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Endocannabinoid Signaling in Midbrain Dopamine Neurons: More than Physiology? 
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Abstract: Different classes of neurons in the CNS utilize endogenous cannabinoids as retrograde messengers to shape afferent activity in
a short- and long-lasting fashion. Transient suppression of excitation and inhibition as well as long-term depression or potentiation in 

many brain regions require endocannabinoids to be released by the postsynaptic neurons and activate presynaptic CB1 receptors. Mem-
ory consolidation and/or extinction and habit forming have been suggested as the potential behavioral consequences of endocannabinoid-

mediated synaptic modulation.  

However, endocannabinoids have a dual role: beyond a physiological modulation of synaptic functions, they have been demonstrated to 

participate in the mechanisms of neuronal protection under circumstances involving excessive excitatory drive, glutamate excitotoxicity, 
hypoxia-ischemia, which are key features of several neurodegenerative disorders.  

In this framework, the recent discovery that the endocannabinoid 2-arachidonoyl-glycerol is released by midbrain dopaminergic neurons, 
under both physiological synaptic activity to modulate afferent inputs and pathological conditions such as ischemia, is particularly inter-

esting for the possible implication of these molecules in brain functions and dysfunctions.  

Since dopamine dysfunctions underlie diverse neuropsychiatric disorders including schizophrenia, psychoses, and drug addiction, the im-

portance of better understanding the correlation between an unbalanced endocannabinoid signal and the dopamine system is even greater. 
Additionally, we will review the evidence of the involvement of the endocannabinoid system in the pathogenesis of Parkinson’s disease, 

where neuroprotective actions of cannabinoid-acting compounds may prove beneficial. 

The modulation of the endocannabinoid system by pharmacological agents is a valuable target in protection of dopamine neurons against 

functional abnormalities as well as against their neurodegeneration. 
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INTRODUCTION 

 In the last 15 years, the discovery and molecular dissection of 
the endocannabinoid (eCB) system has opened a new avenue in 
neuropsychopharmacological research. The interest in this system 
was further fuelled by the characterization of the dual nature of its 
actions within the central nervous system: modulation of synaptic 
functions and neuroprotection. In fact, endogenous cannabinoids 
(endocannabinoids) were discovered to play a role in the regulation 
of behavioural functions, such as reward and addiction, anxiety, 
feeding, and in the pathophysiological mechanisms of several neu-
rodegenerative diseases. In this review, we will focus on the inter-
action between endocannabinoids (eCBs) and midbrain dopamine 
(DA) neurons, as recent studies highlight that it spans from the fine 
regulation of synaptic inputs to neuroprotection/neurorescue mecha-
nisms, which may bear relevance in several neuropsychiatric disor-
ders involving primarily dysfunctions of the DA neurons. 

THE ENDOCANNABINOID SYSTEM 

 The eCBs are a family of lipid molecules that form a novel 
class of intercellular messengers, whose functions include retro-
grade signaling in the brain by modulating and/or mediating several 
types of synaptic plasticity. These molecules make up their own 
system (i.e. the endocannabinoid system) comprising synthesizing 
and inactivating enzymes, a transport protein, and the cannabinoid 
(CB) receptors [94, 130].  

 Among diverse endogenous lipid molecules with eCB-like ac-
tivity, the best characterized eCBs – in terms of biosynthesis, cellu-
lar transport, metabolism, and biological functions- are anandamide 
(AEA) [44] and 2-arachidonoyl glycerol (2-AG) [133, 195], whose 
content is greatly elevated in response to a variety of physiological 
and/or pathological stimuli. Among the other eCBs, 2-arachidonyl-
glyceryl ether (2-AGE, nolandin), O-arachidonoyl-ethanolamine 
(virodhamine), and N-arachidonoyl-dopamine (NADA) are the most 
investigated, although their physiological role is still unknown. 
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 The increased levels of eCBs are usually part of an on demand
response. In particular, the eCBs 2-AG and AEA have been shown 
to be synthesized on demand [18, 46] by the postsynaptic cell in 
response to either physiological and/or pathological stimuli in sev-
eral brain regions. Once released, they activate CB type 1 (CB1) 
receptors located presynaptically, and inhibit neurotransmitter re-
lease. As a result of their highly selective reduction of synaptic 
inputs onto the releasing neuron(s), eCBs influence both short- and 
long-term forms of synaptic plasticity.  

 Once activated CB1 receptors, eCBs are rapidly cleared away 
from their extracellular targets by a specific uptake system [9, 87], 
named AEA membrane transporter (AMT), which is widely distri-
buted throughout the brain [71]. Then AEA and 2-AG are degraded 
by two well-characterized enzymes, the fatty acid amide hydrolase 
(FAAH) and the monoacylglycerol (MAG) lipase, respectively [36, 
49, 196, 201].  

