were just slightly below saturation, and the offset such that the 
darkest pixels were just above zero. To avoid bleed-trough between 
green and red fl uorescence, images were acquired sequentially.

eGFP co-localization studies
For astrocytes, eGFP/GFAP fi elds were randomly selected from 
stratum oriens (so), pyramidale (sp), and radiatum (sr) of CA1 
and CA3 (6 fi elds/layer/animal for each region). In SI, microscopic 
fi elds (10 fi elds/layer/animal) were randomly selected from layer 
I and VI, where GFAP immunoreactivity is robust (Hajós, 2008). 
For neurons, sampling of eGFP/NeuN fi elds of CA1 and CA3 was 
carried out as for eGFP/GFAP studies, whereas in SI microscopic 
fi elds were sampled in all cortical layers (10 fi elds/layer/animal).

eGFP intensity studies
For the analysis of eGFP intensity in both astrocytes and neurons 
we used eGFP/NeuN labelled sections. Sampling was carried out in 
all hippocampal and cortical layers (10 fi elds/layer/animal for each 
hippocampal region and 10 fi elds/layer/animal for SI). We used 
eGFP positive (+)-NeuN+ cells for the analysis of eGFP intensity 
in neurons, and eGFP+-NeuN- cells for that of astrocytes. The 
rationale for considering eGFP+-NeuN- cells as astrocytes is that 
in pilot studies we observed that in layers I-VI of SI and in strata 
oriens, pyramidale, and radiatum of CA1 and CA3 CNPase+ cells 
(i.e., oligodendrocytes) and CD11b+ cells (i.e., microglial cells) 
were never eGFP+. Details on immunocytochemical procedure are 
given in the legend to Figure 2.

DATA ANALYSIS
eGFP co-localization studies
For each merged image, a threshold level of fl uorescence for green 
and red channel was determined by setting a background inten-
sity value. Background intensity values for green and red chan-
nel corresponded to 0.5 of the median of single channel intensity 
(estimated with Adobe Photoshop CS2); then, background values 
were subtracted from each channel, yielding a thresholded image. 
Background intensity was chosen within a range of values (from 
0.25 to 0.75 of the median) which did not affect measurement accu-
racy (Melone et al., 2005; Ronneberger et al., 2008); background 
subtraction resulted in null intensity pixel value in eGFP- struc-
tures, e.g. blood vessels (Regan et al., 2007).

Thresholded images were split into green and red channel and 
then analyzed with NIH ImageJ Software (http://rsb.info.nih.
gov/ij). A region of interest (ROI) of 5 × 5 µm was used to asses 
pixel positivity within neuron somata on the green channel, while 
a ROI of 3 × 3 µm was used for astrocytes. Cells with an average 
pixel intensity ≥1 arbitrary units were considered positive for 
eGFP expression and were therefore included in the analysis. Co-
 localization of eGFP+ cells with NeuN and GFAP was calculated 
as the percentage of eGFP+/NeuN+ and eGFP+/GFAP+ cells on 
the total of NeuN+ and GFAP+ cells.

eGFP cellular intensity studies
In these studies, as in eGFP co-localization studies, background 
value was set at 0.5 of the median level of the entire image. In a series 
of pilot studies, we studied the relationship between eGFP intensity 
values of cells and mean intensity of the whole microscopic fi eld; 
we found that astrocytic and neuronal intensity levels measured 
were positively correlated to the mean intensity levels of acquired 
images (r = 0.965 for astrocytes, P = 0.008; r = 0.860 for neurons, 
P = 0.028; n = 10 images). Therefore, in order to obtain intensity 
values not affected by the mean intensity of images, we transformed 
intensity measures by matching the cellular with the background 
intensity (I

cell
/I

background
), as described by Marrs et al. (2001). After 

this transformation, correlation between intensity values was not 
signifi cant (P = 0.226 for astrocytes; P = 0.103 for neurons), thus 
supporting the validity of the procedure. Then we normalized the 
data using the formula:

NI NI NI NIv

v v

v v
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− +min
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where v stood for the value of I
cell
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bacground

 to be normalized, NI
v
 for 

Normalized Intensity of v, v
min

 and v
max

 for minimum and maximum 
values of v, NI

min
 and NI

max
 are the new minimum and maximum 

normalized values of v, i.e. 0 and 1 (Han and Kamber, 2006).

