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Bayesian network (BN) modeling is a rich and flexible analytical framework capable of

elucidating complex veterinary epidemiological data. It is a graphical modeling technique

that enables the visual presentation of multi-dimensional results while retaining statistical

rigor in population-level inference. Using previously published case study data about

feline calicivirus (FCV) and other respiratory pathogens in cats in Switzerland, a full BN

modeling analysis is presented. The analysis shows that reducing the group size and

vaccinating animals are the two actionable factors directly associated with FCV status

and are primary targets to control FCV infection. The presence of gingivostomatitis and

Mycoplasma felis is also associated with FCV status, but signs of upper respiratory

tract disease (URTD) are not. FCV data is particularly well-suited to a network modeling

approach, as both multiple pathogens and multiple clinical signs per pathogen are

involved, along with multiple potentially interrelated risk factors. BN modeling is a

holistic approach—all variables of interest may be mutually interdependent—which

may help to address issues, such as confounding and collinear factors, as well as to

disentangle directly vs. indirectly related variables. We introduce the BN methodology as

an alternative to the classical uni- and multivariable regression approaches commonly

used for risk factor analyses. We advise and guide researchers about how to use BNs

as an exploratory data tool and demonstrate the limitations and practical issues. We

present a step-by-step case study using FCV data along with all code necessary to

reproduce our analyses in the open-source R environment. We compare and contrast

the findings of the current case study using BN modeling with previous results that

used classical regression techniques, and we highlight new potential insights. Finally,

we discuss advanced methods, such as Bayesian model averaging, a common way of

accounting for model uncertainty in a Bayesian network context.

Keywords: feline calicivirus, reproducible research, good modeling practice, graphical model, multivariable

analysis, risk factor analysis, Bayesian network
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1. INTRODUCTION

Risk factor analysis is often the primary goal of epidemiological
studies. When the disease system under study is complex, there
are likely many interdependent variables, including multiple
interdependent outcome variables. Novel multivariate modeling
approaches, such as Bayesian network (BN) modeling, may
potentially reveal new epidemiological insights compared to
classical statistical approaches (1) when applied to complex
disease system data. We present an introduction and guide to
BN modeling with complex epidemiological data and provide a
case study analysis using animal welfare data. Animal welfare
is an intrinsically multi-dimensional concept that cannot be
measured directly. Comin et al. (2) included three animal-
based welfare indicators: feather condition, mite infestation, and
flock mortality. They considered two environment-based welfare
indicators: the lightning quality of the barns (i.e., the quality of
the lamps within the barns, whether the barns have windows, and
whether they are automatically or manually regulated) and the air
quality. A typical approach for dealing with multiple outcomes in
animal welfare studies is to construct a composite score as the
response variable and run a regression analysis. A disadvantage
of this approach is that we may lose valuable insights by reducing
the different welfare outcomes into a single dimension/outcome
variable. Ideally, we want to retain all the richness of the
original data. Rather than create a composite variable, we can
instead keep all the original outcome variables by using a
graphical modeling approach, and the particular type of graphical
modeling methodology we consider here is Bayesian network
modeling. With the increasing availability of data and the need
to understand and explain ever more complex epidemiological
systems, knowledge of how to effectively apply new multivariate
methods, such as BN modeling may be increasingly relevant for
veterinary epidemiologists.

Classical regression is the most popular method in
epidemiology for performing risk factor analysis (see Figure 1).
Regression analysis is a powerful, robust, and versatile statistical
approach that estimates the relationship between two or
more variables of interest. There are many types of regression
analyses. At their core, they all examine the influence of one
or more independent variables or factors on a dependent
variable (also called the outcome or exposure variable) (3). The
epidemiologist’s expert decision about which variable is the
response drives the regression. The philosophy for performing
a risk factor analysis is to use a significance metric to extract
relevant (influential) factors. However, this approach becomes
unstable when the level of collinearity is too pronounced within
the factors. In this context, collinearity means that some factors
are (to a certain degree) predicted by a set of others, since the
dataset contains redundant information. It is possible to identify
and to remove redundancies, but the instability could remain
due to inherent correlations in the system being studied. For
identifying collinearity, some techniques have been proposed:
e.g., changing estimated regression coefficients when a predictor
variable is added or deleted, calculating the variance inflation
factor (VIF), and deleting factors with large VIF. Some tests
have been proposed, but no consensus exists on their usefulness.

A statistically related problem arises when sub-selecting a
limited number of variables, either due to redundancy within
the data or due to computational limitations. A well-adapted
approach to multivariate system epidemiology is the so-called
Minimum Redundancy Maximum Relevance model (4). In the
presence of collinearity, regression analysis is known to become
unstable and to predict the effect of individual factors poorly.
A high correlation among factors is common in epidemiology
when studying biosecurity [e.g., (5)]. In this context, a direct
association means that the set of variables will change the
outcome when their values change. An indirect association is
a correlation mediated by an intermediate set of variables. In
epidemiology, it is important to model and identify variables
that have a direct impact on the variable of interest. The
directly associated variables are primary targets for intervention
or for identifying the best candidate for knowledge-seeking
from a modeling perspective. This process is called “structure
discovery” in machine learning (6). The easy-to-interpret
quantitative outputs and the holistic qualitative outputs of a
typical BN model make it useful in observational analysis and a
good alternative to classical methods.

Other popular graphical machine learning techniques exist,
such as artificial neural networks (ANNs), regression trees, or
random forest. At the outset, BN, ANN, and tree analyses look
alike, as they rely on directional graphs. However, they are
different approaches and should not be confused. We will not
discuss the particular case of causal Bayesian networks in this
paper because causal inference requires theoretical assumptions
that are beyond the scope of this paper, and the methodology can
become very field-specific. We refer the interested reader to Pearl
and Mackenzie (7) for an extensive overview of modern causal
modeling using graphical models. The general task addressed in
this paper is, from an observational dataset, to find a suitable
network that represents the relationships between the variables
well using probabilistic methods. This paper seeks associations
rather than causal links, i.e., exploratory analysis rather than
confirmatory analysis.