 These peculiar features (i.e. on demand synthesis and rapid 
degradation) indicate that eCBs operate close to where they are 
synthesized, and make them as key molecules in brain functions 
and dysfunctions.  

 New pharmacological tools have enabled the study of the 
physiological roles played by eCBs, opening up new strategies in 
the treatment of pain,obesity, and neurological diseases like multiple 
sclerosis, emotional disturbances such as anxiety and other psychia-
tric disorders including drug addiction. More recently, pharma-
ceutical research aims to develop drugs exploiting the different 
biological mechanisms involved in the metabolic pathways of the 
two best characterized eCBs, AEA and 2-AG, to treat diverse 
disorders [153].  

 In fact, AEA derives from the cleavage of a N-arachidonoyl-
phosphatidylethanolamine (NAPE), a precursor synthesized by the 
enzyme N-acyltransferase (NAT), which requires the presence of 
Ca

2+
 and is regulated by cAMP [18, 156]. Its release is catalyzed by

a recently cloned specific phospholipase D (PLD) [83, 147], whose 
activity is regulated by depolarization and/or activation of iono-
tropic (e.g. NMDA, nicotinic 7 neuronal receptors; [156, 193] or 
metabotropic receptors [73, 96, 208]. 

 On the other hand, 2-AG derives from the metabolism of tria-
cylglycerols, through receptor-dependent activation of phospha-
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tidylinositol-specific phospholipase A1 (PLA1) and/or C (PLC) 
[196]. The current model, proposing that activation of metabotropic 
receptors coupled to the PLC and diacylglycerol (DAG) lipase 
pathway leads to 2-AG production [156, 194], is substantiated by 
both the cloning of the enzyme 1,2-DAG lipase [11] and the 
contribution of ionotropic purinergic receptors (e.g. P2XT; [217]) 
to 2-AG formation.  

 Irrespective of their different routes, binding properties and 
intrinsic activity at CB receptors [86, 88, 194], both AEA and 2-AG 
do activate CB receptors. The CB receptors are part of the superfa-
mily of G protein-coupled receptors. The CB1 receptor is the most 
abundant G protein-coupled receptor expressed in the brain [84, 
90], but it is also found in diverse peripheral tissues (e.g. muscle, 
the gastrointestinal tract, liver, pancreas and adipose tissue) [7, 43, 
84, 90, 213]. The CB2 receptor is instead found on several immune 
cells (e.g. monocytes, microglial cells, T- and B-cells), in the spleen 
and tonsils [59, 144, 156], and peripheral tissues [116]. In addition, 
increasing pharmacological evidence suggest the presence of CB2 
receptors in the brain [5, 148, 206], as well as the existence of at 
least two non-CB1, non-CB2 receptors [82, 89, 103]. Lastly, phar-
macological studies revealed the existence of eCB targets other than 
CB receptors, including the transient receptor potential vanilloid-1 
(TRPV1) receptor [223]. 

 Both CB1 and CB2 receptors are coupled to similar transduc-
tion systems. CB receptor activation was initially reported to inhibit 
cAMP formation through its coupling to Gi proteins [43, 91], result-
ing in a decrease of the protein kinase A-dependent phosphorylation 
processes as well. However, additional studies found that the CB 
receptors are also coupled to ion channels through the Golf protein, 
resulting in the inhibition of Ca

2+
 influx through N- [117], P/Q- 

[200] and L- [65] type Ca
2+

channels, as well as the activation of 
inwardly rectifying potassium conductance and A currents [32, 
118]. Additionally, CB1 and CB2 receptors have been shown to be 
coupled to other intracellular cascades, including the mitogen-
activated protein kinase cascade, the phosphatidylinositol 3-kinase, 
the focal adhesion kinase, ceramide signaling and nitric oxide pro-
duction [14, 42, 62, 88, 142, 171].  

 The widespread presence of the eCB system correlates with its 
role as a relevant modulator of multiple physiological functions and 
not only in the CNS [45]. A comprehensive analysis of all the func-
tions of the eCBs is beyond the scope of the present review. The 
reader will find an extensive list of recent reviews that explore the 
physiological relevance of the eCB system elsewhere [99, 153, 
165], whereas we focus on the cellular and system physiological 
events mediated by eCBs that are relevant to our understanding of 
their interplay with the DA system.  

 As we better describe below, in the midbrain 2-AG is the main 
eCB released on demand after cellular depolarization and/or recep-
tor stimulation in a Ca

2+
-dependent manner. Once produced, it acts 

on CB1 receptors located on both presynaptic GABAergic and glu-
tamatergic terminals. More generally, eCBs act similarly through-
out the brain [156, 177], with the end result of presynaptic inhibi-
tion of neurotransmitter release.  