STATISTICAL ANALYSIS
Comparison between CA1, CA3 and SI (obtained by collapsing 
data from all layers of each region) was performed by one way 
ANOVA (α = 0.05) with Bonferroni-Dunn post test (α = 0.017 due 
to Bonferroni correction for multiple comparisons). Comparisons 
among layers within CA1 and CA3 were performed with one way 
ANOVA (α = 0.05) with Bonferroni-Dunn post test (α = 0.017). 
Comparison between CA1 and CA3 data was assessed also with 
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two way ANOVA considering hippocampal regions as the between 
factor and hippocampal layers as the within factor. Post tests used 
to study signifi cant differences among levels of the between and the 
within factors were paired t-test and one way ANOVA. Comparison 
among layers of SI was assessed by one way repeated measures 
ANOVA (α = 0.05) and Bonferroni-Dunn post test (α = 0.003) 
was applied. Statistical analysis was performed with SPSS (v.13.0; 
SPSS Inc, IL, USA).

RESULTS
In line with the description of Regan et al. (2007), we observed 
numerous cells displaying GLT-1 promoter activity (eGFP+ cells) 
in SI and hippocampus (Figures 1A,B). Double-labelling studies 
with GFAP and NeuN antibodies (see below for details) showed 
that eGFP+ cells were in most cases astrocytes and not rarely neu-
rons (Figures 1C,D), whereas double-labelling studies with CNPase 
and CD11b antibodies revealed that in SI and hippocampal gray 
matter eGFP+ cells were never oligodendrocytes or microglial cells 
(Figure 2). In addition, we observed that the intensity of eGFP+ 
cells varied remarkably, with neurons exhibiting low eGFP fl uo-
rescence intensity (Figures 1E,F). We therefore studied quantita-
tively both the presence and the intensity of eGFP fl uorescence in 
astrocytes and neurons of CA1, CA3 and SI of adult GLT-1-eGFP 
BAC reporter mice.

GLT-1 PROMOTER ACTIVITY IN ASTROCYTES AND NEURONS
We fi rst examined the presence of eGFP reporting for GLT-1 in 
GFAP+ and NeuN+ cells of CA1, CA3 and SI (Table 1). GFAP/
eGFP co-localization studies (Figure 1C) revealed that in CA1 and 
CA3 (stratum oriens, so; stratum pyramidale, sp; stratum radia-
tum, sr), and SI (layers I and VI) 96.5 ± 1.4%, 95.5 ± 1.3%, and 
97.5 ± 0.04% of GFAP+ cells were eGFP+, in the order. Statistical 
analysis showed that GFAP/eGFP co-localization was not sig-
nifi cantly different in these regions. NeuN/eGFP co-localization 
studies (Figure 1D) showed that in CA1, CA3 and SI 5.5 ± 1.6%, 
34.5 ± 9.0%, and 37.0 ± 3.7% of all NeuN+ neurons were eGFP+, 
in the order (Figure 3). NeuN/eGFP co-localization was higher in 
CA3 and SI than in CA1 (P = 0.0008 and P < 0.0001, respectively), 
and in CA3 it was similar to SI (P = 0.7).

Next, we studied the laminar distribution of GFAP/eGFP+ 
and NeuN/eGFP+ cells in CA1, CA3 and SI. The distribution of 
GFAP/eGFP+ cells was similar in different layers of CA1 and CA3 
(so, sp, and sr) and SI (layers I and VI), whereas that of NeuN/
eGFP+ cells exhibited striking differences. In particular, in CA1 
NeuN/eGFP+ cells were 6.5 ± 2.3% in so, 1.8 ± 0.9% in sp, and 
8.2 ± 4.1% in sr (Figures 4A,D, white columns); in CA3 they were 
10.9 ± 4.5% in so, 85.8 ± 2.9% in sp, and 6.7 ± 2.8% in sr (Figures 
4B,D, black columns); and in SI they were 13.8 ± 6.2%, 18.6 ± 3.5 %, 
31 ± 4.7%, 51.3 ± 6.6%, 37.1 ± 1.4%, and 70 ± 3.0% in layers 
I-VI (Figures 4C,E). NeuN/eGFP co-localization was different in 
CA3 layers (P < 0.0001), with sp exhibiting the highest degree of 
co-localization (P < 0.0001 with CA3 so and sr), but not in CA1 
layers (P = 0.3), and it was higher in CA3 sp than in the same 
layer of CA1 (P < 0.0001) (Figure 4D). In SI, NeuN/eGFP co-
 localization was different between layers (P < 0.0001), with layer 
VI signifi cantly higher than layers I-III and V (P < 0.0001) and layer 
IV (P = 0.0007) (Figure 4E).