This paper is structured as follows. A motivating example
is presented in section 1.1. Section 2 gives a brief overview
of the basic principles and an overview of the use of BNs in
other fields. Section 3 gives a detailed presentation of the BN
methodology, including a discussion of the key terms relevant
to the BN modeling landscape. It also outlines some rules for
good modeling. Section 4 lists the main commercial and non-
commercial software implementations. Section 5 presents a case
study with the FCV dataset. Finally, section 6 discusses the limits
and misuse of BN models in epidemiology.

1.1. Motivating Example
Consider the fictitious example of an observational study about a
particular disease in animal production. In the population, there
are two breeds. The exposure status for each animal, the breed
variable, and the disease status have been recorded (Possible
values for exposure status are true or false and represent,
for example, contact with sick animals. Possible disease status
values are true or false). Based on this observed dataset, the
task is to analyze the data. Figure 2 presents the network (the
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FIGURE 1 | Risk factor analysis with the FCV dataset. Comparison between: (A) classical stepwise multivariable model selection using two different model scores,

represented by a network (backward-forward model selection algorithm), and (B) Bayesian network (BN) analysis with two scores and the corresponding network

(using an Additive Bayesian Network algorithm). For ease of comparison, we chose to present the classical regression approach in a network format as well. The blue

part was performed by using the AIC (Akaike Information criteria) score, and the red part was performed by using the BIC (Bayesian Information Criteria) score.

Stepwise model selection and BN modeling using the same score gives very similar results. The BN models depict a more detailed description of the data. The

objective of this paper is to describe how to obtain and to interpret such a result.

qualitative part of the model) with the so-called conditional
probability tables (CPTs, the quantitative parts of the model).
The CPTs are, in this discrete case and for mutually dependent
variables, matrices displaying the conditional probability of a
given variable with respect to the other. The classical approach
would perform a regression analysis with a disease as the
response and exposure and breed as factors. It would create an
essentially one-dimensional BN because it would overlook the
existing link between exposure and breed. We would ignore
the fact that breed B is much more likely to be exposed
than breed A. In epidemiology, this is a possible confounder.
Indeed, breed is associated with both the dependent variable
and independent variable, possibly causing a spurious association
between exposure and disease status. To be classified as a
confounder, breed must be causally related to exposure and
disease, with no link between exposure and disease beyond the

confounding effect (8). Many methods have been proposed to
control for confounders in observational studies: stratification,
restriction, matching, propensity score adjustment, and multiple
BN regression models.

A related but different issue is the so-called effect modifier
or interaction phenomenon. Interactions may arise when
considering three or more variables when the effect of one
variable on an outcome depends on the state of a second variable:
in other words, when the effects of the two causes are not additive.
An interaction can also be described as an acausal association.
A typical example among humans is the interaction that exists
between ultraviolet light (UV) and analogs of vitamin D (VitD)
or its precursors in bone metabolism. As Lebwohl et al. (9) show,
with an insufficient amount of UV light, VitD (or its precursors)
will not affect bone metabolism. Symmetrically, UV light without
VitD (or its precursors) will not affect bone metabolism. BN
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FIGURE 2 | A simple synthetic discrete Bayesian network is presented (represented as a DAG) with the conditional probability tables (CPT) and the corresponding

odds or odds ratios (OR). A certain disease is studied in animal production. The observed variables are the animal’s breed and the exposure to sick animals. In the

DAG, Breed is the parent of both Exposure and Disease. Exposure is the parent of Disease, as is indicated by the arrow. Inversely, one can say that Disease is the

child of Exposure. From the column or row sums of the CPTs, it is possible to extract the marginal probabilities.

modeling is conceptually attractive for performing this task in
analyzing the variables within a network. From a mathematical
perspective, the global model (i.e., the network and model
parameter) is called the joint probability distribution.

2. BACKGROUND AND OBJECTIVES

A BN modeling approach was proposed more than 30 years
ago (10). It has a track record of successful applications using
real-world data in a wide variety of domains. BNs are used for
modeling beliefs in social sciences (11), decision support (12),
biology (13), and finance and marketing (14). More recently, this
approach has been applied in veterinary epidemiology (15, 16),
anti-microbial resistance (17–19), and animal welfare (2).

As BN models are used in a wide variety of research
fields, they are called many different names. Here is a
(non-exhaustive) list of terminology: Bayesian networks, belief
networks, decision networks, probabilistic directed acyclic
graphical models, recursive graphical models, naive Bayes, causal
probabilistic networks, or influence diagrams (20).

Fitting BN networks to data is called learning. This term comes
from the machine learning community and is a synonym for
selecting the best network. Learning a BN from a dataset entails
estimating the joint probability distribution, which encodes the
global probability distribution of amulti-variable problem.When
multiple variables are mutually dependent, calculating the joint
probability distribution is useful as one could compute two other
distributions: the marginal distribution, giving the probabilities

for any variables independently of the other variables, and the
conditional probability distribution, giving the probabilities for
any subset of the variables conditional on particular values
of the remaining variables. It is usually a two-step process
involving (i) structure learning and (ii) parameter learning. This
is globally called the structure discovery process (6). The next
section presents a detailed overview of these methods. Once the
joint probability distribution is estimated, it can be graphically
represented using a Directed Acyclic Graph (DAG), i.e., a
Bayesian Network. A BN is essentially a visual representation of
a probabilistic model.

3. GENERAL METHODOLOGY

We now present the general methodology and the steps needed
to fit a BN model to data. First, a short introduction to
Bayesian networks is given. Then, a description of the two
main learning classes of algorithm is given. Afterward, the
Additive Bayesian Network (ABN) methodology is presented
in detail as a special case of BN modeling. A closely related
methodology is Structural Equation Modeling (SEM) (21). SEM
includes different methodologies, such as confirmatory factor
analysis, path analysis, partial least squares path modeling, and
latent growth modeling. Although they share the same purpose,
SEM and BN methodologies have significant differences (22).
SEM uses a causal approach based on cause-and-effect thinking,
whereas BN is based on a probabilistic approach. SEM is well-
suited to latent variable modeling (i.e., variables that are not
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FIGURE 3 | Illustration of a typical confounding situation described in the text

stating the biologically expected relationships, a DAG, and the corresponding

statistical model encoding the joint probability distribution.

directly observed but are modeled from others), which is not
possible in the BN methodology. This is often the primary
motivation for using SEM. A BN model can take advantage of
new data, whereas SEM cannot.