 This phenomenon translates in different forms of short- and 
long-term synaptic plasticity, depending on the involvement of 
GABA or glutamate transmission, respectively.  

 eCBs, released upon depolarization and/or receptor activation, 
can transiently affect synaptic efficacy by suppressing either GABA 
or glutamate release, thus provoking depolarization-induced sup-
pression of inhibition (DSI) or excitation (DSE), respectively [1, 
31, 48, 216]. eCBs can also affect other forms of short term synap-
tic transmission, which are induced by more physiologically rele-
vant patterns of synaptic activity [15, 17, 136], and result in modu-
lation of synaptic strength and/or firing pattern in vivo [10, 29, 
136]. 

 Additional forms of eCB modulation of synaptic transmission 
involve the induction of long-term synaptic plasticity, namely long-
term potentiation (LTP) and depression (LTD). eCBs are strongly 
involved in the induction of LTD, whereas their role in LTP is 
probably indirect via heterosynaptic influences, as in the hippocam-
pus [30], and perhaps in the prefrontal cortex [106]. Both these 
forms of synaptic plasticity involve changes in the strength of exci-
tatory synapses that can last from minutes to several days [112]. 
Because changes in synaptic strength underlie changes in postsy-
naptic receptor density, and ultimately in synapse remodeling, LTP 
and LTD are believed to play a critical role in memory consoli-
dation and behavioural learning. Consequently, eCBs participate in 
the adjustment of synaptic strength [31, 102, 175]. Because activa-
tion of the eCB system affects not only synaptic remodelling [42, 
156], but also neuronal differentiation [172] and survival [128, 
152], eCBs guarantee not only a fine regulation of information 
processing, but also local protective mechanisms directed at pre-
serving brain physiological function [6, 27, 51, 95, 97, 128, 131, 
137, 143, 185, 186, 209]. 

ENDOCANNABINOIDS AND DOPAMINE NEURONS: 

PHYSIOLOGY AND NEUROPROTECTION 

 A detailed description of the mesencephalic DA system is be-
yond the scope of this review. Here it suffices to say that DA neu-
rons in the ventral tegmental area (VTA) are involved in the patho-
physiology of psychiatric disorders and drug abuse. Their axons 
project to forebrain areas such as the nucleus accumbens (NAc) and 
the prefrontal cortex. A second major subdivision of mesencephalic 
DA neurons are those in the more lateral substantia nigra pars com-
pacta (SNc), which project mainly to the striatum and are deeply 
interconnected to other nuclei in the basal ganglia circuits, being 
involved in the regulation of motor functions and in the pathogene-
sis of Parkinson’s disease (PD). 

 The eCB system is emerging as an important modulator of the 
DA neurons. Neuronal activity of mesencephalic DA neurons is 
sensitive to exogenous cannabinoid agonists [57, 70]. Both 

9
-

tetrahydrocannabinol and synthetic CB1 receptor agonists dose-
dependently enhance firing rate and burst activity of DA neurons in 
the VTA, whereas their effect on SNc neurons is weaker. Enhanced 
electrical activity results in an increase in DA release in terminal 
regions, such as the nucleus accumbens [25, 198] and the prefrontal 
cortex [28, 158]. Under this aspect, cannabinoids display effects 
similar to those of other drugs of abuse belonging to different 
classes, that were shown to enhance DA transmission with diverse 
mechanisms. The levels of CB1 receptors or mRNA in the VTA 
and in the SNc are very low or undetectable [84, 132], thus a direct 
effect of cannabinoid agonists onto DA cells seems unlikely. How-
ever, several neuronal populations projecting to VTA or SNc DA 
neurons have been demonstrated to possess relatively large amounts 
of CB1 receptor mRNA, namely the glutamatergic neurons in the 
PFC and in the subthalamic nucleus, or the GABAergic neurons in 
the striatal complex as well as in the pars reticulata of the substantia 
nigra (SN) [129, 132]. Thus, it is conceivable that low levels of 
CB1 receptors are located on glutamatergic and GABAergic termi-
nals impinging on DA neurons [127, 214], where they can fine-tune 
the release of inhibitory and excitatory neurotransmitter and regu-
late DA neuron firing. 

 Consistently, in vitro electrophysiological experiments from 
independent laboratories have provided evidence of CB1 receptor 
localization on glutamatergic and GABAergic axon terminals in the 
VTA and SNc. Perfusion of CB1 agonists depresses inhibitory and 
excitatory post-synaptic currents recorded from DA neurons [127, 
138, 197]. This effect is apparently mediated by CB1 receptors 
located on presynaptic terminals, where they depress GABA and 
glutamate release onto DA cells. The presence of CB1 receptors 
strongly suggested a physiological role of eCBs in the modulation 
of synaptic functions. 