INTENSITY OF eGFP-GLT-1 FLUORESCENCE IN ASTROCYTES 
AND NEURONS
Since astrocytes and neurons displayed different levels of eGFP fl uo-
rescence intensity, i.e., of GLT-1 promoter activity (Figures 1E,F), 
we analyzed eGFP fl uorescence intensity in different layers of 
CA1, CA3, and SI (Table 1). To do this, we measured fl uorescence 
intensity within eGFP+ cell bodies and calculated its normalized 
intensity (NI), as described in Material and Methods. Mean NI of 
astrocytes was different between regions (P < 0.0001): it was higher 
in SI than in CA1 (∼35%, P < 0.0001) and CA3 (∼47%, P < 0.0001), 
but it was similar in CA1 and CA3 (P = 0.13) (Figure 5A). Mean 
NI of neurons was different between regions (P = 0.0492) and 
higher in SI than in CA1 (up to ∼50%, P < 0.0146) but not in 
CA3 (Figure 5B).

In CA1 and CA3, analysis of astrocytic NI revealed laminar 
differences (P = 0.0002 for CA1; P = 0.0015 for CA3); NI was 
lower in astrocytes of so than in those of sp (∼15%, P < 0.0001) 
and sr (∼10%, P = 0.0031) of CA1, whereas it was lower in astro-
cytes of sr of CA3 than in so (∼13%, P = 0.0152) and sp (∼20%, 
P = 0.0004) (Figure 6A). Two way ANOVA revealed signifi cant 
differences in astrocytic NI between CA1 and CA3 (P < 0.0001): 
each CA1 layer had an higher NI than the corresponding CA3 
layer (∼10% for so, P = 0.0075; ∼16% for sp, P = 0.0114; ∼14% for 
sr, P = 0.0001) (Figure 6A). The discrepancy between the results 
of one and two way ANOVA (see above) is determined by the 
fact that in one way ANOVA data from so, sp, and sr were col-
lapsed, whereas in two way analysis, mean values of each layer 
were compared. In SI, no differences of astrocytic NI were noted. 
Neuronal NI in so, sp, and sr of CA1 and CA3 showed no lami-
nar differences; however, in CA3 sp NI was higher than in CA1 
sp (∼60%, P = 0.0007) (Figure 6B). In SI, intensity of eGFP+ 
neurons showed signifi cant laminar differences (P < 0.0001): 
layer VI was higher than layers I (∼72%, P < 0.0001), II (∼74%, 
P = 0.0001), III (∼70%, P = 0.0001), IV (∼55%, P = 0.0002), and 
V (∼46%, P = 0.0017) (Figure 6C).

Finally, to compare GLT-1 promoter activity in neurons and 
astrocytes, we calculated the ratio between neuronal and astro-
cytic NI (NI

neurons
/NI

astrocytes
; NI

n
/NI

a
). In CA1, CA3 and SI, mean 

NI
n
/NI

a
 was 0.027 ± 0.004, 0.055 ± 0.01, and 0.033 ± 0.003, in 

the order; these values indicated that GLT-1 promoter activ-
ity in neurons was 2.7, 5.5, and 3.3% of those measured in 
astrocytes. Statistical analysis showed a signifi cant difference 
between regions (P = 0.0275), with CA3 NI

n
/NI

a
 higher than 

CA1 (P = 0.0150) but not than SI NI
n
/NI

a
. Laminar evaluation 

of NI
n
/NI

a
 revealed differences in SI (P < 0.0001), with NI

n
/NI

a
 

higher in layer VI (0.07 ± 0.01) than in layers I (0.01 ± 0.005, 
P < 0.0001), II (0.017 ± 0.003, P < 0.0001); III (0.023 ± 0.006, 
P < 0.0001); IV (0.037 ± 0.008, P = 0.0003), and V (0.036 ± 0.007, 
P = 0.0003).