3.1. Bayesian Network
In a BN model context, a statistical model represents the data-
generating process encoded using a graph and the parameter
estimates. It can be used to describe the data, generate knowledge
(i.e., understanding), or make predictions. The BN graphical
representation consists of nodes, which are the random variables,
and edges, which form the relationships between them. These
representations often use odds ratios for discrete variables and
correlation coefficients for continuous variables. The network
structure should be directed and contain no cycles.

Figure 3 illustrates a typical confounder situation. In
veterinary epidemiology, X could be exposure, an intervention,
or a certain condition; Y is the animal status; Z is a
confounder, such as sex, breed, age, or body mass index
(BMI). Figure 3 is a BN, and the following formula gives its
encoded probabilistic model, indicating how to encode the joint
probability distribution [i.e., P(X,Y ,Z)] into a product of the
conditional distributions

P(X,Y ,Z) = P(Z)P(X | Z)P(Y | X,Z), (1)

where P(. | .) stands for the conditional probability distribution.
In a discrete setting, this probability is given by the CPTs.
Hence, P(X | Z) is the conditional probability of an animal of
breed = 1 being exposed. P(exposure = TRUE | breed = 1).
Based on the CPT, the odds ratio could be computed as the
cross product of entries of the contingency table. The general
formula to deduce the probabilistic model from a BN implies
that the joint probability [here P(X,Y ,Z)] factorizes as a product

of the conditional probabilities of the variables, given their set
of parents

P(X) =

n
∏

j=1

P(Xj | Paj), (2)

where X is the set of random variables (i.e., the dataset), Xj

is the jth random variable, and Paj is the set of parents of
the jth random variable. From a mathematical point of view,
a DAG is a union of two sets: the set of nodes and the set of
arrows. The network structure has a probabilistic interpretation.
It encodes the factorization of the joint probability distribution of
the dataset. One significant consequence of the duality between
probabilistic models and network structures is that multiple
different graphs can represent a given probabilistic model. As
shown in Supplementary Material, only specific arrangements
matter when selecting networks. The exact structure of a BN is
not unique, and so interpretation of the effect of a variable based
on arc direction, e.g., as in a typical causal statement that variable
X impacts Y , is generally not valid. Therefore, on the other
hand, caution is needed to avoid overinterpreting the results of
a BN graph. Removing all arcs and presenting only undirected
networks may potentially remove some useful information.

3.2. Model Learning
In a Bayesian setting, the model’s posterior distribution given the
data factorizes as the product of the structure’s distribution given
the data and the model parameters given the structure and the
data. Then, the learning phase is formalized as:

P(M|D) = P(θM,S|D)
︸ ︷︷ ︸

model learning

= P(θM|S ,D)
︸ ︷︷ ︸

parameter learning

· P(S|D) ,
︸ ︷︷ ︸

structure learning

(3)

where M is the full model (i.e., the network structure S and
the parameter estimates θM) and D is the dataset. One can see
from Equation (3) that the two learning steps are intertwined and
mutually dependent.

Learning BNs from a dataset is very complicated from the
programming and statistical perspectives because the number of
possible models is massive. For example, the total number of
possible DAGs with 25 nodes is larger than the number of atoms
in the universe (1080), so the number of possible networks grows
faster than the exponential function, i.e., super-exponentially.
Thus, it implies the use of a smart and efficient algorithm and
controlling for possible overfitting (23). In situations with limited
data and numerous models, any selection or constructive method
risks producing overly complicated models (i.e., a network with
too many arcs) to represent the data. A key feature of the
described methods is the ability to control for overfitting and so
produce parsimonious models.

3.3. Structure Learning
In order to select BNs from observed data, two main
approaches have been proposed: constraint-based and score-
based approaches. These approaches, which are based on
different statistical paradigms, are typically performed in a semi-
supervised setting. Despite the intention of selecting structures in
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a fully data-driven way, it is possible to guide the learning phase
with external knowledge. A fully-supervised approach entails
asking experts to design a network and fit it to the data. In
practice, this is often not possible due to the high number of
possible models that make this task highly complex. However,
a semi-supervised method could be suitable, as typically, partial
previous knowledge exists on specific research topics. The set of
assumptions under which the learning algorithms are working
are: each node in the network is a random variable (i.e., not
a function of the other variables), the relationships between
the random variables should be modeled with conditional
independencies, every possible combination of the random
variables should be plausible (even if very improbable), and
the data should be derived from independent realizations of an
unknown model (without temporal or spatial dependencies) (6).

3.3.1. Constraint-Based Algorithm
Constraint-based algorithms take advantage of the significant
differences between colliding arrows (v-structure) and other
types of structures in BN. Multiple methods exist, but one
popular procedure identifies the set of mutually possible
dependent variables to reduce computational complexity. It
constructs the skeleton of the graph by searching for which
variables are or are not related, regardless of the arc’s direction.
Finally, conditional independence tests are performed to detect
v-structures (24). They are used as an oracle to decide on
the inclusion or exclusion of an arc between two variables.
Finally, based on the skeleton and the v-structure, the procedure
generates (partly) directed graphs. This approach was proposed
by Verma and Pearl (25). Since then, many refinements have
followed. It is the methodology of choice for performing causal
inference. It is also known to be more efficient with sparse
networks, i.e., with a limited number of expected arcs.

Choosing the independence test framework, i.e., both the
algorithm and the tests themselves, is this approach’s major
limitation. Another subjective user choice is how to set the
significance level of the tests (classically called in statistics the α

level). This choice is known to be field- and data-specific, and
it influences the learned network (26). If the number of tests
is substantial, precautions must be taken to avoid the problem
of multiplicity, such as using Bonferroni’s correction factor.
Another drawback of this approach is the fact that it produces
only one model.

We next present a methodology that can produce a family
of plausible networks. They could be mixed to generate a more
robust network. When data are scarce, it is reasonable to believe
that multiple competitive models could be identified with a high
level of confidence, and it would be hard to select only one.