270    Current Neuropharmacology, 2007, Vol. 5, No. 4 Melis and Pistis 

 This hypothesis was confirmed by patch-clamp experiments 
providing evidence that DA neurons release eCBs as retrograde 
messengers in a Ca

2+
-dependent manner. These messengers travel 

toward the presynaptic sites where modulate inputs by acting at 
CB1 receptors [136, 161]. 

 Under what circumstances DA neurons release eCBs? In gen-
eral, a state of electrical activation is the prerequisite for the eCB 
release. Specifically, it is triggered by depolarization of the DA 
neuron [138], stimulation of excitatory afferents [136], induction of 
burst firing in vivo [136] and in vitro [161]. These stimuli induce a 
cascade of intracellular events ultimately leading to an increased 
intracellular Ca

2+
 and release of eCBs. Under these circumstances, 

released eCBs transiently modulate presynaptically afferent activity 
and shape incoming inputs, thus inducing DSE or DSI [138, 161, 
219]. The eCB 2-AG, and not AEA, is the most likely messenger in 
synaptic suppression in DA neurons, since the inhibition of its ma-
jor synthesizing enzyme (i.e. the sn-1–DAG lipase) abolishes sup-
pression of excitation [136]. 

 The characterization of the eCB system carried out in the VTA 
have not been replicated yet on the more lateral SNc, thus a com-
parison between these two important DA regions is not possible yet. 
Thus, we do not currently know whether the mechanisms men-
tioned above are common to the whole midbrain DA neuronal 
population. In principle, any generalization can be misleading, since 
SNc DA neurons possess specific intrinsic and synaptic properties, 
different in many instances from those in the VTA population. In 
the SNc, studies demonstrated the presence of high levels of AEA 
and detectable levels of the putative endocannabinoid NADA [127]. 
Besides their agonist properties at CB1 receptors, both AEA and 
NADA can be considered as endovanilloids, since they also activate 
TRPV1 receptors at physiological concentrations, whereas 2-AG 
activates only CB receptors. No information is yet available on 2-
AG levels specifically in the SN, which would be of interest espe-
cially when compared to those found in the VTA. In slices contain-
ing the whole mesencephalon, 2-AG concentration is ten times 
higher than that of AEA [137]. Although an unknown proportion of 
the 2-AG detected in brain tissues could be of metabolic origin, it is 
likely that this eCB plays a major role in synaptic modulation of 
SNc DA neurons. Activation of CB1 or TRPV1 receptors in the SN 
exerts opposing actions on synaptic afferent to DA neurons, CB1 
receptors inhibit glutamate and GABA release, whereas TRPV1 
receptors potentiate excitatory transmission, possibly by depolariza-
tion of axon terminals and Ca

2+
 entry [127]. Thus, a complex pic-

ture is emerging, where eCBs and endovanilloids finely tune DA 
neuron activity in the SN, but their contribution to the mechanisms 
of short-term synaptic plasticity has not yet been investigated. It is 
hoped that future studies will address this issue, since this is a sig-
nificant gap in the research on the interaction between the dopa-
minergic and endocannabinoid systems, for its relevance in the 
control of motor activity, and in the neuropathology of PD (see 
below) and other movement disorders. 

FUNCTIONAL CONSEQUENCES OF ENDOCANNABINOID 
SIGNALING IN DA NEURONS 

 DA neurons fire in vivo in two main different patterns of activ-
ity: regular pace-maker-like activity and burst firing [75], the latter 
is associated to transient increases in DA release in the nucleus 
accumbens [74]. By using techniques with good temporal resolution 
(e.g. fast-scan cyclic voltammetry) it was demonstrated that burst 
firing is more efficacious to evoke DA release as compared to regu-
lar firing, when the average frequency was the same [74]. Thus, 
functional efficacy of DA neurons depends more on firing pattern 
(bursting vs. regular) then on the simple average firing frequency. 

 Firing rate and pattern of DA neurons depend on the activity of 
excitatory and inhibitory inputs (see [125] for a review and refer-
ences therein), thus a feedback control of these inputs is crucial for 

normal functioning of DA neurons. An increase in glutamatergic 
transmission enhances DA neuronal activity and produces bursting 
pattern, which can be reproduced by local injection of glutamate 
[139, 149, 150]. GABAergic input is mostly from the striatal com-
plex; it includes inputs from the NAc, the caudate nucleus, globus 
pallidus and ventral pallidum [77, 189, 190, 215]. An important 
GABAergic input arises also from interneurons in the midbrain [8, 
81]. An increase in GABAergic drive reduces firing rate and de-
crease bursting, via both GABAA and GABAB receptors. Switching 
from regular to burst firing is triggered by behavioural stimuli: 
reward prediction error [179-182] or the identification of contextual 
and behavioural stimuli responsible for unpredicted events [160]. 
Thus, the finding that eCBs may be released during burst of DA 
neurons, similar to those caused by behaviourally salient events, 
appears particularly intriguing. These molecules may have a crucial 
role in setting and/or modulating signal-to-noise ratio of DA neuron 
activity, especially during emotional processing and sensory per-
ception [107]. Indeed, cannabinoids strongly influence emotional 
processing and sensory perceptions and have been shown to perturb 
the emotional significance of sensory information [76, 212].  