DISCUSSION
These studies in GLT-1 eGFP BAC reporter transgenic mice 
showed that virtually all GFAP+ astrocytes and numerous 
neurons exhibited GLT-1 promoter activity; that the degree of 
activation was much higher in astrocytes than in neurons; and 
that GLT-1 promoter activity was highly variable across regions 
and layers.
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GLT-1 PROMOTER ACTIVITY IN ASTROCYTES AND NEURONS
There is a long history, albeit a controversial one, on the cellular 
localization of GLT-1, the major glutamate transporter in the mam-
malian brain, and particularly on its postulated neuronal expres-

sion, as briefl y summarized in Introduction. Here, we have used 
GLT-1 eGFP BAC reporter transgenic mice to investigate GLT-1 
promoter activation in astrocytes and neurons, as this prepara-
tion allows both the visualization of individual cells whose GLT-1 

FIGURE 1 | GLT-1 promoter activity in SI and hippocampus. Numerous 
eGFP+ cells, indicative of GLT-1 promoter activity, are present in white and grey 
matter of SI (A) and hippocampus (B). eGFP+ cells comprise both astrocytes 
and neurons. (C), example of eGFP+ cells in layer I of SI expressing the 
astrocytic marker GFAP; (D), example of eGFP+ cells in layer VI of SI expressing 
the neuronal marker NeuN. (E,F) show that the intensity of eGFP+ cells is highly 
variable, i.e. they have different degree of GLT-1 promoter activity; images in 

(E) show three astrocyte-like eGFP+ cells from CA1 stratum oriens (upper), CA3 
stratum radiatum (middle) of hippocampus and layer VI of SI (bottom); images in 
(F) show three neuron-like eGFP+ cells of CA3 stratum pyramidale of 
hippocampus (upper) and layer VI of SI (middle and bottom). Abbreviations: CC, 
corpus callosum; so, stratum oriens; sp, stratum pyramidale; sr, stratum 
radiatum. Roman numerals indicate neocortical layers. Scale bar (A,B): 150 µm; 
scale bar (C–F): 10 µm.
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promoter is active and its quantitation. The latter feature appears 
particularly attractive on considering that GLT-1 eGFP fl uorescence 
appears well correlated to GLT-1 mRNA (Yang et al., 2009), GLT-1 
protein expression (Regan et al., 2007), and, most importantly, to 
GLT-1 function (Regan et al., 2007).

We showed that virtually all GFAP+ astrocytes expressed GLT-1 
promoter activity, in line with existing data on GLT-1 localization 
in hippocampus and neocortex (Rothstein et al., 1994; Chaudhry 
et al., 1995; Lehre et al., 1995; Schmitt et al., 1996; Danbolt, 2001), 
and confi rmed that astrocytes are the predominant cell type 
expressing GLT-1. We also showed that intensity of eGFP-GLT-1 
fl uorescence in astrocytes was much higher than in neurons; in 
CA3 sp and in layer VI of SI fl uorescence intensity in neurons rep-
resented 4% and 7% of astrocyte values, respectively. Interestingly, 
Furness et al. (2008) have recently estimated that GLT-1 protein 
levels in axon terminals are about 10% of those measured in astro-
cytes. The similarity between our data and those of Furness et al. 
(2008) provides further support to the notion that the degree of 
GLT-1 promoter activity appears correlated to protein expression 
(Regan et al., 2007).

We have also observed that a considerable number of neurons 
in CA3 pyramidal layer (∼ 80%) and in layers I-VI of SI (10–70%) 
exhibits GLT-1 promoter activity. These results extend those of previ-
ous studies that described qualitatively the presence of GTL-1 mRNA 

FIGURE 2 | In layers I-VI of SI and in strata oriens, pyramidale and 

radiatum of CA1 and CA3 cells immunoreactive to CNPase (A; n = 180), 

a marker of oligodendrocytes, or CD11b (B; n = 130), a marker of microglial 

cells, were not eGFP+. Sections were incubated in NGS (10% in PB; 1 hr) with 
0.2% Triton-X and then overnight at room temperature in a solution containing 
primary antibodies directed to CNPase (1:100; Millipore; two mice, two 
sections/animal) or CD11b (1:100; Serotec; two mice, two sections/animal). 
Anti-mouse TRITC-conjugated secondary antibody (1 h; 1:150; Molecular 
Probes) were used. In control experiments primary antibodies were omitted. 
(A) SI layer VI; (B) CA1 stratum oriens. Scale bars: 10 µm.