3.3.2. Score-Based Algorithm
Bayesian network modeling can be viewed as a model selection
problem. The most popular approach to BN modeling scores the
candidate model in a stepwise procedure and selects the model
that has the optimal score. The most popular implementation is
based on an AIC (Akaike information criterion) (see Figure 1).
The paradigm used here ensures that, if the score is well-
designed, the selected model (i.e., the one with the optimal score)

should represent the data well. Many scores dedicated to BN
have been proposed depending on the nature of the data (for
example, whether they are discrete, continuous, or a mixture of
different data distributions). These scores have been designed to
be penalized for model complexity because, according to Occam’s
razor principle, if twomodels for a given phenomenon exist, then
the simpler should always be preferred.

To select the optimal network, i.e., the network that optimizes
the network score, one needs to have a search algorithm. In
contrast to the learning phase, this search algorithm only aims
at finding the network with the highest possible score. Multiple
algorithms have been proposed in the literature. One can perform
a so-called exact search or use a heuristic approach. The exact
search is only possible on a desktop computer for a very
limited network size with a maximum of 20 nodes. Heuristic
search algorithms, however, leading to an approximately optimal
network, scale well with the network size (number of nodes in
the network).

A score-based algorithm can learn the conditional
independence between variables, so an entirely directed
network could generally lead to an acausal interpretation of
the arrow’s direction. Thus, a score-based algorithm encodes
statistical dependencies and not causal links. As Pearl (27) states:

It seems that if conditional independence judgments are by-

products of stored causal relationships, then tapping and

representing those relationships directly would be a more natural

and more reliable way of expressing what we know or believe

about the world. This is indeed the philosophy behind causal

Bayesian networks.

In a score-based perspective, arrows are important and could be
displayed even if their interpretation is not fully causal. Some
authors still advise that the skeleton of the network be displayed;
this is also a valid approach and depends on the nature of the
problem studied (28).

The major limitation of the score-based approach is the
score used. Indeed, a well-designed score should minimally
differentiate structures with different probabilistic models (as
shown in Figure 6). A lot of theoretical effort has been put
into deriving likelihood equivalent scores (i.e., score differentiate
equivalence classes of BN), which have only been accomplished
under very restrictive assumptions. For example, scores that
preserve likelihood equivalence with a general mixture of data
distributions do not exist. The classical workaround is to
discretize the data, and then suitable scores exist. It is known
in epidemiology that discretization, though common, has severe
consequences and is not always advisable (29). Finally, it is
interesting to note that when the number of observations is large
enough, the constraint-based and score-based approaches are
equivalent, and there is usually no particular reason for choosing
one over the other.

3.4. Parameter Learning
Once the network structure has been selected, parameter learning
can be performed locally. Only the local structure is required: the
index node and the set of parent nodes. Two main approaches
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exist for estimating the parameter distribution: the maximum
likelihood and the Bayesian approaches. The choice of the
structure learning algorithm does not influence the method for
learning the parameters of the BN. Those two methods are
based on two different statistical frameworks. The maximum
likelihood assumes an unknown but fixed set of parameters for
maximizing the likelihood, whereas the Bayesian approach treats
the parameters as random and assumes a prior to them. They
are computed from the posterior distribution of the parameter
of the network. The main consequence is linked to the prior’s
choice. Indeed, the prior can help to estimate the parameters
when there is not enough information within the data (30).
Themodel parameters are interpretable as regression coefficients.
Those parameters are central inmodel interpretation, as they give
the direction of the effect and the effect size.

In the presence of missing data, more sophisticated techniques
should be used to infer model parameters. In a BN context, the
missing data mechanism should be ignorable (31), i.e., the data
should be Missing at Random (MAR) or Missing Completely at
Random (MCAR). Indeed, the MAR assumption is the minimal
condition on which statistical analysis can be performed without
modeling the missing data mechanism. The most popular
approach for computing the value of the likelihood of the dataset
with incomplete data is the Expectation-Maximization (EM)
algorithm (32, 33). This is an iterative procedure for estimating
the maximum a posteriori of a statistical model in two steps (E-
step and M-step). An alternative method is variational inference,
which provides a computationally cost-effective lower bound on
the marginal likelihood (34). Hybrid algorithms are possible.
When such solutions are not available, the usual workaround is
to perform a complete case analysis, i.e., ignoring all observations
containing missing information. The obvious disadvantage is the
loss of existing knowledge. As an alternative, a model imputation
strategy allows the researcher to still use the existing information
and create data when they are missing. A good quality check is
to perform both analysis and testing if they give fundamentally
different results.

3.5. Additive Bayesian Network
The Additive Bayesian Network (ABN) methodology is a score-
based methodology that takes advantage of a particular model
parametrization. It uses the robustness and the full range of
applicability of the regression framework to parameterize the
network. It is used to score the candidate network and to estimate
the model’s parameters. The regression framework could be set
in a Bayesian or a frequentist setting. The regression coefficient
estimates in both Bayesian and frequentist settings are usually
close to one another, but the network scores could be different,
creating a very different network for each setting. Indeed, in
a Bayesian setting, the so-called marginal posterior network
score distribution is returned, whereas in a frequentist setting,
one of the typical model selection scores is used [the Akaike
Information Criterion (AIC), Bayesian Information Criterion
(BIC), or Minimum Distance Length (MDL)]. The term BN
might be misleading, as BN models do not necessarily imply a
commitment to Bayesian statistics. From a formal perspective,
ABN takes advantage of the exponential family to parameterize

the model and to enable the mixing of different kinds of data,
such as continuous, discrete, or Poisson-distributed. A nice by-
product of this parametrization is that it also allows a user to
measure uncertainties of the model parameters. In a Bayesian
setting, the credibility intervals can be computed, whereas in a
frequentist setting, the confidence intervals can be computed. The
term additive in ABN refers to the assumption that the effects of
the variables are additive.