 Disturbances of the eCB system, such as alterations in brain 
eCB levels or expression of CB1 receptors, induced by chronic 
cannabinoid intake [210] or of idiopathic origin, may be a patho-
physiological substrate of neuropsychiatric disorder such as schizo-
phrenia, and maintain or worsen their course [72, 110, 178]. Indeed, 
Cannabis use is frequent among psychotic patients [101], and there 
is little doubt that it may precipitate psychotic episodes and worsen 
the course of the disease [2, 111], possibly due to its DA-releasing 
properties [211]. Additional evidence suggesting a link between 
cannabinoids and schizophrenia is that adolescent Cannabis con-
sumption was associated with an higher incidence of schizophrenia 
in adulthood [4, 22, 220], when corrected for confounding vari-
ables. In fact, the DA system undergoes extensive maturation and 
rearrangement until early adulthood: for example, DA innervation 
of terminal areas, such as the prefrontal cortex is not completed 
until late adolescence in the rat [168]; a reduced basal levels of DA 
and a reduced pool of readily releasable DA have been reported in 
adolescent rats [192]; D1 and D2 receptor binding in the striatum 
undergoes robust changes during adolescence as a consequence of 
extensive pruning of DA synapses [199]. For these reasons, the DA 
system may be particularly vulnerable to exogenous cannabinoid-
induced disruption of the eCB system [159]. 

 Thus, a better understanding of this neuromodulatory system is 
crucial in the development of pharmacological tools as a potential 
therapy in psychotic disorders. 

ENDOCANNABINOIDS AND NEUROPROTECTION OF DA 
NEURONS

 Membrane depolarization or stimulation of excitatory afferents 
are among the better characterized mechanisms to trigger eCB re-
lease from postsynaptic neurons, including the DAergic ones. This 
evidence, among others, led researchers to expect that eCBs might 
possess neuroprotective actions [134]. In fact, either depolarization 
of neuronal membrane or excessively strong excitatory activity, 
often occurring simultaneously, can lead to or worsen neuronal 
damage. Neurodegeneration is the main cause of morbidity in sev-
eral diseases such as Huntington’s, Parkinson’s, Alzheimer’s, motor 
neuron disease and stroke. Although the pathways leading to neu-
ronal death will be different in these disorders, some similarities are 
likely, such as glutamate-induced excitotoxicity and damage from 
reactive oxygen species and toxic ion imbalances. Neuronal damage 
caused by toxic or ischemic insults, such as energy or oxygen dep-
rivation, as well as traumatic injury, is strongly dependent on the 
release of excitatory amino acids and on rise of intracellular Ca

2+
.

By depressing the strength of excitation through eCBs, neurons 
might reduce potential excitotoxic damage. Consistently, mice lack-
ing the CB1 receptor gene are more susceptible to injury after 
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stroke [154] or kainic-induced epileptic seizures [128]. It has been 
suggested that the release of eCBs during neuronal injury might be 
a protective response. Accordingly, exogenous cannabinoids have 
been shown to exert neuroprotection in a variety of in vitro and in 
vivo models of neuronal injury [56]. Their effects occur via differ-
ent mechanisms, such as prevention of excitotoxicity by CB1-
mediated inhibition of glutamatergic transmission, reduction of 
Ca

2+
 influx, and subsequent inhibition of deleterious cascades, 

TNF-alpha formation, and anti-oxidant activity [56]. 

 The role of (endo)cannabinoids as potential neuroprotective 
agents in neurodegenerative diseases, of either purely genetic or 
multifactorial origin, has been strengthened by recent studies where 
changes in CB1 receptors, as well as in the levels of their endoge-
nous ligands, have been described in animal models of PD [55] and 
human patients [157]. A growing body of evidence suggests that 
dramatic alterations of CB1 signalling occur in PD, and following 
levodopa treatment [16, 55]. Some of these changes might reflect 
compensatory mechanisms involving the plasticity of the eCB sys-
tem, whereas other changes may also contribute to the pathophysi-
ology of parkinsonism motor disorders [16]. 