FIGURE 3 | Percentage of NeuN/eGFP co-localization varies across 

different cortical regions. NeuN/eGFP+ double-labelled cells are signifi cantly 
more numerous in CA3 and SI than in CA1. Values are mean ± sem. Data 
collapsed from all layers of each region from six animals. ***P < 0.001.

Table 1 | Number of cells studied in co-localization and eGFP intensity 

studies.

 Co-Localization eGFP Intensity

 Astrocytes Neurons Astrocytes Neurons

CA1 392 (so 150;  2616 (so 116;  261 (so 104;  33 (so 10; 

 sp 70; sr 172) sp 2420; sr 80) sp 76; sr 91) sp 15; sr 8)

CA3 404 (so 132;  2376 (so 69;  274 (so 92;  1551 (so 7; 

 sp 67; sr 205) sp 2191; sr 116) sp 75; sr 107) sp 1536; sr 8)

SI 464 (I 167;  8039 (I 113;  311 (I 67; II 48; 3453 (I 18; 

 VI 297) II 1152; III 1595;  III 43; IV 51;  II 207; III 463; 

  IV 2073; V 1245;  V 52; VI 50) IV 1046; V 432; 

  VI 1861)  VI 1287)

Data from 6 animals. Roman numbers indicate cortical layers. Abbreviations: so, 
stratum oriens; sp stratum pyramidale; sr, stratum radiatum.



Frontiers in Neuroanatomy www.frontiersin.org January 2010 | Volume 3 | Article 31 | 6

de Vivo et al. GLT-1 promoter in cerebral cortex

FIGURE 5 | Regional analysis of fl uorescence intensity in astrocytes and 

neurons. (A) shows normalized intensity (NI) in astrocytes from CA1, CA3, and 
SI; (B) illustrates NI in neurons from the same regions. Note that neuronal NI is 
lower than astrocytic NI in all regions. Values are mean ± sem. ***P < 0.001.

in hippocampal and neocortical neurons (Torp et al., 1994, 1997; 
Schmitt et al., 1996; Berger and Hediger, 1998; Chen et al., 2004; 
Berger et al., 2005), and are compatible with the unexpected observa-
tion that ∼ ¾ of nerve terminals in CA1 stratum radiatum (Schaffer 
collaterals from CA3 pyramidal neurons) exhibit GLT-1-mediated 
d-aspartate uptake (Furness et al., 2008). Therefore, it is conceivable 
that the activation of eGFP GLT-1 promoter observed in more than 
80% of pyramidal neurons of CA3 may be translated into GLT-1 
protein in nerve terminals forming synapses in CA1, although this 
remains to be demonstrated. The discrepancy between the distribu-
tion of GLT-1 promoter activity revelead by eGFP positivity and 
that of GLT-1 protein reported in numerous immunocytochemi-
cal studies is conceivably related to the low levels of GLT-1 protein 
found in neurons, which makes it diffi cult to detect it immunocy-
tochemically (Schmitt et al., 1996; Chen et al., 2004; Furness et al., 
2008). This view is supported by the observation that eGFP-GLT-1 
fl uorescence in neurons was in general very low (present results) and 
that an high resolution confocal microscopy analysis of terminals 
expressing vesicular glutamate transporter 1 (VGLUT1) in CA1 
stratum radiatum showed that only few of them (<5%) were also 
GLT-1 positive (de Vivo, Melone, Rothstein, and Conti unpublished 
observations). Alternatively, it is possible that in neurons exhibiting 
low levels of eGFP-GLT-1 fl uorescence the activation of the promoter 
is not followed by production of GLT-1 protein.

The percentage of neurons exhibiting eGFP- GLT-1 activity was 
signifi cantly higher in CA3 pyramidal neurons and in layer VI neu-
rons than in those of other regions or layers. Whereas CA3 pyramids 
were known to express GLT-1 at their axon terminals (Chen et al., 

FIGURE 4 | NeuN/eGFP co-localization in hippocampus and neocortex. 