Figure 4 presents a scheme of the workflow used for
performing an ABN analysis. A list of pre-computed scores
based on atomic networks is calculated. The atomic networks
are a given node with all possible combinations of parents. The
list of atomic networks with their scores is called the cache
of scores. Based on the cache of the pre-computed scores, a
search algorithm is used to optimize the network. The search
algorithm can be heuristic or exact. Based on the optimized
network, the model coefficients can be fitted. ABN is thus,
essentially, a graphical modeling technique that extends the
usual Generalized Linear Model (GLM) to multiple dependent
variables through the factorization of their joint probability
distribution. In epidemiology, data are commonly generated in
a setting that has an apparent grouping aspect, for example if
the data are collected in different countries, counties, farms, etc.
In statistics, it is known that clustering, due to the potential
non-independence between data points from the same cluster,
could cause over-dispersion. One of the many advantages of
using the ABN framework is that it allows for adjustments
for clustering within the Bayesian setting. ABN and other
score-based approaches have the feature of letting the user
impose external causal inputs (such as banning or retaining arcs
based on previous scientific knowledge) to ensure the model’s
interpretability. Additionally, to considerably simplify the search
space, the degenerescence between different equivalent DAGs,
i.e., different networks sharing the same score, can be lifted.

ABN relies on priors at different levels. In the structure
learning phase, one needs to decide on a structural prior, which
encodes how likely a given structure is. In ABN, a form of prior is
used that assumes that the prior probabilities for a set of parents
comprising the same number of parents are all equal. It favors
parents sets with either a very low or very high number of parents,
which may not be appropriate. Alternatively, an uninformative
prior is used where parent combinations of all cardinalities
are equally likely. When using the Bayesian implementation
during the model parameters learning phase, priors are used for
estimation. Those priors are designed to be uninformative.

Any BN modeling approach contains approximations to
make the process computationally tractable. The most common
approximation is to limit the number of possible parents per
node, i.e., the model complexity. Another approximation is
linked to the nature of epidemiological data. Multiple types
of distributions often co-exist within a dataset, and the score
used should be versatile enough to handle them. From a
mathematical perspective, this leads to an approximation. As
previously mentioned, the chosen search algorithm could also
imply some approximations. Thus, the global ABNmethod relies
onmultiple approximations, and the end-user should be aware of
them. Transparently reporting them is of paramount importance.
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FIGURE 4 | Schematic representation of the Additive Bayesian Network workflow. First, a cache of scores is computed for atomic networks. Then, a search algorithm

is used to optimize the comprehensive network. Based on the optimized network, the model parameters are learned. Those three steps are programmed in three

different R functions: buildscorecache(), mostprobable(), and fitabn() .

4. SOFTWARE IMPLEMENTATIONS

Many commercial and non-commercial implementations for BN
modeling techniques exist. Commonly commercially used BN
software includes the Hugin Decision Engine produced by Hugin
Expert (www.hugin.com) (35), and there is an R package to
interface the Hugin Decision Engine with R: RHugin. Further
examples are bayesfusion (www.bayesfusion.com), netica (www.
norsys.com), and BayesiaLab (36). A popular implementation
tool in MATLAB is the Bayes Net Toolbox (BNT) (37).

Within the epidemiology community, a popular open-source
programming language is R (38). There are multiple R packages
targeting BN modeling. The bnlearn R package contains many
score-based and constraint-based algorithms, as well as multiple
searching procedures (39). It is the largest and probably the
most popular R package for BNmodeling. When targeting causal
BN inference, the pcalg R package is the most used package
(40). It has a unique implementation of the PC-algorithm. The
catnet R package deals with categorical data only (41). The deal

R package handles both continuous and discrete variables (42).
It is one of the oldest R packages for structure and parameter
learning. From a more general perspective, the gRain R package

is designed to perform inference in probabilistic expert systems
where BNs are a special case (43). The abn R package has an
implementation of a score-based system in a Bayesian and in
a frequentist framework. It also has a unique implementation
of an exact search algorithm and targets mixed-distributed
datasets. The supported distributions are multinomial, Bernoulli,
Gaussian, and Poisson. The abn R package can deal with
random effects for controlling possible clustering within the
data. All those packages are distributed via CRAN. Task View:
gRaphical Models in R (CRAN.R-project.org/view=gR) gives
a very comprehensive overview of the different computing
packages available on CRAN.

5. CASE STUDY

For a case study, we focus on the Feline calicivirus (FCV)
infection among cats in Switzerland. FCV is a virus that
occurs worldwide in domestic cats but also in exotic felids.
FCV is a highly contagious virus that is the major cause
of upper respiratory tract disease or cat flu in felids. This
is a disease complex caused by different viral and bacterial
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TABLE 1 | Description of the factors in the FCV dataset.

Variable’s name Description

FCV Feline calicivirus status (0/1)

FHV-1 Feline herpesvirus 1 status (0/1)

C. felis Chlamydia felis status (0/1)

M. felis Mycoplasma felis status (0/1)

B. bronchiseptica Bordetella bronchispetica status (0/1)

FeLV Feline leukemia virus status (0/1)

FIV Feline immunodeficiency virus status (0/1)

Gingivostomatitis Gingivostomatitis complex status (0/1)

URTD Upper respiratory tract disease complex (0/1)

Vaccinated Vaccination status (0/1)

Pedigree Pedigree (0/1)

Outdoor Outdoor access (0/1)

Sex Sex and reproductive status (male, male neutered, female,

female spayed)

Group size Number of cats in the group-housing (count)

Age Age in years (continuous)

The variable names used in R are slightly different than the ones used in the text and

the figures.

pathogens, i.e., FCV, Feline Herpes Virus 1 (FHV-1),Mycoplasma
felis (M. felis), Chlamydia felis (C. felis), and Bordetella
bronchiseptica (B. bronchoseptica). It can be aggravated by
retrovirus infections, such as Feline Leukemia Virus (FeLV) and
Feline Immunodeficiency Virus (FIV). This composite dynamic
makes it very interesting for a BN modeling approach.

The data were collected between September 2012 and April
2013. Berger et al. (44) presented the original data and analysis
and investigated the frequency of FCV in cats with FCV-
related symptoms and in healthy cats in Switzerland. They
also investigated potential protective and risk factors. The
FCV dataset includes multiple viral and bacterial pathogens,
retrovirus, clinical signs, and animal-related risk factors. The
potential risks or protective factors are expected to be interrelated
and correlated. The FCV dataset entries are described in Table 1.
The variable sex is a composite variable between a cat’s sex
and reproductive status with four possible values: male, male
neutered, female, female spayed.