 Since eCBs depress synaptic glutamate transmission [136, 138] 
and limit further depolarization, their release can be envisaged as a 
protective mechanism by which DA neurons reduce the strength of 
incoming excitation. These cells are exquisitely vulnerable to exci-
totoxicity and oxidative stress, and this vulnerability might be par-
tially correlated with or even be explained by the specific regulation 
of their excitability [100]. 

 Studies in our laboratory provided evidence that eCBs released 
by DA neurons exert protective actions in a model of ische-
mia/reperfusion [137]. Perfusion of brain slices in oxygen and glu-
cose deprivation for 7 minutes induced a progressive depolarization 
of DA neuron membrane and interruption of firing activity, which 
can be irreversible. The prediction that this depolarization would 
trigger the release of eCBs was confirmed by the finding that 
blockade of CB1 receptors induced a considerable worsening of the 
outcome of experimental ischemia [137]. Thus, eCBs might repre-
sent one of the neuroprotective mechanisms reducing DA neu-
ronal damage during episodes of energy deprivation. The current 
hypothesis posits that activation of CB1 receptors by eCBs 
might depress glutamate release in the ischemic tissue, and con-
sequently decrease Ca

2+
 entry and the excitotoxic damage. In 

keeping with previous findings, 2-AG was demonstrated to be 
involved in the mechanisms of neuroprotection, since inhibition 
of its synthesis was detrimental. 

 Disturbances of the eCB system might be of considerable im-
portance in the pathogenesis of neurological disorders involving the 
DA system. Accordingly, dysfunctional eCB signal has been re-
ported in PD and other movement disorders [16, 151, 170, 203]. A 
pharmacological intervention aimed at the enhancement of this 
signal might prove useful as neuroprotective therapy to reduce cell 
suffering/death in the early stages of these diseases. Particularly, 
inhibitors of MGL [122, 174], or of the putative eCB membrane 
transporter [38], which would enhance endogenous 2-AG levels, 
might prove as valuable targets, and be therapeutically useful. It is 
also possible that exogenous cannabinoids might mimic the eCBs 
by acting as neuroprotective agents in neurodegenerative diseases. 
This hypothesis is based, among others, on the observation that 
cannabinoids protect neurons from toxic insults such as glutamater-
gic excitotoxicity [184], ischemic stroke [145], hypoxia [188], 
trauma [152], oxidative stress [128], ouabain-induced secondary 
excitotoxicity [204, 205]. Most of these protective effects appear to 
be mediated by the activation of the CB1 receptors [154], although 
the contribution of other different mechanisms (i.e., antioxidant 
and/or anti-inflammatory properties) cannot be ruled out [78, 79, 
89]. Cannabinoids were also shown to be neuroprotective in animal 
models of PD, mainly for their known antioxidant and CB1 recep-

tor-independent properties [63, 105], but an effect through activa-
tion of CB1 receptors cannot be excluded. We found that the CB1 
agonist WIN55212 exerted neuroprotective actions on DA cells 
subjected to ischemia, but the protection was apparent at the lowest 
concentrations tested (1-10 nM), whereas higher concentrations 
(0.1-1 M) were detrimental [137]. These results support the idea 
that CB1 receptor agonists exert biphasic effects, with low doses 
being the most effective. This narrow concentration-response curve 
might explain why other studies found exogenous cannabinoids, 
such as HU210, neurotoxic to mesencephalic DA neurons in culture 
at higher concentrations (1 M) [98]. The reason for negative effect 
of moderate to high concentrations of CB1 agonists is not currently 
known. One possibility is that high concentrations of CB1 agonist 
may disrupt the balance between suppression of glutamate and 
GABA release, by favouring the latter and therefore reducing or 
reversing their neuroprotective actions. The study by Kim et al.
(2005) found also that exogenously applied AEA was detrimental to 
the survival of DA neurons. However, neurotoxic actions of AEA 
were exerted through activation of TRPV1 receptors, where it acts 
as a weak agonist. This finding adds a further matter of complexity 
in the balance between neuropretective/neurotoxic action of (endo) 
cannabinoids, since it is expected that activation of TRPV1 receptor 
by mixed eCB/endovanilloid substances (such as anandamide and 
NADA) may promote cell death through Ca

2+
 entry [98] and/or 

stimulation of glutamate release [127]. 