(A,B) examples of NeuN/eGFP co-localization in stratum pyramidale of CA1 
and CA3. Note the presence of cells expressing eGFP in CA3 but not in CA1. 
(D) percentage of NeuN/eGFP co-localization in stratum oriens (so), 

pyramidale (sp), and radiatum (sr) of CA1 (white columns) and CA3 (black 
columns). (C) NeuN/eGFP co-localization in layer VI of SI. (E) percentage of 
NeuN/eGFP co-localization in layers I-VI of SI (mean ± sem). *** P < 0.001. 
Scale bar: 10 µm.
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to the fi ltering of the thalamo-cortical fl ow of  information, it is 
conceivable that GLT-1 may play a role in the gating of  thalamically-
mediated afferent information to the neocortex.

VARIATIONS OF eGFP-GLT-1 INTENSITY
Quantitative analysis of eGFP-GLT-1 fl uorescence intensity in hip-
pocampal and neocortical neurons and astrocytes revealed signifi -
cant variations across brain regions and layers as well as between 
cells of the same region or layer, as previously noticed (Rothstein 
et al., 1994; Lehre et al., 1995; Milton et al., 1997; Regan et al., 2007; 
Holmseth et al., 2009). Mean normalized fl uorescence values indi-
cated that astrocytes in SI had a higher GLT-1 promoter activity 
than CA1 and CA3 astrocytes (SI > CA1 > CA3). Moreover, lami-
nar analysis of astrocytes eGFP promoter activation in different SI 
layers showed a similar degree of activation, whereas in CA1 and 
CA3 signifi cant differences were observed between strata oriens, 
pyramidale and radiatum. Neurons had the highest level of eGFP 
fl uorescence in layer VI of SI and in CA3 stratum pyramidale, and 
showed laminar differences only in SI.

A large number of endogenous and exogenous molecules 
regulates GLT-1 expression in in vitro and in vivo conditions 
(Gegelashvili and Schousboe, 1997; Robinson, 1998; Anderson 
and Swanson, 2000; Beart and O’Shea, 2007; Lauriat and McInnes, 
2007). In human astrocytes several GLT-1 regulators, including EGF, 
TGF-α, and dBcAMP, exert their effects by acting on the GLT-1 
promoter (Su et al., 2003; Li et al., 2006). If the same transcriptional 
mechanism operates in neurons, the high variability of eGFP GLT-1 
observed here in astrocytes and neurons refl ects in all likelihood the 
differential regulation of GLT-1 promoter. It is conceivable that such 
a differential regulation, though largely constitutive, is at least in 
part induced dynamically by differential homeostatic needs in both 
physiological and pathophysiological conditions, in line with the 
crucial role GLT-1 plays in regulating extracellular glutamate and 
in shaping excitatory transmission (Tong and Jahr, 1994; Conti and 
Weinberg, 1999; Danbolt, 2001; Tzingounis and Wadiche, 2007). 
In this context, it is worth mentioning that a few dozen transport-
ers distributed quasi-randomly inside the cleft attenuate AMPARs 
activation (Zheng et al., 2008), and that GLT-1 up-regulation affects 
synaptic plasticity (Omrani et al., 2009).

Thus, the variability of eGFP intensity described here raises the 
possibility that GLT-1 eGFP BAC reporter transgenic mice may 
reveal themselves useful tools to investigate quantitatively the regu-
lation of GLT-1 promoter activation in in vivo physiological or 
pathophysiological conditions.
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2004; Furness et al., 2008), the unexpected presence of numerous 
layer VI neurons showing eGFP-GLT-1 fl uorescence raises stimu-
lating questions on their functional signifi cance. Since most layer 
VI neurons project to the thalamus (Jones, 1984) and contribute 

FIGURE 6 | Laminar analysis of fl uorescence intensity in astrocytes and 

neurons. (A) shows NI in astrocytes from stratum oriens (so), pyramidale (sp), 
and radiatum (sr) of CA1 (white columns) and CA3 (black columns). 
(B) illustrates neuronal NI in stratum oriens (so), pyramidale (sp), and radiatum 
(sr) of CA1 (white columns) and CA3 (black columns). (C) neuronal NI in layers 
I-VI of SI. Values are mean ± sem. *P < 0.05, ***P < 0.001.
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