The FCV dataset is a good candidate for a BN analysis,
as complex and intertwined relations are expected among
multiple recorded viruses and bacterial pathogens, animal-
related variables, and environmental contributions. A major
difference between this case study and the original study is that
the original study design included two groups of cats: those
in which FCV infection had been suspected (based on clinical
signs) and healthy cats, as determined by a veterinary practitioner
based on an unremarkable physical examination. The present
analysis discards this study characteristic and analyzes the data as
a whole observational dataset. This might hamper comparability
with the original analysis so that the prevalence would not be
estimable anymore.

The study enrolled 300 cats, i.e., the healthy and the FCV-
suspected cats as a unique observational group. A subset of 20

of the 300 observations contain missing values. As the ABN
approach requires a complete case dataset, a model imputation
approach, using random forest, was used to fill in the missing
data (45). Missing data are a common problem in veterinary
epidemiology, and no single solution exists. However, as general
advice, one can perform a complete case analysis and an imputed
one. If the findings are similar, this is a good indication that there
is enough information in the data to estimate an ABN model. If
the findings differ significantly, then more investigations should
be conducted to model the missing data. The dataset is made
of 15 variables: one of them is continuous, one of them is
integer-distributed, and the others are discrete.

Figure 5 presents the plots of the distributions of the
individual variables. As one can see, 97 positive cases among the
300 cats are recorded. In binary logistic regressions, a popular
factor of performance is the ratio between the smaller number
of the two-outcome group (i.e., number of events) divided by the
number of regression coefficients (excluding the intercept). In the
FCV dataset, the Event Per Variable (EPV) is 97 cases divided
by 7 variables (the maximum number of parents allowed), which
equals 13.86 (for the outcome: FCV). van Smeden et al. (46)
suggested that low EPV has a smaller impact than data separation
or total sample size. The abnR package comes with a workaround
dedicated to specifically managing low EPV and data separation:
Firth’s correction. The data separation problem occurs in logistic
regressionmodels when a certain combination of factors contains
no observations. For example, in the FCV dataset, no record of a
male cat with an FCV-positive status would imply that the sex
of the cat perfectly predicts the FCV status, and the regression
estimates would become numerically unstable. Firth’s correction
aims at producing reliable estimates in (quasi-)separated datasets.
As abn tests all possible combinations of variables, the risk of data
separation, especially in small datasets, is high.

5.1. Additive Bayesian Network Analysis
An ABN analysis is performed with the sequential computation
of three functions: buildscorecache() (pre-computed
scores), mostprobable() (a search algorithm), and
fitabn() (parameter learning). At this stage, the user
should perform multiple steps before starting an ABN analysis:
loading and formatting the data, setting up the distribution of
each network’s nodes, deciding on possible prior knowledge, and
deciding on the maximum number of parents per node (i.e.,
limiting the network complexity).

5.2. Loading the Data
The FCV dataset is accessible through the abn R package:

R> data("FCV", package = "abn")

5.3. Setting Up the Distributions List
The user should define a list of distributions to let abn know
how to fit the data. This is similar to the family statement
in the R function: glm(..., family = binomial(link
= “logit”), ...) . One needs to create a named list
that contains all the variable names and the corresponding
distributions. The available distributions are binomial, Gaussian,
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FIGURE 5 | Plots of the variable distributions in the FCV dataset. Discrete data are represented using their proportions. Continuous data are represented using

histograms and their densities (Group Size and Age).

Poisson, and multinomial, where the last distribution is available
with MLE scores only.

R> mydists <- list(FCV = "binomial",
+ FHV1 = "binomial",
+ FeLV = "binomial",
+ FIV = "binomial",
+ Mfelis = "binomial",
+ Cfelis = "binomial",

+ Bbronchiseptica = "binomial",
+ URTD = "binomial",
+ Gingivostomatitis = "binomial",
+ Pedigree = "binomial",
+ Vaccinated = "binomial",
+ Outdoor = "binomial",
+ Sex = "multinomial",
+ GroupSize = "poisson",
+ Age = "gaussian")
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Binomial and multinomial data should be coerced to factors, and
Gaussian and Poisson should be treated as numeric. As the list of
distributions contains a multinomial node, the MLE method will
be used in this case study.

5.4. Prior Knowledge
The prior knowledge in the abn R package can be defined by
using two different means: a matrix or formula-wise statements.
In the FCV dataset, the three factors Sex, Age, and Pedigree
should not have a parent node. In other words, those factors
cannot be influenced by any other variables within the dataset,
and this prior knowledge should be transferred to abn to ensure
the biological plausibility and interpretability of the final model.
In practice, this is done by banning or retaining arcs within the
network. By default, abn assumes no banned or retained arcs. See
?fitabn in R about how to specify banned or retained arcs by
using a formula-like syntax.

5.5. Parent Limit
To define the number of parents per node needed, one usually
performs an ABN analysis in a for loop and increases the number
of parents at each run. One computes the network score at
each run and stores it. The number of parents needed is the
number which leads to an unchanged network score. The code
displayed below performs the so-called parent search for AIC,
BIC and MDL scores:

R> aic.values <- aic.values <- mdl.values <- vector(length = 11)
R>
R> #for loop to discover the suitable network complexity
R> for (i in 1:11) {
+ max.par <- i
+ # construction of the score cache
+ mycache <- buildscorecache(data.df = mydata,
+ data.dists = dists,
+ dag.banned = ~Sex|.+Age|.+Pedigree|.,
+ max.parents = max.par, method = "mle")
+ # optimal dag with BIC
+ dag <- mostprobable(score.cache = mycache, score = "bic")
+ fabn <- fitabn(object = dag, method = "mle")
+ bic.values[i] <- fabn$bic
+ # optimal dag with AIC
+ dag <- mostprobable(score.cache = mycache, score = "aic")
+ fabn <- fitabn(object = dag, method = "mle")
+ aic.values[i] <- fabn$aic
+ # optimal dag with MDL
+ dag <- mostprobable(score.cache = mycache, score = "mdl")
+ fabn <- fitabn(object = dag, method = "mle")
+ mdl.values[i] <- fabn$mdl
+ }

Figure 6 displays the network score achieved in percent of the
absolute maximum as a function of the maximum allowed
number of parents per node for three scores (AIC, BIC, MDL).
The maximum needed number of parents per node depends
heavily on the chosen score. The AIC’s learned network requires
ten parents per node, whereas the BIC’s learned network and

the MDL score require only seven parents per node. This is
coherent with Figure 1, where both stepwise model selection
and BN modeling approaches with AIC select a more dense
network than with BIC. Thus, choosing the score is an important
modeling decision. For this case study, the BIC score will be
preferred. The rationale for this subjective modeling choice is the
following: since BIC is more parsimonious in terms of model
complexity (considering the number of possible relationships
within the network) with a limited number of observations, it is
very popular with BN analysis and is closer to a Bayesian score.
Based on that information, an exact search can be performed
using the mostprobable() function. In the eventuality that
the number of nodes would exceed 20, we would have to rely on
a heuristic approach. The function searchHillclimber() ,
for example, performs multiple greedy hill-climbing searches
and returns a consensus network based on a user-defined
thresholding percentage. It is a good alternative when an exact
search is not possible for computational reasons.