ENDOCANNABINOID SIGNALING IN REINFORCEMENT 

AND ADDICTION  

 The discovery that several lipid molecules with eCB-like activ-
ity are released by midbrain DA neurons (i.e. AEA, 2-AG, NADA; 
[126, 127, 136, 137] has highlighted their role in modulating the 
reward pathway, and consequently opened new avenues in both 
understanding and treating drug addiction (for a recent review see 
[124]. In fact, the eCBs released by VTA DA neurons, by moving 
retrogradely toward presynaptic CB1 receptors located on both 
glutamatergic and GABAergic terminals [136, 138, 161, 219], 
finely adjust the balance between excitatory and inhibitory synaptic 
inputs, thus contributing to the regulation of their own firing pattern 
and/or activity and, consequently, of the whole reward pathway. 
Since activation and inhibition of this circuit correlates with drug- 
seeking/taking behaviours and withdrawal/drug craving, respec-
tively, the eCBs by affecting DA neuronal function might partici-
pate in these behaviours as well. In addition, the findings that eCBs 
release and CB1 receptor activation are necessary for LTD in both 
the nucleus accumbens [162, 163] and the dorsal neostriatum [67-
69] support their involvement in those behaviours mediating the 
crucial transition from the reward-dependent form of drug-taking to 
the compulsive one. This hypothesis is supported by the evidence 
that both pharmacological and genetic impairment of CB1 receptors 
inhibit motivated behaviours [33-35, 39-41, 52, 53, 108, 109, 123, 
146, 176] as well as acquisition of natural rewards [166] and drug-
induced increased DA neurotransmission [26, 93, 155]. Addition-
ally, the finding that CB1 receptors might contribute to human vul-
nerability to addiction [221] clearly indicates that the eCB system is 
a crucial substrate in the neurobiology of drug addiction.  

 Many mechanisms of action have been proposed for the interac-
tions between blockade of eCBs’ action and treatment of drug ad-
diction [64, 107, 114, 124], and they all over-emphasize the inter-
play between the DA and eCB and/or opioid systems. However, 
while the DA system appears to be involved more than others in the 
pathophysiology of addiction, the studies examining eCB actions in 
the reward pathway have not fully elucidated the mechanisms un-
derlying their involvement in the several aspects of drug depend-
ence (e.g.: eCBs released in the VTA and primary rewarding effects 
of diverse drugs of abuse; eCB role in relapse to drug-seeking be-
haviours). The most difficult part is, in fact, to interpret the obser-
vations regarding eCB actions in the VTA [136, 138, 161]. How 
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can we explain their role in the rewarding properties of drugs of 
abuse, when they can simultaneously inhibit both GABAergic and 
glutamatergic synaptic inputs onto VTA DA neurons? One possibil-
ity is that eCBs released by VTA DA neurons might selectively 
regulate their own synaptic inputs depending upon the relative level 
of synaptic activation of the different pathways. Thus, one possible 
scenario might be that when cortical afferents to the VTA are acti-
vated, producing long-lasting adaptations in DA cells that contrib-
ute to the development and maintenance of behavioural sensitiza-
tion and, therefore, to drug addiction [164, 173, 202, 207, 218], 
eCBs might selectively act on and dampen these glutamatergic 
inputs [136]. This intriguing scenario might explain eCB key role in 
the common neurobiological substrate of motivation and addiction, 
and suggest how CB1 receptor blockade has proven useful in the 
treatment of drug addiction. Hence, despite of the many and com-
plex neurobiological mechanisms thought to be at the basis of drug 
addiction, it is noteworthy to stress the undeniable usefulness of 
CB1 receptor blockade as promising efficacious treatment of addic-
tion to the diverse substances, irrespective of the mechanism of 
action. It is of particular interest, in fact, that pharmacological 
blockade of CB1 receptors with SR141716A (i.e. rimonabant) pre-
vents reinstatement and/or relapse to drug-seeking behaviour [3, 34, 
35, 41, 52, 53, 60] whereas positive modulation of CB1 receptors 
enhances the effects of sub-threshold doses of the same drugs [3, 
41, 61, 191]. Thus, it appears compelling, and promising as well, to 
develop pharmacological tools aimed at activating the eCB system 
in order to both prevent relapse to drug use and treat drug addiction. 

ENDOCANNABINOIDS IN MOTOR COORDINATION AND 

PARKINSON'S DISEASE  

 The observations that synthetic cannabinoids, as well as hemp-
derived ones, and eCBs have powerful inhibitory effects on motor 
activity [37, 58, 169], together with the discovery that both eCBs 
and CB1 receptors are abundantly distributed in the basal ganglia 
[47, 84, 85], strongly suggest that this system is involved in the 
regulation of motor behaviour as well as basal ganglia-related 
movement disorders, such as PD.  

 Beside the changes observed in CB1 receptors within the basal 
ganglia during normal aging [119, 121, 167], changes in these re-
ceptors in the postmortem basal ganglia of humans affected by PD 
have also been demonstrated [104]. Some of these changes are 
likely to reflect compensatory mechanisms by which plasticity in 
the eCB signaling might be invoked in, or contribute to the patho-
physiology of parkinsonism motor complications [16, 187]. Addi-
tionally, like many other neurological disorders, PD is accompanied 
by excitotoxicity, Ca

2+
 imbalance, and oxidative stress that lead to 

progressive neuronal death [50, 135]. As already mentioned above, 
SNc DA neurons are particularly exposed to oxidative stress be-
cause the metabolism of DA gives rise to several molecules that can 
act as endogenous toxins [113]. Thus, one plausible speculation is 
that -once released by these DA cells- eCBs might act not only as 
neuroprotective but also as neurorescue molecules to provide pro-
tection against the progression of neuronal injury characteristic of 
PD. However, it is still unknown whether a phenomenon similar to 
the one occurring in the VTA during energy deprivation [137] takes 
also place in the SNc. But if this is the case, the most likely sce-
nario is that SNc DA cells would release eCBs to dampen the hy-
peractivated corticostriatal glutamatergic transmission, a feature of 
experimental models of PD [19, 20, 23, 183]. Hence, AEA found in 
SNc slices, which inhibits presynaptic glutamate release in this area 
[126] and the striatum as well [66, 92], would act similarly to 
ionotropic glutamate receptors antagonists and improve symptoms 
of experimental PD [24]. Accordingly, increased levels of AEA [47, 
54, 80, 115] together with a downregulation of AMT and FAAH 
have been found in an experimental model of PD [54, 80, 115], 
indicating that the eCB system undergoes complex plastic changes 
leading to/during PD. Altogether, the above mentioned findings 

allow to suggest that targeting specifically the enzyme FAAH (i.e. 
pharmacological inhibition) might prove beneficial/useful as a 
novel approach to treat the abnormal corticostriatal glutamatergic 
activity observed in PD. Of particular interest is also that enhance-
ment of protective eCB signaling can be achieved through a dual, 
although selective, pharmacological inhibition of the transporter and 
FAAH respectively [95]. Karianan et al., in fact, indicate how dis-
ruption of the two distinct mechanisms of eCB inactivation, com-
bining transport and FAAH inhibitors AM404 and AM374, causes
additive effects mediated by potentiation of eCB tone acting on 
CB1 receptors.Accordingly, by enhancing AEA availability, through 
inhibition of AMT and FAAH, most deficits (e.g. akinesia and sen-
sorimotor orientation) were ameliorated in an experimental model 
of PD [54].  

 Interestingly, levodopa treatment reverses the abnormalities of 
the eCB system in those experimental models of PD, where DA 
depletion is obtained by injecting either 6-OHDA or MPTP in the 
striatum [104, 115, 120, 168]. Therefore, one might speculate that 
the eCB system is under negative control of DA transmission, and 
its involvement is part of an attempt to counteract the increased 
GABAergic signaling in the globus pallidus, another component of 
the unbalanced basal ganglia physiology contributing to PD symp-
toms [12, 13, 21]. In sharp contrast, a different model of PD (i.e. 
reserpine-induced PD), where 2-AG levels were found increased in 
the globus pallidus [47], suggested that enhanced eCBs levels in 
this area contribute to PD symptom generation instead, and that 
selective CB1 receptor blockade might be therapeutically useful. 
However, CB1 receptor blockade in non-human primates failed to 
alleviate PD symptoms [140, 141]. It is worth mentioning that dif-
ferences in the basal ganglia physiology between primates and ro-
dents, and/or different models of experimental PD might account 
for opposing results found in literature. 

 Noteworthy, CB1 receptor stimulation exerts a biphasic effect 
not only on movement [222] but also on protection (see above). 
Therefore, it is important to keep in mind that a narrow “therapeutic 
window” might prove useful for treatment of PD symptoms, 
whether this is obtained by either enhancing eCB availability 
through inhibition of their uptake and/or hydrolysis or administer-
ing CB1 receptor agonists within the proper dose range. 

CONCLUSIONS 

 In summary, accumulating evidence indicate that eCBs are 
important modulators of DA neuron functions. Dysfunctions of DA 
neurons lead to several very frequent invalidating diseases, such as 
schizophrenia or PD, which also still represent an unmet clinical 
need. It is therefore crucial to understand how the eCB system is 
involved in the normal physiological regulation of the DA system, 
as well as if it plays a role in the in the pathophysiological mecha-
nisms of DA neurons’ diseases. Cannabinoids have unfavorable 
side effects that strongly limit their clinical usefulness. However, in 
recent years several compounds which modulate the eCB system, 
without directly activating CB1 receptors, have been developed. 
Preclinical studies indicated that they may possess a more favorable 
pharmacological profile, but their possible evaluation in clinical 
studies is still very distant. In future, studies are needed to better 
characterize the role of the eCB system in pathology, in particular 
their involvement in schizophrenia, or to resolve the controversial 
issue of neuroprotective vs. neurotoxic effect of exogenous or en-
dogenous cannabinoids. 
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