5.6. Control for Robustness and
Accounting for Uncertainty
The next and final modeling step is 2-fold. It aims to control
for overfitting and to account for uncertainty in the model. In
statistics, and more generally in data analysis, overfitting is the
production of an analysis that too closely represents the data
and thus may poorly generalize findings. Overfitting produces

an overly complicated model that captures unnecessary features
of the studied problem. Underfitting produces a model that is
too simple and thus does not capture an essential features of
the studied problem. Both under- and over-fitting are limiting
factors for the reliability of any analysis, but in BN modeling,
the risk of overfitting is known to be high, so measures should
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FIGURE 6 | Network score: Minimum Distance Length (MDL), Bayesian Information Criteria (BIC), and Akaike Information Criteria (AIC) as a function of network

complexity, i.e., the maximum number of allowed parents per node.

be taken for controlling it. Multiple approaches have been
proposed to manage the tendency of BN modeling to overfit the
data. Parametric (2) and non-parametric (16) bootstrapping are
very popular methods. In this case study, we use a structural
Monte-Carlo Markov Chain (MCMC) sampler implemented
in the mcmcabn R package (47). This approach allows us to
construct MCMC samples respecting global structural priors and
the chosen constraints (see Supplementary Material for details).
The output of this modeling step estimates the probabilities of
each arc’s existence in the DAG. Based on those probabilities,
the final DAG is pruned by removing the arcs that do not
have enough support. Additionally, structural MCMC can be
computationally faster for a certain class of problems.

As a by-product, the Bayesianmodel averaging approach helps
to account for uncertainty during the modeling process. It is
plausible to imagine that multiple DAGs are realistic for the data
and that the limited sample size of the FCV dataset does not let
us select among them objectively. Bayesian model averaging is a
technique for reporting the acceptable manifold models. It has
shown promising and impressive results with real-world data in
closely related research fields (48–50).

From an applied perspective, so-called structural queries are
very attractive features deducible from the MCMC sample.
Structural queries are typical questions the researchers can ask
the models, such as: What is the probability that the classical
signs of URTD (nasal discharge, ocular discharge, conjunctivitis,
and sneezing) are NOT associated with the FCV status? (99.7%);
or What is the probability of the gingivostomatitis complex being
directly associated with the FCV status if the vaccination status

is NOT? (50%). These modeling queries are typically laborious
to address with classical statistical methods, making Bayesian
model averaging a very promising complementary approach
to BN modeling.

5.7. Presentation of ABN Results
An ABN analysis produces qualitative results (see Figure 7) and
quantitative results (see Table 2). Figure 7 displays a pruned
additive Bayesian network model constructed by pooling results

across 100,000 MCMC moves. A thinning factor of 100, a burn-
in phase of 17% of the total number of MCMC steps, a non-
informative global network prior, and a thresholding factor of
50% were used. The original DAG was obtained using the BIC
network score and seven parents per node at maximum. Three
prior knowledge constraints were incorporated into the analysis:
the nodes Sex, Age, and Pedigree cannot have any parents. The
original DAG (presented in Figure 1 in the red square on the
right) has 20 arcs. The pruned one (see Figure 7) has 19 arcs.
The square nodes are binomial, the triangular node is Poisson,
the oval nodes are Gaussian, and the pentagonal node is based
on multinomial distributed variables. The gray scale values of
the nodes display the contribution levels of the variables (target
variable, viral and bacterial pathogens, retrovirus infections,
clinical signs, and animal level risk factors). The thickness of
the arrow is proportional to their probability, as in classical
regressions, where the effect size is almost always reported with
a measure of significance. The probability of an arrow in a BN
model is the counterpart of the P-value in a regression analysis.
The percentages are reported inTable 2 under Support. This table
also shows the regression coefficients and their interpretation.
The Confidence Intervals (CIs) are Wald-type CIs. The odds and
rate ratios have a simple epidemiological interpretation. If smaller
than one, a ratio has a negative effect. Inversely, if larger than one,
the effect is positive. This direction of the effect is displayed in
the DAG.

5.8. Interpretation of the Findings
The ABN analysis aims at studying the determinants of the
FCV status. Despite using a different framework for the analysis
and different datasets, the findings of the present case study
are very similar to the initial results presented by Berger
et al. (44). In Figure 7, the FCV status is directly associated
with the vaccination status, the gingivostomatitis complex, the
size of the housing group, and the presence of M. felis. The
vaccination is negatively associated with the FCV status, with
an odds ratio of 0.38 (i.e., the vaccinated cats are less likely
to have a positive FCV status) and a supportive probability of
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FIGURE 7 | Pruned additive Bayesian network model selected using BIC score, with a maximal parent limit of seven, constructed by pooling results across 100,000

MCMC moves [thinning factor of 100, burn-in phase of 17% of the total number of steps, and non-informative global network prior (except the already mentioned

network restriction)]. The squares are binomial, the pentagon is Poisson, ovals are Gaussian, and the triangle is based on multinomial distributed variables. The FCV

node is directly associated with the factors vaccination status, gingivostomatitis, M. felis, and group size. The solid arrows represent positive effects and the dashed

arrows, negative effects. The thickness of the arrow is proportional to the support probability. The gray scale values of the nodes encode their level of contribution

(target variable, viral and bacterial pathogens, retrovirus infections, clinical signs, and animal level risk factors).

70.7%. The FCV status is positively associated with gingivitis
and stomatitis aggregated, with an odds ratio of 8.17 in all
MCMC samples. Gingivostomatitis indicates an inflammation
of the caudal and buccal oral mucosa and, occasionally, other
oral mucosal surfaces. The FCV status is also positively directly
associated with the presence of M. felis, with an odds ratio of
2.69, with a supportive probability of 100%. Housing cats in large
groups is also found to be a risk factor (with a rate ratio of 1.57
present in all MCMC samples).

The original study used a dichotomized variable for group
size. In the present case study, we used a Poisson-distributed
variable. Based on Figure 5, a zero-inflated or negative binomial
may have been a better choice. Unfortunately, these distributions
are not available in the abn R package. Interestingly, as was
found in the original publication (44), classical signs of URTD
(such as nasal discharge, ocular discharge, conjunctivitis, and
sneezing) are not found to be directly associated with FCV
status. The reduction of the group size and vaccination are the

two actionable factors found to be directly associated with the
FCV status and are recommended as a measure to control FCV
infection. Alternatively, the presence of gingivostomatitis or M.
felis infection is a strong indicator of an FCV-positive status in
a cat. Another nice feature of a BN analysis is the possibility
of gaining insights into the relationships with variables other
than the targeted one. Beyond the FCV interpretation, one can
see that cats with a pedigree are more likely to be vaccinated,
less likely to have outdoor access, and less likely to suffer from
gingivostomatitis complex compared to non-pedigree cats. The
older a cat is, the more likely it is to suffer from gingivostomatitis
complex but the less likely it is to be C. felis-positive. Figure 7
also shows that a cat’s sex with reproductive status, FeLV status,
and FIV status are not associated with the rest of the network.
However, only five positive cases occur in the dataset for FeLV
and FIV status, and so this result should be treated cautiously.
Sex and reproductive status seem not to play a role in FCV
infection dynamics.
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TABLE 2 | Regression coefficient estimates and 95% Confidence Intervals (CI)

with their interpretation and data support (computed with structural MCMC).

Arc Coefficient 95% CI Interpretation Support

[%]

FCV–Vaccinated 0.38 [0.2;0.72] Odds ratio 70.7

FCV–Gingivostomatitis 8.17 [4.63;14.42] Odds ratio 100

C. felis–URTD 22.20 [3.13;157.59] Odds ratio 100

C. felis–Age 0.33 [0.14;0.77] Odds ratio 94.9

M. felis–FCV 2.69 [1.62;4.48] Odds ratio 100

M. felis–FHV-1 3.00 [1.54;5.58] Odds ratio 53.2

M. felis–Outdoor 0.50 [0.31;0.82] Odds ratio 59.9

Gingivostomatitis–Pedigree 3.00 [1.74;5.20] Odds ratio 100

Gingivostomatitis–Age 1.54 [1.19;1.98] Odds ratio 98.7

URTD–FHV-1 2.69 [1.41;5.14] Odds ratio 56.3

Outdoor–Pedigree 0.12 [0.07;0.22] Odds ratio 100

Group size–FCV 1.57 [1.35;1.82] Rate ratio 100

Group size–C. felis 0.61 [0.44;0.83] Rate ratio 97.2

Group size–M. felis 1.26 [1.10;1.45] Rate ratio 95.3

Group size–B.

bronchiseptica

2.56 [2.02;3.24] Rate ratio 100

Group

size–Gingivostomatitis

0.77 [0.66;0.90] Rate ratio 99.1

Group size–URTD 1.27 [1.11;1.46] Rate ratio 99.2

6. DISCUSSION AND PERSPECTIVE

This paper introduced BNmodeling and highlighted its strengths
and weaknesses when applied to complex epidemiological data.
We illustrated the key concepts and presented a detailed case
study analysis using open data and open code. We hope this
will help raise awareness of BN modeling and its potential
within the epidemiological community. As a secondary objective,
the case study focuses on running a complimentary analysis
on an already published dataset about FCV infection among
cats in Switzerland. The BN modeling attempts to identify
potential determinants of the FCV status and to contrast results
with previous results obtained with the standard multivariate
approach. The two analyses show very similar results, and the
ABN analysis is a convincing alternative to the original statistical
approach based on uni- and multi-variate regression models.
BN modeling can be seen as a new tool that might be useful
for giving additional new insights potentially not captured by
classical methods.

BN modeling is typically a hypothesis-generating approach
used in veterinary epidemiology when very little is known
within a research domain. For confirmatory studies, more
traditional epidemiological approaches are usually preferred.
In machine learning, it is often advisable to follow guidelines
for good modeling practices (51, 52). According to the
literature, three major points are essential components for good
modeling practices:

• Definitions of model objectives and lists of the model
assumptions and algorithms used are needed

• Model outputs should be assessed
• The model’s outputs must be fully reported.

Good modeling practices are essential to produce robust models,
as is transparently reporting possible technical or computational
issues and their workarounds. Ideally, we hope to identify and
report the single most robust DAG. A significant concern in
BN modeling is the tendency to overfit the data and to select
overly complicated models that generalize poorly. Albeit being
popular and accepted, pruning DAGs using bootstrapping leads
to crude choices regarding the possible connections in the
model and diminishes the range of possible interpretations.
Indeed, an arc is either present or absent. This approach is
somewhat rudimentary, considering the massive number of a
priori networks. Another possible focus would be to seek robust
quantification of the connection between variables among the
vast number of possible models. In the case study, we emphasize
the practical need to account for uncertainty in the final reported
DAG through Bayesian model averaging. This methodology is
a very active research field that shows encouraging results in
closely related domains and seems to be the future of BN
modeling. Bayesian model averaging could be very useful in an
applied context to avoid reducing the richness of BN modeling
to only one single model. Indeed, it allows users to quantify the
marginal impact of relationships (arcs in a network) of interest
by marginalizing out over networks or nuisance dependencies
(i.e., all other possible relationships). Structural MCMC seems to
be a very elegant and natural way to quantify the true marginal
impact so that one can determine if its magnitude is great enough
to consider it as a worthwhile intervention. The main drawback
of this technique is its considerable computational demands. The
increasing availability of cheap computational resources makes
structural Bayesian model averaging feasible for a large variety
of studies.
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